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SOME CLASSICAL FUNCTION THEORY
THEOREMS AND THEIR MODERN VERSIONS

by J. L. DOOB

1. Introduction.

In 1940 Brelot defined a concept of thinness of a subset A of
a Green space R at a point of the space. In 1957 Naim extended the
concept by defining thinness of A < R at a point of the Martin
boundary dR of R. Since a subset of a set thin at a point is also thin
at the point and since the union of two sets thin at a point is thin at
the point one can make the definition, for A < R, that ¢ is a fine
limit point of A if A is not thin at &. If fis a function on R, the concept
of fine limit of f at £, and related limit concepts, are thereby well-
defined, even without making R or R u dR formally into topological
spaces. For most applications, including those in this paper, this
untopological approach to fine limit concepts is perfectly adequate.
There is some interest however in going further and defining topo-
logies as suggested by the thinness concept. The now classical fine
topology on R can be defined by the convention that a point £ of R
is a fine limit point of a subset A of R if and only if A is not thin at &,
A topology on R U dR will be called compatible with the thinness
concept if a point £ of R U JR is a limit point of a subset A of R
if and only if A is not thin at £, Any such topology induces the fine
topology on R,and all such topologies are equivalent in so far as
limiting values at points of R U dR of functions defined on R are
concerned. Thus it is legitimate to discuss fine limits of such functions
without specifying which of the topologies compatible with the
thinness concept is involved. « Fine topology» on R u JdR will
refer to any such topology. For example one simple topology
compatible with the thinness concept (and maximal in a certain
sense) is obtained by the definition that a subset A of R U JR has a
point of this space as a fine limit point if and only if A n R is not
thin at the point.
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It is not yet obvious which topology compatible with the thinness
concept is the most useful one. See Gowrisankaran [8] for a discussion
of the possibilities. Cartan pointed out in 1940 that the topology on
R which is the smallest topology (fewest open sets) making super-
harmonic functions continuous is precisely the fine topology on R,
defined above in terms of thinness. In a natural extension of Cartan’s
idea Naim [10] defined a (minimal in a certain sense) topology on
R U JR compatible with the thinness concept, the smallest topology
making certain potentials on R U dR (f potentials) continuous.

In 1954 and 1957 Doob gave a probability interpretation of
thinness, thereby giving a probability interpretation of the fine
topology. The fine topology makes possible very elegant formulations
of various results. For example, a boundary point of a Euclidean
domain is regular for the Dirichlet problem if and only if the comple-
ment of the domain has the point as fine limit point; a conformal
map from one hyperbolic Riemann surface to another has a fine
limit at almost every Martin boundary point, and so on. These
results were obtained in the natural course of various investigations,
not inspired by the fine topology. By now it is clear, however, that
the fine topology is intrinsic in potential theory and related subjects.
It is natural therefore to investigate its possible applications to the
cluster value theory of analytic functions. An obvious step is to find
the relations between the angular and fine cluster sets (at boundary
points) of functions defined on a ball or half-space. This step has
already been carried out by Doob and by Constantinescu and
Cornea, and more completely recently by Brelot and Doob [2]
where detailed references will be found. The purpose of the first
part of the present paper is to give some of the significant results of
cluster value theory, in so far as they involve the fine topology, of
superharmonic, harmonic, and meromorphic functions at the boun-
dary of a half-space of definition and at an isolated singularity. The
most interesting new results in this part are Theorems 4.1, 5.1, and
7.3. According to Theorem 4.1, if f is a function from a half-space
to a compact metric space, and if Q is a boundary point of the half-
space, the cluster set of f along the normal to Q is a subset of the
fine topology cluster set at Q for almost all Q. This theorem makes it
possible to derive the classical theorem on the almost everywhere
existence of normal limits of a positive superharmonic function at
boundary points of its (half-space) domain from the general theorem
on the existence of almost everywhere fine limits at Martin boundary
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points of an arbitrary (Green space) domain. In fact Theorem 5.1
generalizes the classical limit theorem to apply to ratios of positive
superharmonic functions. In Section 6, applying the results of this
and previous papers, the classical Plessner theorem for meromorphic
functions on a disk or half-plane is put into a new and more precise
form (Theorem 6.2) involving normal and fine cluster values. Theorem
7.3 is an analogue involving fine cluster values of the Casorati—
Weierstrass theorem for meromorphic functions in the neighborhood
of a singularity.

In the second part of this paper a Hardy-Littlewood inequality
(7.4) for positive subharmonic functions on a disk is extended to
positive subharmonic functions defined on an arbitrary Green space
of dimensionality N > 2. The generalization is given both in pro-
babilistic language (Theorem 10.1) and non-probabilistic language
(Theorem 11.1) but the probabilistic version is the more intuitive
one. The Hardy-Littlewood inequality is put into a setting which
makes it clear that the fundamental inequality underlying the work is
a much simpler maximal inequality, an application of an elementary
submartingale inequality. In Section 12 it is shown that the original
Hardy-Littlewood inequality, in fact its generalization to N > 2
dimensions, is easily obtained from the general case.

I. APPLICATIONS OF THE FINE TOPOLOGY TO
FUNCTION THEORY.

2. Cluster values at the boundary of a half-space.

If fis a function from an N-dimensional half-space into a compact
metric space, it has a cluster set at the boundary point Q which
depends on the admissible method of approach. Let Aq be the cluster
set along the line through Q normal to the boundary. Let B, be
the cluster set for non-tangential approach, and let Cq be the fine
cluster set, that is, the cluster set for approach in the fine topology.
These three sets are non-empty: A, and Cq are compact; By is a
countable union of compact sets. In topological language, Aq is
the cluster set on approach to Q in the topology assigning as
deleted neighborhood of Q the part of the half-space on an interval
of the line through Q normal to the boundary, the interval to have
Q as one endpoint. If (« non-tangential topology ») a deleted neigh-
borhood of Q is defined as any subset of the half-space whose

8
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complement in the half-space is tangential, the non-tangential topo-
logy cluster set is the closure of B, A function on the half-space has a
non-tangential limit at Q, that is, a limit on every non-tangential
sequence to Q, if and only if it has a limit in the non-tangential
topology.

In the following, normal and fine limits will be denoted by n lim
and f lim respectively.

Using the relations to be described between Ay, By, Cq, Fatou’s
boundary limit theorem, involving non-tangential approach, for
harmonic functions on a half-space, is equivalent to the same
result for approach in the fine topology (see [2]). The fine topology
approach is more natural however, for the following reasons.
(a) In terms of the fine topology there is a natural extension of Fatou’s
theorem to the ratio u/h of two positive superharmonic functions [6]:
u/h has a fine limit, but not necessarily a non-tangential limit or even
a normal one, almost everywhere on the boundary, for the boundary
ineasure determining the harmonic component of 4 in its Poisson—
Stieltjes representation. (b) Even if h = 1 in (a), so that the boundary
measure is a constant multiple of Lebesgue measure, the stated result
does not become true for angular approach, although it is then true
for normal approach. (c) The fine topology version of Fatou’s
theorem, even in the ratio form (a), remains true for functions on an
arbitrary Green space.

It is clearly a present task for mathematicians to go through the
extensive theory of cluster values of meromorphic functions and to
see what if any contribution the fine topology has to offer.

3. A projection theorem.

In the following, if £[A] is a point [set] in a given half-space R,
E*[A*] will denote its projection on the boundary J0R. Lebesgue
N-dimensional measure on JR will be denoted by v. If N > 2 the
area of the unit sphere in N-space multiplied by N — 2 will be
denoted by 1/ay; a, = 1/(2n). The distance from £ to JR will be
denoted by d;. The Green function of R will be denoted by g and
the harmonic measure of a set A < dR relative to & by u(&, A).

LEMMA 3.1.— Let S = R be a countable union of Borel sets, each
on a hyperplane parallel to 0R, with disjoint projections on 0R. Let
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0 be the supremum of the distance from ¢R to a point of S. Define

G.1) 1) = o | EG1 e
S ’I
Then there is a constant cy independent of S, 0, such that v < cy.
If'S is contained in the ball of center &, and radius r, and if 0 is suffici-
ently small, depending on &, r, but not on &, or S,

(3.2) u&o) 2 ulSo,S¥) — &

When & = &, in (3.1) and all the points of S are within distance r
of &,, the integrand is uniformly within &/[axv(S*)] of the normal
derivative of g(&,,. ) at »*, if § is sufficiently small, depending on ¢,
N, r. The second assertion of the lemma is therefore true. In proving
the first assertion we suppose that N > 2; the proof when N = 2
is similar. [The manipulations to follow are due to Mr. G. A.
Brosamler.] Fix ¢ in R and let M(s) be the supremum of axg(&, )/d,
as n varies on the intersection with R of the sphere of center ¢ and
radius s. On this sphere

ang(&, n) _ @_[S—(N—z)
d d

n n
and the derivative of the right side with respect to d, is negative.
Applying this fact one finds that

(34) M(s) = an2(N — 2)dy/s™  if  d.<s

s

=oN[s NP — (2d; — 5) N DYd: —5) if d.>s.

s

(3.3) — (s* + 4d;d,)"N272]

An elementary calculus argument shows that M is a decreasing
function. It follows that if f(s) is the Lebesgue (N — 1)-dimensional
measure of the part of S at distance <s from & then f(s) < asN"™!
for some constant a depending only on N and

o0 < J " M(s) df () = j £(5) dM(s)
0
(3.9) - 5
< - j asN"1dM(s) = a(N — 1)J M(s)sN ™2 ds.
0 0

Now from the above evaluation of M(s),
1

dg
(3.6) j M(S)SN—Z ds = och [1-@2 - t)”(N_z)tN_z]/(l — t)dt

0 0
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and

(3.7) J M(s)sN"2ds = 2(N — 2)ay.
dg

Hence v is bounded as stated in the lemma.

Throughout this paper, if h is a positive superharmonic function
on some domain and if A is a subset of the domain, R} means the
regularized (to be lower semi-continuous) reduced function of h
on A, that is R} is the positive superharmonic function which
coincides off a set of capacity zero with the lower envelope of the
positive superharmonic functions on the given domain which domi-
nate h on A. We shall use in the proof of Theorem 3.1 the fact that if v
is the Green potential of a positive measure on the domain, if the
measure is carried by A, and if v < h on A, then v < R} on the whole
domain.

In the following theorem we describe a point on the boundary
of a half-space as a normal limit point of a subset of the half-space
if the boundary point is a limit point of the part of the subset on the
normal line through the boundary point.

THEOREM 3.1. — Let R be a half-space and let A be a subset of R.
Then almost every normal limit point of A on 0R is a fine limit point
of A.

We can and shall suppose that A is a Borel set, and even a G; set.
In fact let A" be the set of fine limit points of A in R. Then it is known
that A’ is a G4, and that A — A n A’ has capacity zero. Let A” be the
union of A" and of a G; set of capacity zero covering A — AN A’
Then A” is a G; set including A, with the same fine limit points as A
on OR. Thus if A is not already a G; set we can replace it by A”. We
can also suppose that A is bounded. Then the set B of normal limit
points of A is also a bounded G; set. Let A, be the part of A at
distance <1/n from dR. Fix some point ¢, of R at which the re-
gularized reduced function R% is equal to the reduced function (the
actual lower envelope involved) for n > 1. Given n,¢, there is an
open set G o A, for which

R4n(&0) = R§(&o) — ¢

and for which each point of G is at distance < 1/n from dR. Applying
Vitali’s theorem, there is a subset S of G, consisting of countably
many (N — 1)-dimensional intervals, parallel to J0R, whose pro-
jections on JR are disjoint and cover almost all of B. Now according
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to the lemma, n can be chosen to make, in the notation of the lemma,
(3.8) (o) = u&o, S*) — & = w&o, B) — ¢,
and v < ¢y for some constant ¢y independent of &, and n. But then,

since v/cy is a Green potential dominated by 1 on S, whose measure
is carried by S,

(3.9) R$(&o) = v(Eo)en = plEo, B)ew — e
Hence A

(3.10) R"(&o) = w(&o, B)foy — e/en — €
so that R

(3.11) ji_’rr; Ri(&o) = u(&o, B)/cn.

Now according to a theorem of Naim [10] the greatest harmonic
minorant of R is u( . , C), where C is the set of fine limit points of A,,,
that is of A, on dR. Hence u(.,C) = u(., B)/cy. Since the harmonic
measure of a boundary set has fine limit 1 almost everywhere on the
set, 0 at almost all other boundary points, C must include almost
all of B, as was to be proved.

4. Relations between Ay, Bg, Co.

THEOREM 4.1. — Let f be a function from a half-space to a compact
metric space. Then at almost every (Lebesgue measure) boundary point
Q, Aq © Cq. In particular f has a normal limit at almost every
boundary point where f has a fine limit, and the limits are the same.

Note that no regularity hypotheses have been imposed on f. The
sets Aq and Cq, are compact, for each Q. Hence to prove the theorem
it is sufficient to prove that there is an exceptional subset of the
half-space boundary, of measure 0, such that,if Q is not in this set,
Cq meets (that is, has a non-empty intersection with) every closed
ball which A, meets. It is even sufficient to consider only a properly
chosen countable sequence of balls, and therefore even sufficient
to consider a single ball S, and prove that if B is the set of boundary
points Q for which Aq meets S, Cy meets S for almost all Q in B.
Let S, be the concentric ball of radius larger than that of S by 1/n.
Then f ~X(S,) is a set in the half-space which has every point of B as a
normal cluster value. In view of Theorem 3.1 we conclude that
f71(S,) has almost every point of B as a fine cluster value. That is,
for almost every Q in B Cqy meets S,. Hence for almost every Q in
B C, meets S, as was to be proved.
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The known relations, besides that given by Theorem 4.1, between
Aq, Bg, Cq for a function from a half-space to a compact metric
space can be summarized as follows. (See [2] for proofs and refe-
rences.) It is trivial that A < Bg. For almost all (Lebesgue measure)
Q, Cq = B Moreover if the function f is positive and harmonic or
the quotient of two such functions, By = Cq for all Q, so that,
under these special hypotheses on the function, By = Cg, for all Q,
so that, under these special hypotheses on the function, B, = C,
for almost all Q.

5. A new generalization of Fatou’s theorem.

A positive harmonic function on a half-space has a nontangential
limit at almost every (Lebesgue measure) boundary point. A positive
superharmonic function on a half-space need not have a non-
tangential limit at almost every boundary point, but does have a
normal limit at almost every boundary point. It is one of the beauties
of the fine topology that using it as the approach topology no
modification is needed in going from a Fatou-type boundary limit
theorem for positive harmonic functions to one for positive super-
harmonic functions. In the following theorem the fine topology limit
theorem is used to derive the normal one, and in fact a new normal
one.

By a Stolz domain for a boundary point Q of a half-space we
mean as usual the intersection with a ball of center Q of the interior
of a right circular cone whose closure lies in the half-space except for
its vertex Q.

THEOREM 5.1. — Let h be superharmonic and positive on the half-
space R. Suppose that u is defined and superharmonic on an open
subset of R containing a variable Stolz domain whose vertex runs
through a boundary set B. Suppose that on each of these Stolz domains
u/h is bounded from below. Then u/h has a finite fine limit and equal
normal limit at all points of B except for the union of a set of Lebesgue
measure 0 and one of measure O for the measure associated with the
harmonic component of h in its Poisson integral representation.

Note that the half-angle of the Stolz domain and the orientation
of its axis may vary with the vertex. In view of Theorem 4.1, it
is sufficient to prove that u/h has a finite limit at all points of B
except for a set of the type described, and this is precisely the first
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part of the proof of Theorem 10 in [2]. Furthermore, if u and h are
harmonic the limit in Theorem 5.1 is even a non-tangential limit
according to [2].

If h is a Green potential the theorem is vacuous. If h = 1 and
if u is a Green potential on R, the theorem becomes the Littlewood-
Privalov theorem that a Green potential on R has normal limit at
almost every (Lebesgue measure) boundary point. Conversely the
latter theorem can be used to derive the key Theorem 3.1.

Lebesgue measure is involved in Theorem 5.1 because of the use
of Stolz domains. If instead it is supposed that u/h is bounded below
in a deleted fine neighborhood of each point of B the conclusion
becomes that u/h has a finite fine limit and equal normal limit at
almost every boundary point for the measure associated with the
Poisson integral representation of the harmonic component of A

6. Cluster sets of superharmonic, harmonic, and meromorphic functions
at the boundary of a half-space.

We consider functions f from a Green space into a compact
metric space, specializing later. The Green space topology is the
usual one unless « fine» is prefixed to a concept under discussion,
when the fine topology is used. In every case the function f will
be fine-continuous. In particular the results will be applicable to
superharmonic functions, for which the range space is the extended
compactified line, and to meromorphic functions, for which the range
space is the extended compactified plane.

The continuity condition on f implies that the function is Borel
measurable. In fact the continuity condition is equivalent to the
combined condition that f be Borel measurable and that its restriction
to a Brownian path from a point of the space be a continuous
function of the path parameter for almost all paths from the point.
The restriction of the function to a conditional Brownian path from
the point to another point, either of the space or on the Martin
boundary and minimal is then a continuous function of the path
parameter for almost all these paths.

It follows from these facts, applied to subdomains of the Green
space, that the image under an admissible function f of any open
connected subset of the Green space is arcwise connected. In par-
ticular if the Green space is an N-dimensional half-space, the
nontangential cluster set Bg is connected. The fine cluster set Cqy
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is also connected ; in fact even if the domain is a general Green space
the set of the fine cluster values of f'at a minimal boundary point Q is
connected. Indeed this cluster set is the cluster set at Q of the
restriction of f to each conditional Brownian path from a point Q,
of the Green space to Q, except for a set of paths of zero probability.
If the Green space is an N-dimensional half-space and if f is extended
real-valued, B, and C, must be sub-intervals of [—o0, 0] The
connectedness results can of course also be obtained without
probability, although the probability approach shows better why
they are true.

[If the function f is not necessarily fine continuous but at least
if for every ¢ > 0 the restriction of f to some closed set whose
complement has capacity <e is continuous, that is if f is fine-con-
tinuous except at the points of a set of zero capacity, f need no longer
be Borel measurable. It remains true, however, that the restriction of
f to a Brownian path from a point of the space is a continuous
function of the path parameter, excluding the parameter value O,
for almost all paths from the point. Then C, (even in the general
context in which Q is a minimal boundary point of a Green space)
is still connected, but Ag and Bq, need not be. ]

The following theorem is a slight reorganization of the results
we have obtained, in particular of Theorem 5.1 with h = 1, stated for
comparison with Theorem 6.2 which refines Plessner’s classical
cluster value theorem for meromorphic functions.

THEOREM 6.1. — If f is a superharmonic function on a half-space
one of the following situations holds at almost every (Lebesgue measure)
boundary point Q.

(@) —ooeCqn Bg,Cq = Bg.

(b) f does not have a nontangential limit at Q but has a finite fine

limit and an equal normal limit there.

(¢) f has a finite nontangential limit and an equal fine limit at Q.

According to Theorem 5.1, f has a finite fine limit at almost
every (Lebesgue measure) point Q for which —oo is not in By,
Moreover as was noted in Section 4, Cq < Bg for almost all Q. Thus
Case (a) holds for almost all Q with — oo € Cq. Moreover f has a
finite fine limit, according to [6] at almost every Q for which — oo
is not in Cq. According to Theorem 4.1 falso has a normal limit, equal
to its fine limit, at almost every such point. Thus (b) or (c) is true
almost everywhere where (a) is false.
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It is not known whether in (a) C, can be a proper subinterval
of By, for a Q set of strictly positive measure. If N = 2 a fine neigh-
borhood of a point Q necessarily contains circles of center Q and
arbitrarily small radii, and linear segments with endpoint Q making
angles arbitrarily near n/2 and —=m/2 with the normal through
Q. It then follows from the minimum principle for superharmonic
functions, applied to the region bounded by two such segments and
two such sufficiently small circles, that (b) can be strengthened to

(b)n=, f does not have a nontangential limit at Q but has a finite
fine limit and an equal normal limit there, namely the left endpoint of
Bo.-

QIt is not known whether or not this strengthening is possible when
N > 2. Since the Green potential of a positive measure has normal
and fine limit 0, but not necessarily a nontangential limit, at a]most
every boundary point Q, Case (b) actually can occur.

If f'is harmonic, the three cases become:

(a)harm. BQ = CQ = [_ o0, OO]

(b)parm. Bq = [ — 0, 0] but there is a finite fine limit and an equal
normal limit at Q.

(Onarm. There is a finite nontangential limit and an equal fine limit
at Q.

This spemahzatlon is proved by applying Theorem 6.1 to f and
—f, taking into account the fact [2] that a harmonic function on a
half-space has a finite fine limit at almost every point Q where Bg
does not contain both + o0 and — co. Case (b)y,m. can be omitted
when N = 2 but it is not known whether it can arise when N > 2.

The version of Theorem 6.1 for meromorphic functions is an
extension of Plessner’s classical theorem. It was proved independently
by Doob [7] and by Constantinescu and Cornea [4] aside from a
further extension involving normal limits which follows from
Theorem 4.1. With the extension the theorem becomes.

THEOREM 6.2. — If f is meromorphic on a half-plane, one of the
following situations holds at almost every point Q of the boundary.

(a) Bq = Cq = extended plane.

(b) Bq = extended plane, but there is a finite fine limit and an
equal normal limit at Q.

(c) There is a finite nontangential limit and equal fine limit at Q.

Constantinescu and Cornea have shown by an example that (b)
cannot be omitted, in general. If f omits a single value, however, (b)
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can be omitted. Constantinescu and Cornea have also treated the
more general case in which f maps a half-plane into an arbitrary
Riemann surface.

7. Cluster sets of superharmonic, harmonic, and meromorphic functions
at a singularity.

We shall treat functions defined in a deleted neighborhood R of
a point Q in N-space. Then Q is a minimal boundary point of R,
and the deleted fine neighborhoods of Q relative to R are the inter-
sections with R of the deleted fine neighborhoods of Q relative to
N-space.

THEOREM 7.1. — Let f be superharmonic in a deleted neighborhood
R of a point Q of the plane. If — oo is not a fine cluster value of f at
Q, f has a superharmonic extension to R L {Q}. Hence f has a fine
limit at Q. If f is harmonic and if its fine cluster set at Q is bounded, f
has a harmonic extension to R U {Q}.

If f is superharmonic, its fine cluster set at Q is a compact sub-
interval of [—o0, 0] If —o0 is not a cluster value, f is bounded
below in a deleted fine neighborhood of Q so that by a theorem of
Brelot f is bounded below on a sequence of circles of center Q,
having radii arbitrarily near 0. Applying the minimum principle it
follows that f'is bounded below in a deleted neighborhood of Q and
hence has a superharmonic extension to R U {Q}. The rest of the
theorem is now trivial.

In the following theorem we write r for the distance to Q.

THEOREM 7.2. — Let f be superharmonic in a deleted neighborhood
R of a point Q of the plane. Suppose that there is an open set which
is a deleted fine neighborhood R, of Q on which f is harmonic and
bounded from above. Then there is a constant ¢ > 0 and a function v
superharmonic in R U {Q} such that f = clogr + v.

The point Q is an irregular boundary point of Ry ; f is harmonic
and bounded above in a deleted fine neighborhood of Q (relative
to Ry). Hence according to a theorem of Brelot [1] f/logr has a
finite fine limit at Q. But then, for a suitable constant c;,
f — ¢, logr is superharmonic in a deleted neighborhood of Q and
bounded below in some deleted fine neighborhood of Q. According
to Theorem 7.1 this difference has a superharmonic extension v, to
R U {Q}. If the measure corresponding to v, has the value ¢, on the
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singleton {Q}, v = vy + ¢, logr can be defined at Q to be super-
harmonic in a neighborhood of Q, and f = v + clogr, where
¢ = ¢, — ¢,. Since f'is bounded above in a deleted fine neighborhood
of Q,c=0.

The following example, due to Brelot, shows that Theorem 7.1 is
false when the dimensionality is greater than 2. Let R be the interior
of an N-dimensional ball, N > 3, less the center Q. Let S be a smooth
hypersurface of revolution with axis a ray with endpoint Q, at which
point S has an exponential cusp. Then the part of S in R together with
one of the parts of the boundary of R cut off by S bound an open
subset R, of R which is thin at Q. Brelot [1] has shown how to
construct a strictly positive harmonic function in R, with boundary
limit O at every point of the boundary of R, except Q. The function
is not bounded or a familiar extension of the maximum principle
would imply that the function vanished identically. If the function
is extended by O to R it becomes a subharmonic function there,
which we denote by —f. The function f'is superharmonic on R, with
fine limit 0 at Q, and does not have a superharmonic extension to
R U {Q} because the value of the extension at Q would have to be
— o0, by lower semicontinuity. This function is a counterexample to
Theorem 7.1 for N > 2. It is easily seen that f is also a counter-
example to the obvious N-dimensional version of Theorem 7.2 for
N> 2

If R and Q are as in the preceding theorems and if f is now complex-
valued and meromorphic in R, the fine cluster set of f at Q is a com-
pact subset of the extended plane. According to the Casorati—
Weierstrass theorem, if f does not have a meromorphic extension to
a neighborhood of Q the cluster set of f at Q is the extended plane,
and it is then even true, according to the Picard theorem, that f can
omit at most two values near Q. The following theorem is the fine
topology version of the Casorati-Weierstrass theorem.

THEOREM 7.3. — If f is meromorphic in the deleted neighborhood
R of Q and does not have a meromorphic extension to the full neighbor-
hood, one of the following situations must hold.

(a) The fine cluster set of f at Q is the extended plane.

(b) f has a fine limit at Q. In this case each value in the extended
plane is taken on arbitrarily near Q.

Case (b) can actually arise. In fact if a, — oo it is easy to choose
¢, to make Xc,(z — a,)”! meromorphic on the finite plane with fine
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limit 0 at oo. The function thus provides an example of (b) with Q
the point at 0. To prove the theorem we remark first that if the fine
cluster set offat Q is not the extended plane we can suppose, making
a trivial transformation if necessary, that this set does not contain
the point co. Then f'is bounded in a deleted fine neighborhood of Q
so by Theorem 7.1 its real and imaginary parts have fine limits at Q.
Hence f has a fine limit at Q. To finish the proof we need only show
that if f has a fine limit at Q it takes on each value in the extended
plane arbitrarily near Q. If the assertion is false let « be the fine limit
and ‘we can suppose that the omitted value is co. But then f'is regular
in a deleted neighborhood of Q and has a fine limit « at Q. It follows
at once from Theorem 7.1 applied to the real and imaginary parts of
f that, if « # oo, Q is a removable singularity of f, contrary to
hypothesis. On the other hand if « = oo, —log|f] is superharmonic
in a deleted neighborhood of Q with fine limit — oo there. According
to Theorem 7.2 —log|f| must have a certain form which makes
r"| f| bounded near Q for some positive n. Hence f either has a pole
at Q or a removable singularity. Since both possibilities have been
excluded, the proof is complete.

II. THE HARDY-LITTLEWOOD MAXIMAL INEQUALITIES.

8. The basic inequalities.

Let f be a function from [0, a] to the reals, Lebesgue measurable
and integrable. Define

(8.1) f(t) = sup ——J f@de.

0<s<1t -

The Hardy-Littlewood inequalities [9] in a modernized treatment
depend on the inequality

(8.2) AL{t: f() = 2) < J f(o)dt
{t: ir)= 2

where L is Lebesgue measure and 4 is an arbitrary real number.
(See [13], vol. 1, p. 31 (13.11).) The positivity hypothesis imposed in
[13] on fand A is unnecessary.) The inequality is equivalent to the
inequality obtained on replacing « > » by « > » in the definition
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of the set involved. The inequality (8.2) between two functions f and
f disregarding the background which led to it, arises in many
contexts in ergodic theory and martingale theory. If f and f are
both positive and if p > 1 (8.2) implies

89 | fera<e] sora @ert-n,

0 0
(See [5), p. 317, Theorem 3.4, for this derivation, where in [5] y
should have been replaced by min(y, n); after the inequality is proved
for this bounded random variable, let n — c0. The probability con-
text is irrelevant.) The analogous inequality for p = 1 involves
§o / log*fdt on the right. To avoid pointless repetition we shall
suppose p > 1 below.

The inequality (8.3) was applied by Hardy and Littlewood to
derive an inequality for subharmonic and thereby for analytic func-
tions. Let v be a positive subharmonic function on a ball in N-space,
N > 2. Suppose that v belongs to the class H,: the average of v”
over concentric spheres is bounded independently of the radius.
Then v has a (radial limit) boundary function V and V? is integrable.
Let #(n) be the supremum of v on the radius to the boundary point #.
Hardy and Littlewood proved using (8.3) that if N = 2

(8.4) [y dn < A@)[Vayrdn,  p>1,

where the integration is over the ball boundary, dn is Lebesgue
measure, and A(p) depends on p but not on v. There is a modified
inequality for the case p = 1. We observe for later use that it is
sufficient to prove (8.4) for v harmonic, since if v is subharmonic it
can be replaced by the harmonic function > v determined by the
Poisson integral with boundary function V.

These inequalities recall strongly elementary martingale in-
equalities, as is only natural in view of the close relations between
martingale theory and derivation, as well as between martingale
theory and potential theory. In the following sections it will be
shown that (8.4) can be derived from a function-theoretic version
of (8.2), leading as usual to (8.4) just as (8.2) does to (8.3). The function-
theoretic version of (8.2) is a consequence of an elementary martingale
inequality, one so elementary that it is slightly ridiculous to refer to
it as a «maximal inequality », although the name suits the role
played by this inequality.
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More precisely, it will be shown that the context of inequality
(8.4): functions on a disk and suprema on radii, is an awkward
specialization of a more general inequality, a specialization made
possible by the metric properties of the disk and the Harnack
inequalities. The general inequality is for functions on a Green space
of dimension >2 with the suprema along radii replaced by suprema
along Brownian paths. For the benefit of readers wary of probability
theory, the general inequality will also be stated in its (less intuitive)
non-probabilistic form. The point is that in the Hardy-Littlewood
approach the fundamental inequality (8.2) is natural but (8.4) is a
somewhat artificial application of it. In the probabilistic approach
the analogue of (8.2) is valid directly in the function-theoretic applica-
tion. The specialization to functions on a disk carries with it no
simplification in the general treatment. If in addition to this specia-
lization suprema along radii are used instead of along Brownian
paths, the Hardy-Littlewood inequality (8.4) can be retrieved from
the general case, but it will be clear that the specialization is some-
what contrived: the more natural result involves suprema on
Brownian paths.

9. Non-probabilistic context.

In this section the properties of the function classes involved are
sketched. Let R be a Green space of N > 2 dimensions, let 0R be
its Martin boundary and let u(&,.) be harmonic measure on JR
relative to £ In the following, p > 1 and g is the conjugate index.
If R, @ R, = -+ is a sequence of relatively compact open subsets
of R with union R, the sequence will be called a nested sequence of
open sets. If u is a subharmonic function on R, the integral of its
restriction to OR, with respect to R, harmonic measure does not
decrease when n increases and its limit is either everywhere finite
or identically infinite, independently of the nested sequence of open
sets. If u > 0 and if the limit is finite u is said to be in class H,.
Ifu>0,p>1, and if e H,, u is said to be in class H,. If f is
harmonic or regular analytic it is said to be in class H,, if |f] is in
this class. The harmonic functions in H, are the functions of the
form f; — f,, where f, and f, are positive harmonic functions. If u is
positive and superharmonic on R, u has a fine limit at almost every
(harmonic measure) point of dR. The limit defines the fine boundary
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function U, and

9.1) ué) = J Um)u(é, dn).
R
Hence harmonic functions of class H,, p > 1 have fine boundary
functions.
If u is a harmonic function defined as the harmonic average of
some boundary function U,

9.2) u(e) = J Umu(&, dn),
R

u is called a Dirichlet solution. The function u is then in H, and U
is its fine boundary function. A harmonic function u is a Dirichlet
solution if and only if for some (equivalently for every) nested
sequence {R,} of open sets the restriction of u to dR,, for R, harmonic
measure at some (equivalently each) specified point is the nth term
of a uniformly integrable sequence. It is sufficient if ue H, for
some p > 1.

Let v be a subharmonic function that is dominated from above
by a Dirichlet solution v,. Equivalently, the subharmonic function
max[0, v] is to have the uniform integrability property of the prece-
ding paragraph. The function v, is equal to the harmonic average
of its fine boundary function. Since v, — v is positive and super-
harmonic, v; — v has a fine boundary function and is at least equal
to its harmonic average. Thus v has a fine boundary function V and

9.3) o®) < J Vinu(, dn).
oR

The right side of (9.1) defines the Dirichlet solution for the
boundary function V. This Dirichlet solution is the minimal choice
of the dominating function v,. In the following it will be convenient
to suppose that v has been defined (as V) on dR.

10. Probabilistic inequalities.

Let {x(t),0 < t < oo} be a separable Brownian motion process on
R with initial point &, where x(t) is defined as x(t) for t > © = time
the path reaches dR. The point ¢ is fixed throughout the following
discussion. If # is a minimal point of dR, {x"(t),0 < t < oo} denotes
the corresponding conditional process of paths from ¢ to 5. The
notation P, E will be used for probabilities and expectations for
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the x(t) process; P", E" will be used for the x"(¢) process. If K, is the
minimal harmonic function corresponding to the minimal boundary
point 1, with the normalization K, () = 1, the x"(t) process is usually
referred to as the K,-path process, from £.

If v satisfies the conditions at the end of the preceding section,
that is if v is subharmonic and dominated by a Dirichlet solution
on R, the process {v[x(t)],0 <t < oo} is a submartingale. In this
context (9.3) becomes the submartingale inequality

(10.1) (&) = v[x(0)] < E{v[x(c0)]}.
Define v,(1)(>0) by
(10.2 By = E"{sup o[x'()]")

if v > 0. This expectation will be evaluated probabilistically later.

THEOREM 10.1. — If v is subharmonic and dominated from above
by a Dirichlet solution,

(10.3)  AP{supv[x(t)] = 4} = 4 j P"{sup v[x"(t)] = A}u(&, dn)
t R t

< J V)P {sup o[x"(6)] > A}u(E, dn)
dR

j V[x(c0)] dP
{supv[x(t)] = 4}

for all real A. If in addition v = 0, and if p > 1,

(104) ElsupulxOF} = [ bnpuie,an

dR

< f VP u(E, dn) = ¢PE{VIX()P).
oR

The inequality between the first term on the left in (10.3) and the
last on the right is precisely the standard submartingale maximal
inequality, which is much less deep. than the Hardy-Littlewood
maximal inequality (8.2), although related to it. The inequality
between the first and second, and between the third and fourth terms
in (10.3) is obtained by first conditioning the Brownian paths to
terminate at n and then averaging over #. The equalities in (10.4)
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are derived by the same procedure. We have already remarked in
Section 8 that (10.4) can be derived from (10.3) using standard
manipulations; (10.3) is the fundamental inequality. Inequality (10.4)
is significant only when the right side is finite, that is, as can be
easily shown, only when ve H,.

We observe that (10.4) is a natural generalization of the -Hardy-
Littlewood inequality (8.4). There is no elegant version of (10.3)
involving suprema on radii, although it is not difficult to derive a
somewhat artificial version.

11. Non-probabilistic versions.

The fundamental tool in translating inequalities like those in
Section 10 into non-probabilistic language is the following well-
known fact. Let RA be the regularized reduced function of the posi-
tive superharmonic function w on the set A = R U JR, that is the
. positive superharmonic function equal off a subset of AnR of
capacity 0 to the lower envelope of all positive superharmonic
functions >w either (a) on the intersection of R with a neighborhood
of A relative to R U 0R or equivalently (b) on A n R and, extending
the functions to the Martin boundary by their fine boundary func-
tions, also on A n dR. If w is the constant function 1, this reduced
function at ¢ is the probability that a Brownian path from ¢ ever
meets A. For example if A is a Borel subset of R, RA(é) = u(¢, A)
is the probability that a Brownian path from ¢ meets R in a point
of A. More generally for any w RA(é)/w(i) is the probability that a
w-path from ¢ ever meets A. We shall use the fact that if B is a Borel
subset of the Martin boundary of strictly positive measure R#( B
is the probability that a Brownian path from & meets the Martin
boundary in a point of B and also meets A.

The quantity 7,(¢) defined in Section 8 can now be evaluated in
non-probabilistic terms. In fact if v > 0 and if we write {v > 4} for
the subset of R U 0R where the indicated inequality is satisfied,
remembering that v has been extended to the Martin boundary by
means of its fine boundary function,

(11.1) (&) = %Jw P 1P{sup v[x(t)] = s} ds
0

= lj sPIRWZ (&) g,

PJg
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Alternatively

e e}

(112) E,,(é)p=1j 1 ds j Pr{sup ()] > s}u(é, dn)
PJo oR '

_! J =1 ds J REZ (W, di).
PJo oR

Theorem 11.1 is less awkward in its non-probabilistic form when
v is supposed positive, so this hypothesis is made in the following
theorem.

THEOREM 11.1. — If v is subharmonic and positive and dominated

by a Dirichlet solution, (10.3) in non-probabilistic language takes the
form

IRY>H(E) = i f

dR

R A, dn) < j VIREZ YU, dn)

oR

(11.3) ;
- J V(D) — Z1u(&, dn) + f RUZ 8 (8) ds
{(V=4} 0
and (10.4) takes the form
e o[ woRe@as = [ wedn | o RE©a
p 0 p OR 0

< g f VP u(E, dn).
R

Since (11.4) can be derived from (11.3), we shall only discuss (11.3)
which we shall first derive from (10.3) and then prove directly without
using probability theory. According to the translation principle
stated at the beginning of this section, taken together with the fact
that almost all sample functions of the v[x(t)] process are continuous,
the first term of (10.3) is equal to the first term of (11.3). Furthermore

j V[x(c0)]dP = Jw P{sup v[x(t)] = 4, V[x(c0)] = s} ds
(sup olx(1]> 4 0 !
(11.5)0O R :
= J P{V[x(o0)] = s} ds + J P{sup v[x(2)] = 4, V[x(c0)] > s} ds
2 0 !

A

- J V(&) — 2Ju(c, dn) +. J RUZ s () ds.
vz

0
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Hence the last term of (10.3) is equal to the last term of (11.3). The
equalities in (11.3) are established by a Fubini argument or can be
derived from the corresponding equalities in (10.3).

To prove (11.3) directly we observe that the right side of the
inequality defines a positive superharmonic function of &, so to prove
that it majorizes the first term on the left we need only prove that
the right side is at least equal to 4 at any point ¢ for which v(§) = 4
except for a set of zero capacity. We exclude & if v(£) = 4 but if £ is
not a fine limit point of {v > A}. Since the set of all fine isolated
points of a set which are in the set has zero capacity, this is a
legitimate set to exclude. (Actually it can be shown that this excluded
set is empty.) If v(£) > 4 and if ¢ has not been excluded, the last
integrand on the right in (11.3) is equal to u(&, V = s) so that the
last integral becomes

A
J WEV > s)ds = j V(E, dn) + A&,V = 2.
0 {V<a}
Thus the right side of (11.3) is

f Viu(E, dn) > o(@)/h > 1
OR

as was to be proved.

12. The ball case.

If R is a ball we shall show that the Hardy-Littlewood inequality
(8.4) can be derived from (11.4). If R is a ball take ¢ = Q, the ball
center. The minimal function K, is the integrand in the Poisson
integral corresponding to the boundary point n. We shall use the
fact that if B, is a ball with center 1, on the radius to the boundary
point 7, of radius >c|n — n,| then the reduced function of K, on
B, is > > 0 at Q, where 6 depends only on c. For the corresponding
fact for a half-space see [2] In deriving (8.4) we can assume, as
remarked in Section 8, that v is harmonic. Suppose then that v is a
positive harmonic function on the ball, in the class H,, p > 1. Choose
n, on the radius to the boundary point n to make v(n,) = t(n)/2.
Then let B, be the ball of center n;, of maximal radius to make
v = 0(n)/3 in this ball. According to Harnack’s inequality, the radius
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of B, is bounded below by c|y — n,| for some strictly positive cons-
tant ¢ independently of #, n,. Then for some strictly positive J

j RE>IQuQ, dn) > f RE(Qu(Q, dn) > 6u(Q. 7 > 3s).
R

(5= 3s)

(12.1)

Here u(Q,.) is Lebesgue measure on the ball boundary, normalized
to have value 1 for the whole boundary. Thus the left side of (11.4)
is at least

g J Q> 3s)ds = 3726 f 50 u(Q, dn)

0 R

and the inequality (11.4) thus yields the Hardy-Littlewood inequality
(8.4), generalized to N dimensions, with A(p) = (3¢g)?/6. The hypo-
theses are the same as those of Hardy and Littlewood except for
their dimensionality restriction. Rauch [11] and Smith [12] have also
generalized the Hardy-Littlewood inequality to N dimensions, and
Smith went further, getting a version for a domain in N-space with
a sufficiently smooth boundary.
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