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1503-

LENGTH MINIMIZING HAMILTONIAN PATHS FOR

SYMPLECTICALLY ASPHERICAL MANIFOLDS

by E. KERMAN and F. LALONDE(*)

1. Introduction.

On a closed symplectic manifold (M, w), each time-dependent func-
tion H E H = x M, R) defines a time-dependent Hamiltonian
vector field XH via the equation

The corresponding flow is denoted by and the space Ham(M, cv)
consists of all the time-1 maps, §j , obtained in this manner.

Every path ht: [0, 1] ~ Ham(M, w) has a family of Hamiltonians
H E H which satisfy ht = 4Jk o ho. In [Hol], Hofer used these functions to
define the length of the path ht by

which is independent of the choice of H.

There is a unique Hamiltonian for each path that satisfies the nor-
malization condition

(*) The first author is supported by NSERC fellowship PDF-230728. The second author
is partially supported by a CRC, NSERC grant OGP 0092913 and FCAR grant ER-1199.
Keywords: Hofer’s geometry - Hamiltonian diffeomorphisms - Floer homology - Length
minimizing paths - Coisotropic submanifolds.
Math. classification: 37J05 - 53D35 - 53D40 - 58B20.
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For the normalized Hamiltonian H of the path ht, 
are non-negative and provide different measures of length of ht called the
positive and negative Hofer lengths, respectively.

Remark - We will use both normalized and unnormalized

Hamiltonians. Therefore, we will mention explicitly when this condition
is assumed. 

,

A path is said to minimize the (positive, negative) Hofer length if
there is no path in Ham(M, with the same end points that is shorter (in
the appropriate sense).

Let us recall the properties which are necessary for H to generate a

path which minimizes the Hofer length.

DEFINITION 1.2. - A function H E 1t is said to be quasi-
autonomous if it has at least one fixed global maximum P E M and one
fixed global minimum Q E M. In other words,

Such fixed global extrema are clearly fixed points of the flow .

DEFINITION 1.3. - A fixed point x E M of the flow 
said to be under-twisted if, given any value T E [0, 1], the linearized flow

Tx M has no non-constant T-periodic orbit. 1 It is

generically under-twisted if the origin is the only fixed point of the flow

D

THEOREM 1.4 ([BP], [LM1], [Us]). - If a Hamiltonian generates
a length minimizing path then it must be quasi-autonomous. Moreover,
if there are finitely many fixed global extrema, then at least one global
maximum and one global minimum must be under-twisted.

In this paper we consider the converse question: When (for how long)
is a path length minimizing if it is generated by a quasi-autonomous
Hamiltonian with at least one (generically) under-twisted fixed global
maximum and minimum? As described below, our approach relies on

Polterovich’s natural idea [Po] of applying Floer theoretic method to

1 We use the terminology T-periodic orbit to mean any orbit that comes back to its
initial position at time T, i.e., a closed orbit of period T; it should not be understood as
periodic in time.
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Hofer’s geometry (see also Theorem 5.11 and Proposition 5.12 in Schwarz
[Sc]). As in [Sc] and [Po], we restrict ourselves here to the case when
(Af,~) is symplectically aspherical, i . e. , = 0 = For such

manifolds the action functional well-defined on the space
LM of contractible loops in M. It is given by

_, 1 -

v V v L

where j*: D2 --&#x3E; M satisfies x.

Our first result is the following.

THEOREM 1.5. - Let H E H be quasi-autonomous with a gener-
ically under-twisted fixed global maximum at P and a generically under-
twisted fixed global minimum at Q. If there are no nonconstant con-

tractible 1-periodic orbits of with action outside the interval

~,AH (Q), ,AH (P)~, then øk is length minimizing over the time interval [0,1 .

In fact, Theorem 1.5 will be shown to be a consequence of the following
more general result.

DEFINITION 1.6. - We say that H E 1t dominates K E 1t at P if

H(t, x) &#x3E; K(t, x) for all t, x with equality at x = P for all t.

THEOREM 1.7. - Let H E H have an under-twisted fixed global
maximum at P. Assume that H dominates some Hamiltonian K at P,
such that P is a generically under-twisted fixed global maximum of K
and has no contractible 1-periodic orbits with action greater than

AK(P) = AH(P). Then the path ~H fo,1] generated by H minimizes the
positive Hofer length.

Remark 1.8. - A similar result also holds for the negative Hofer

length of a Hamiltonian H with an under-twisted fixed global minimum at
Q (see Corollary 6.1).

Note that our criterion depends only on the contractible periodic
orbits with period one, not on periodic orbits with intermediate periods.
In the autonomous case, we get:

COROLLARY 1.9. - Let f:f:M 2013~ R have a nondegenerate global
maximum P and minimum Q which are under-twisted. If there are no
nonconstant contractible 1-periodic orbits of with action outside

the interval [H(Q), H(P)], then the path OH I is length minimizing.
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Of course, if there are no nonconstant contractible 1-periodic orbits
of ~H fo,1] , then it is a fortiori length minimizing.

The papers [LM2], [En], [McSl] and [Oh3] all include theorems similar
to Corollary 1.9, but which hold for more general symplectic manifolds.2
However, they all require that there be no nonconstant contractible periodic
orbits with period less than or equal to 1.

Theorem 1.5 also applies to quasi-autonomous Hamiltonians and
allows for the existence of nonconstant contractible periodic orbits. This
is significant because the existence of such orbits with all periods is a

generic property for quasi-autonomous Hamiltonians. More precisely, if H is
suitably generic, then the Arnold conjecture implies that there are at least
,S’B(M) contractible T-periodic orbits for each T E ~0,1~. Here SB(M)
denotes the sum of Betti numbers of M. Hence, even when H is quasi-
autonomous, there are, for most manifolds, contractible T-periodic orbits
of OT other than the fixed global maximum and minimum of H. To assume
that these other orbits are also constant for all T E (0, ], is clearly quite
restrictive.

As an application of Theorem 1.5, we will construct new examples
of autonomous Hamiltonian flows which are length minimizing for all

times. These constructions are based on the rich geometry of coisotropic
submanifolds.

Theorem 1.7 also yields a proof of the following result for the case of
symplectically aspherical manifolds.

THEOREM 1.10 ([Me]). - Let H E 1t be quasi-autonomous. Then

H is length minimizing over ~0, E~ for sufficiently small E.

In [LM2], Lalonde and McDuff prove this result for any symplectic
manifold but for the weaker notion of being length minimizing in the
homotopy class of paths with fixed endpoints. Recently, McDuff in [Mc]
has extended this to work with no assumption on the homotopy class of
paths. We include the proof of the more restrictive case above as a Floer
theoretic interpretation of this fact.

The proof of Theorem 1.7 relies on methods from Floer theory which
were introduced to the study of Hamiltonian paths by Schwarz in [Sc] and

2 Similar results were first obtained, for Iae2n, by Hofer in [Ho2] and Bialy-Polterovich in
[BP].
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Polterovich in [Po] 3 . In [Oh3], Oh also applies these methods, in a more
general context, to study Hamiltonian paths.

Let us recall the basic idea as described in [Po] (Chapter 13). Given
a Hamiltonian H which is suitably generic and has an under-twisted fixed
global maximum at P, one considers the role of P in the Floer complex
of H. If one can show that P is "homologically essential" for the Floer

complex, then certain perturbed pseudo-holomorphic cylinders must exist.
An estimate for the energy of these cylinders then implies that the path
generated by H minimizes the positive Hofer length. This strategy was used
in [Oh3], [Po], [Sc] to prove length minimizing properties of paths generated
by autonomous and quasi-autonomous Hamiltonians whose flows had no
nonconstant contractible periodic orbits.

In this paper, we simply refine this argument, in the simplest case
of symplectically aspherical manifolds, in order to determine a length-
minimizing criteria for Hamiltonian paths which allows for the existence
of nonconstant contractible closed orbits. No new methods are introduced

here. Formally, the only new ingredient is that the notion of an element

in the Floer complex "being homologically essential" is generalized to
the notion of it being homologically essential with respect to a filtration:
See the Definition 4.3. This generalization is needed only to pass from
Theorem 1.5 to Theorem 1.7, i.e., to prove length minimizing properties
for all Hamiltonians H that dominate some other Hamiltonian K satisfying
the conditions in Theorem 1.5. As pointed out by Oh, this notion is already
present in his earlier article [Oh3], as an important step in his Lemma 7.8
(Non-pushing down Lemma). However, to the knowledge of the authors, it
does not seem to be used there for the same purpose.

Finally, we note that the results presented here yield a description
of the changes that must occur in the Floer chain complex in order
for a generic quasi-autonomous Hamiltonian to stop generating a length
minimizing path. Let 77 G x be such a Hamiltonian with an under-twisted
fixed global maximum at P and minimum at Q. Assume further that the
contractible closed orbits of 0’ H are nondegenerate for all t E (0, 1]. We
then have the following generic picture described by Floer in [12]. There is
a finite set

3 This is closely related to a suggestion made by Viterbo in Remark 1.5B of Bialy-
Polterovich [BP]. Later, Oh extended these ideas to the action functional in [Ohl),
[Oh2].
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such that for t E the number of contractible closed orbits of Øk
remains constant, as do the Conley-Zehnder indices of the orbits. As t
increases through each tj, a pair of closed orbits of øj¡, Ix-, xt 1, is either
created or destroyed. The Conley-Zehnder index of x~ is one greater than
that of x- and the action of x~ is greater than the action of x- .

In this picture, the path Øk is length minimizing at least until the
first tj at which a pair is created for which either the Conley-
Zehnder index of x~ is one greater than that of P or the Conley-Zehnder
index of xj is one less than that of Q. This can only happen at tj with
j &#x3E; 0. Moreover, in the first case it is also necessary that the action of ~
be greater than that of P. Similarly, in the second case, the path is length
minimizing until xi has action less than Q.

Remark 1.11. - If the path becomes non-minimal at some time,
then it obviously remains non-minimal for all subsequent times. Hence
Theorem 1.5 implies when a path becomes non-minimal at some time t’,
such t-closed orbits must exist for all times t &#x3E; t’ as long as both global
extrema remain generically under-twisted. Since one is free to extend such
a path by any Hamiltonian that keeps the minimum and maximum under-
twisted, this is a surprising result. It is a consequence of the fact that our
main theorem is stated in terms of the non-existence of closed orbits of

period one only.

What is described in this note extends to more general classes of
symplectic manifolds - it will be developed further in the sequel [KL2].
Geometric extensions of these ideas will also be studied in the paper [La].

1.1. Organization of the paper.

In the next section, we recall the construction and properties of the
Floer complex of a generic Hamiltonian. Following Schwarz, we describe in
Section 3, how to identify the Floer complexes of normalized Hamiltonians
which generate the same time-1 map. This identification is then used to

prove the existence of a special cycle which represents the fundamental
class in the Floer homology of a fixed normalized Hamiltonian. The notion
of being "homologically essential with respect to a filtration", which is

equivalent to Oh’s Non-pushing down Lemma, is given in Section 4. The
proof of Theorem 1.7 is contained in Section 5. This result is then used

in Section 6 to prove Theorem 1.5 and Theorem 1.10. In Section 7, we
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construct many new examples of autonomous functions which generate
Hamiltonian paths that are length minimizing for all time. Finally, we
prove a technical claim (Claim 5.1) in the Appendix.

2. Floer homology for symplectically aspherical
symplectic manifolds.

Let C C°° (,5’1 x M,R) be the subset of Hamiltonians which are
periodic in t and whose contractible I-periodic orbits are nondegenerate. In
this section, we briefly recall the construction of the Floer chain complex
associated to each G E when the symplectic manifold (M,w) is

symplectically aspherical. In particular, we focus on the algebraic aspects
of these complexes that will be used later. The reader is referred to the
sources [Fll], [F12], [F13] for the full details.

2.1. The Floer chain complex.

A symplectic manifold (M, cv) is said to be symplectically aspherical if

Let ,CM be the space of contractible loops in M and consider the action
functional /~M 2013~ R defined by

where ~c: D~ -~ M satisfies XlaD2 = x. The first condition to be symplecti-
cally aspherical implies that the action functional is well-defined.

The critical point set of ,A.G is equal to the (finite) set of contractible
I-periodic orbits of XG, i.e.,

The assumption that ci ~2 ~M~ = 0 implies that Crit (AG) is graded by the
Conley-Zehnder index, Me.

Here, we normalize Me as in [Se], so that is equal to the Morse
index of x whenever x is a critical point of a C2-small time-independent
Hamiltonian. For an under-twisted fixed maximum P of G, = 2n.
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The set forms the basis of the Floer complex

where

We denote the obvious Z2-valued pairing for this vector space by ( , ). The
action of a chain c E CF(G) will be denoted by and defined as the

maximum of the AG-values of the elements of Crit(AG) which appear in c
with a nonzero coefficient.

To construct the Floer boundary operator 8§f we first choose a

family, Jt = Jt+1, of w-compatible almost complex structures. For each
pair x, y E Crit(AG), let M(x,y) = be the space of solutions

u: R x 81 ~ M of the equation

which satisfy the boundary conditions

and have finite energy

If Jt is suitably generic, then (x, y) is a smooth manifold of dimension
Me (y). We denote the set of these generic w-compatible almost

complex structures by Jr,g (G) and note that it is of second category in the
set of all w-compatible almost complex structures.

The boundary map 8 §f : CFk - 1 (G) is now defined by

where T(x, y) is the number (mod(2)) of elements in y) /R, and R acts
like a - u(s, t) = u(s + a, t).

For .It E Jreg (G), the boundary operator satisfies

The homology of the complex (CF* (G), does not depend on the choice
of Jt E Jreg (G) and so we write it as HF,, (G), the Floer homology of G.
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2.2. Homotopy chain maps and the action functional.

Let Gs be a smooth homotopy C°° ( [0, 1] x M, R) such that

, - ,

for some T &#x3E; 0 and Go, Gi E Hreg Associated to each such homotopy is a
homotopy chain map

To construct this map we first choose a homotopy of families of c,~-
compatible almost complex structures, s - Js,t, such that

Then we consider the space A4s(x,y) - of finite energy
solutions of the equation 

which satisfy

For a suitably generic the space t (x, ~) is a smooth manifold of

dimension (x). The map acs is then defined by

where TS(x, y) is the number (mod(2)) of maps u in the zero-dimensional
compact manifold 

The next simple lemma describes how the action changes under a

homotopy chain map.

LEMMA 2.1. - Every h as energy

In the case of a linear homotopy, Gs(x, t) = (1 - ~3(s))Go ~ ,Q(s)G1,
where {3 is a smooth nondecreasing function from 0 to 1, equation (3) takes
the following simple form which will be used extensively later on:

_1 -~~
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2.3. Homotopy chain maps and HF* (G).

Every homotopy chain map induces an isomorphism in Floer homol-
ogy and so HF* (G) is independent of G. Moreover, when G is a C2 -small
Morse function, the Floer complex of G (for a generic time-independent
J) coincides with the Morse complex of G (see [HS]). Hence, for all

G E Hreg, the Floer homology HF* (G) is isomorphic to the singular ho-
mology H* (M, ~2 ) via a map which preserves the grading.

3. Comparing Floer complexes of normalized Hamiltonians
generating the same time-1 map.

Given 0 E Ham(M, w), be the set of normalized Hamiltonians

in TYreg whose time-1 map equals 0. For each pair of functions F, G E 7(§) ,
there is a natural chain isomorphism between the Floer complexes of F
and G. These maps were studied by Seidel in [Se] for a very general
class of symplectic manifolds and by Schwarz in [Sc] for the symplectically
aspherical case. Let us recall the relevant details.

For F, G E J’(4), consider the loop g = ~G o This loop
represents an element in 7r, (Ham(M, w), id) and acts on £M by

It is a straightforward consequence of the Arnold conjecture that the orbit
of g on any point x E M is a contractible loop; thus g takes ,CM back
to itself. Clearly, g takes the 1-periodic orbits of XF to the I-periodic
orbits of XG- Since Crit(AF) and Crit(AG) are bases for the respective
complexes, the induced map g: CF(F) -~ CF(G) is an isomorphism of
Z2-vector spaces.

If we set

then the moduli space A4F (X, y) gets mapped bijectively, by g, to

MYa (g(x), g(y)) for every x, y E Crit(,,4.F), (see [Se], Lemma 4.3). Thus, g
is also a chain complex isomorphism from I

Moreover, for symplectically aspherical manifolds, the chain complex
isomorphism g preserves both the grading by the Conley-Zehnder index
and the filtration by the action functional, (see [Sc], Theorem 1.1).
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Let G e Hreg be a normalized Hamiltonian. The fact that the Floer
complex of any other function F e 7(§£) is identical to can

be used to prove the following result.

LEMMA 3.1. - For any F e 7(§£) there is a cycle v e CF2n (G)
which generates HF2n (G) and satisfies 

Proof. Let f be a Morse function. For a sufficiently small e &#x3E; 0

and a suitably generic time-independent almost complex structure, the
Floer chain complex of E f is well-defined and equal to the Morse complex of

e f. In particular, the cycle given by the sum of the local maxima
of e f, generates 

The linear homotopy between E f and F yields the homotopy chain
map

Hence, the cycle ~ represents the fundamental class in

Let vF E Crit(AF) appear in vF with nonzero coefficient. Then, for
some j, there must be an element . Equation (4) then
yields the inequality

For sufficiently small E &#x3E; 0 this implies that Therefore,

By the discussion above, the chain isomorphism from (CF(F), 
(CF(G), 8Ye)’ induced by the loop g 5’ o (0’ )-’, preserves indices and
actions. Hence, the cycle v = g (vF ) also generates HF2n (G) and satisfies

4. Homologically essential with respect to a filtration.

Let (C, 8) be a differential complex over 7~2 which is freely generated
by a basis B.

DEFINITION 4.1. - Let 7 E H* (C, 8) be a nontrivial homology
class. An element b E B is said to be homologically essential for the class 7
if it appears with nonvanishing coefficient in every representative of 7.
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In this section we refine this notion in the presence of the following
additional structure.

DEFINITION 4.2. - A filtration on (C,8) is a map V: L3 --+ R such
that

whenever b, b’ E B satisfy zh 0. For an element c E C, vve define V(c)
to be the maximum of the values of V over the elements of B that appear
with non-vanishing coefficient in c.

A Morse function together with its Morse complex, and an action
functional together with its Floer complex, are obvious examples of filtra-
tions.

DEFINITION 4.3. - Let (C, a) be a complex with filtration V, and
lest 7 E H* (C,,Y) be a nontrivial homology class. An element b E B is said
to be homologically essential for 7 with respect to V if the following two
conditions are satisfied:

1) there is an element representing 7 of the form b -f- v such that

(b, v) = 0 and V(v)  V(b);

2) whenever 0, then V(8d - b) &#x3E; V(b).

To better understand the origin of these chain-level conditions, con-
sider a Hamiltonian H E with an under-twisted fixed global maximum
at P. We will show (in Proposition 5.2) that, under a generic nondegener-
acy assumption, P always satisfies the first condition to be homologically
essential for the generator of HF2n (H) with respect to AH. This will follow
from the fact that H can be dominated at P by a function GH for which P
satisfies the first condition to be essential for the generator of 
with respect to 

On the other hand, assume that H dominates a function GH C Hreg
for which P is under-twisted and not in the image of the boundary
operator aGH (e.g. GH has no 1-periodic orbits with .A.GH-value greater
than (P)). We will also show that this implies that P satisfies the
second criteria of being homologically essential for HF2n (H) with respect
to ,AH (see Proposition 5.3).

Note that if H satisfies the assumptions of GH itself, then P is

homologically essential for HF2n (H) in the sense of Definition 4.1.
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The next proposition is the main result of this section.

PROPOSITION 4.4. - Let G C Hreg be a normalized Hamiltonian
with an under-twisted fixed global maximum at P. If P is homologically
essential for the unique generator of HF2n (G) with respect to then

the path generated by G minimizes the positive Hofer length, i.e.,

Proof. By our hypothesis on P, there is a chain w e CF2n(G)
such that [P -f- w] generates HF2n (G) and

If there is an F e such that ~ ~ F ~ ~ +  ~G~+, then by Lemma 3.1
there is a cycle v that generates HF2n (G) and satisfies

The two cycles P + w and v represent the same class, therefore P + (w - v)
is exact. The second criteria for P to be homologically essential for this
class with respect to then implies that v) must be larger than
or equal to AG(P). This is a contradiction. 0

5. Proof of Theorem 1.7.

In proving Theorem 1.7, we may assume that the functions H and K
have some additional properties.

First, we may assume that H is normalized. This is clear, since the
positive Hofer length of the path 0’ H is independent of the normalization
of H. (When H is normalized we just know that the positive Hofer length
of 0’ H 

We may also assume that H and K satisfy certain generic nondegen-
eracy assumptions. Here is the precise statement.

CLAIM 5.1. - It suffices to prove Theorem 1.7 for H and K with

the following additional properties:

1. H, K C 1

2. For all t C [0,1], P is the unique global maximum of both H(t, x) and
and is nondegenerate (as a critical point.
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The proof of this claim is technical and more or less standard. It is
therefore deferred to an appendix.

Since we can assume that H and K are in we can consider their

Floer complexes. By Proposition 4.4, we will then be done if we can show
that P is homologically essential for the generator of HF2n (H) with respect
to AH.

Let’s begin with the first condition to be homologically essential.

PROPOSITION 5.2. - Let H E have a fixed under-twisted

global maximum at P such that P is the unique global maximum of H(t, x)
and is nondegenerate, for all t E [1, 0]. Then P satisfies the first condition
to be homologically essential for the unique generating class of HF2n (H)
with respect to the filtration ,AH . That is to say: HF2n (H) is generated by
[P -f- w] for some w E CF2n (H) with (w, P) = 0 and AH (w)  .AH (P) .

Proof. First we construct a function GH which dominates H at
P. Let fp: M - R be an autonomous Morse function for which P is the
only critical point with Morse index 2n and fp(P) = 0. For sufficiently
small E &#x3E; 0 the function

satisfies GH (t, x) &#x3E; H(t, x), with equality only at P. This follows from the
uniqueness and nondegeneracy conditions on P. Note that P is also an
under-twisted fixed global maximum of GH and 

The Floer complex of GH is equal to the Floer complex of E f p (x) with
the actions shifted upward by f01 H(t, P) dt. For sufficiently small E, and
a suitably generic time-independent almost complex structure, the Floer
complex of E f p coincides with its Morse complex. By our choice of the
function f p, this means that is generated by the class [P].

The linear homotopy from GH to H yields the homotopy chain map

Since this induces an isomorphism in homology, the class [acH (P)]
generates H F2n (H) .

Now, P is an under-twisted fixed maximum of H, so pH (P) = 2n.
Consider an element C For each such u, equation (4) yields
the inequality ~ 

-
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which implies that E(u) x 0. Thus, A4’(P, P) consists of just the constant
map, u(s, t) ~ P, and

Here, {.P, 7/1,..., are the 1-periodic orbits of H with 1-tH = 2n.

To finish the proof we must show that any yj which appears in w
with nonzero coefficient, must satisfy AH (yj )  AH (P) . For each element
u equation (4) yields

, ,

Finally, we use the function K to prove that P satisfies the second
condition to be homologically essential for the generator of HF2n (H) with
respect to 

PROPOSITION 5.3. - If aHa = P + z for some a E CF2n+1 (H) and
z c CF2,, (H), then ,,4H (P) .

Proof. Let aH a = P + z be given. Consider the linear homotopy
from H to K. The induced homotopy chain map a satisfies

Thus, we have

Since K has no periodic orbits with action larger than AK (P), P occurs
with coefficient zero in It is also straightforward to show that P
occurs in a (P) with coefficient 1 (i.e., M’(P, P) contains only the constant
map). This means that P must occur in with coefficient 1. In other

words, if z = then for some zi there exists u Again
by (4), this implies that

and so
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6. Proofs of Theorem 1.5 and Theorem 1.10.

6.1. Proof of Theorem 1.5.

Consider a Hamiltonian H E 1í with a fixed under-twisted global
minimum at Q and let

This Hamiltonian generates the path and has Q as an under-twisted
fixed global maximum. Note that the positive Hofer length of is

equal to the negative Hofer length of Øk. Hence, applying Theorem 1.7 to
H yields:

COROLLARY 6.1. - If H dominates some Hamiltonian L at Q such
that Q is a generically under-twisted fixed global maximum of L and the
flow of L has no contractible 1-periodic orbits with action greater than

AL(Q) = -AH(Q), then the path generated by H minimizes the negative
Hofer length.

Theorem 1.5 now follows immediately: simply take H for K in

Theorem 1.7 and H for L in Corollary 6.1.

6.2. Proof of Theorem 1.10.

The flow of H(t, x) is length minimizing for t E [0, 6] if and only if
the flow of is length minimizing for t E ~0,1~ . Let P and Q be the
fixed global maximum and minimum of H, respectively. For all sufficiently
small c &#x3E; 0 these will be under-twisted fixed global extrema of EH(Et, x).

Let fp : M ~ R be a Morse function for which P is the only critical
point with Morse index 2n and f p (P) - 0. We also assume that f p is

sufficiently C2-small so that the only I-periodic orbits of X fp are the critical
points of f p .

Set

Clearly, P is a generically under-twisted fixed global maximum of K, and

EH(Et, x) dominates at P for sufficiently small E. Also, the only 1-periodic
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orbits for the flow of K are the critical points of fp, so there are also no 1-
periodic orbits with action greater than AK(P). Theorem 1.7 then implies
that the path generated by EH(Et, x) minimizes the positive Hofer length.

A similar argument applied to implies that the path gener-
ated by also minimizes the negative Hofer length.

7. Coisotropic manifolds and Hamiltonians generating
length minimizing paths for all times.

Let N be a closed manifold endowed with a closed 2-form wN of

constant rank. Its kernel is then an integrable distribution that gives rise
to a foliation .~’ on N. Up to local diffeomorphisms, there is a unique way
of considering (N, WN) as a coisotropic submanifold. Indeed, let p: E ~ N
be the vector bundle whose fiber at each point q C N is the dual K* of the
kernel Kq of WN at q. Choose a distribution R on N transversal to Y, and
define a form on each TZ(q)E, q E N, by

where Z: N - E is the zero section and the map II = (II1, II2 ) : 
K (D K* is the projection induced by 7~ (i. e., II2 is the projection on the
fiber of E and II1 is the composition of the dp with the projection induced
by ~). This is a fibrewise symplectic form on the vector bundle 
whose restriction to TN is WN. By the Moser-Weinstein theorem, there is
an extension of that form to a symplectic form w on some neighborhood U
of N in E, which is unique up to diffeomorphisms on smaller neighborhoods
whose 1-jet act as the identity on TEIN. The submanifold N is then
coisotropic in U.

Let us now consider a special case of this construction. Let W be a
closed manifold that admits a metric g of non-positive curvature, and let

be a smooth fibration with structure group Diff g (W), the group of g-
isometries of W. Assume also that the transition maps Øi,j: Vi n ij -
Diff g (W) are locally constant. Thus each fiber Wb is equipped with a metric
gb of non-positive curvature. As before, wN E is any closed 2-form

whose kernel at each point is the tangent space to the W-fiber at that point.
By differentiating the transition functions of the bundle W - N - B, it
can be extended to a T* W -bundle
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There is a symplectic form dAb on each fiber T* (Wb) that extends to a
closed form T on E. Since the transition functions are locally constant, one
can choose T such that it coincides with dA in each local chart Vi x T* W

(where Y is an open subset of B). The form + T, is then symplectic
on E, where p is now the projection N’ ~ N. This form also restricts to
cvN on N.

Since the structure group preserves the metric, one may define a
Hamiltonian

given by H(b, p, q) = in local coordinates, where f is the identity
map near 0 and becomes constant for values larger than some 6 &#x3E; 0. Extend

H outside U by the constant map. Since in local coordinates x T*W, the
symplectic structure is + dA, where has each T* W-fiber as

a kernel, the flow of H is the geodesic flow along each leaf of the isotropic
foliation of the coisotropic submanifold N. Because the metric has non-
positive curvature, there is no non-constant contractible closed orbit. Since
this Hamiltonian can be approximated by an autonomous Hamiltonian that
is generically under-twisted at its fixed maximum and minimum and has no
non-trivial periodic orbit, we then have, as a consequence of Theorem 1.5
and Lemma 8.1 of Section 8:

COROLLARY 7.1. - Let (M, w) be an aspherical symplectic mani-
fold that contains a coisotropic submanifold of the above form. If the fun-
damental group of each leaf injects in the fundamental group of M, the
flouT of H is length minimizing for all times.

This result is very likely valid in non-aspherical manifolds as well,
though we will not present a general proof here. This corollary admits the
following two extreme cases.

Examples. 
’

(1) The submanifold N is a Lagrangian submanifold. In this case, we
recover the constructions due to Schwarz in [Sc]. It is interesting to note
that this can also be derived in the Lagrangian case from previous results
obtained by very different techniques that do not involve Floer’s homology.
Actually, if L C M is a Lagrangian submanifold, the hypotheses that L
admits a metric with non-positive curvature and that its fundamental group
injects into the fundamental group of M means that the embedding of L
lifts to an embedding of the contractible space L into M. By Theorem 1.4.A
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in Lalonde-Polterovich [LP], this implies that any neighborhood of L has
infinite capacity (there exist embedded balls of arbitrarily large capacity)
this was incidentally used in [LP] to prove that no Hamiltonian isotopy
can disjoin L from itself. Using the same techniques as in Lalonde-McDuff
[LM2], Lemma 5.7, one constructs an autonomous Hamiltonian flow §t
whose lift to the universal cover disjoins balls Bt that have capacity equal
to the energy of Ot. This implies that Ot is length minimizing for all times
by the energy-capacity inequality. Note that the aspherical condition is not
needed here.

(2) The submanifold N is a hypersurface. This is a simple case since
any 1-dimensional manifold admits a flat metric. Note that our construction

of coisotropic submanifolds implies both the stability of the coisotropic
submanifold and the non-existence of closed contractible orbits. This is

what we must require here, i.e., the right statement is the following:
the existence of a length minimizing autonomous Hamiltonian flow is

guaranteed as soon as there exists in a stable hypersurface whose
closed orbits are all non-contractible (by stable, we mean here that there
is a neighbourhood of N of the form [20136,6) x N in which each leaf {5} x N
has a characteristic flow conjugated to the one on N = 101 x N). This
is the case for instance for fibered symplectic manifolds over a surface of
strictly positive genus

i.e., fibered manifolds equipped with a symplectic form 52 whose restriction
to each M-fiber is non-degenerate. The inverse image N - of

any non-contractible loop in E yields a hypersurface whose characteristic
foliation is transverse to the M-fibers. A closed orbit of such a foliation

must necessarily project to a non-vanishing multiple of 7, and is therefore
non-contractible. Note that the symplectic structure in a neighborhood of
the hypersurface has the form Q IN + d(ta) where t is the coordinate in the
normal direction to N and a E is any 1-form that does not vanish on

the characteristic directions. Choosing a as the pull-back of dO E n1 ( 7), the
symplectic form becomes + dt A dO, for which N is stable as required.

(3) One may construct lots of examples in between, i. e., coisotropic
submanifolds of dimensions n  d  2n - 1 that satisfy the conditions
of our construction. The following example shows that the existence of
length minimizing paths is stable under pull-backs via certain symplectic
fibrations. Let 

’
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be a fibration with compatible symplectic forms. By this we mean that
for each point p (E *9 and 1-form T C (Td~r~~B)* , the projection of the
Q-symplectic gradient of is equal to the a-symplectic gradient
of T. This is the case for instance if

is a fibration with structure group equal to the identity
component of the symplectic group, such that the wb-forms on each fiber
admit an extension to a closed 2-form T on the total space S that has
constant rank equal to dim M. Let r be a symplectic form on B and take
on ,S’ the symplectic form SZ = 7r* (r) + T (it is indeed symplectic because
the kernel of T has constant rank and must be transversal to the fibers).

Suppose now that there is a quasi-autonomous Hamiltonian

whose flow has no non-constant contractible closed or-

bit at time T and for which there are fixed maximum and minimum where

the linearization of the flow satisfies the conditions of Theorem 1.5. Then

the pull-back of HtE[o,T] induces a length minimizing path on S. This is
obvious since, with our definition of Q, the symplectic gradient of Ht o 7r
projects to the symplectic gradient of Ht, thus any non-constant closed
T-orbit projects to a non-contractible closed orbit in B and must there-
fore be non-contractible too. Apply to the two fibers that represent the
maximum and minimum of Ht o 7r the same argument on the linearizations
and approximate the Hamiltonian near the two fibers so that it becomes

generically under-twisted. Theorem 1.5 then yields the desired conclusion.

8. Appendix: Proof of Claim 5.1.

The following preliminary result implies that "nearby" Hamiltonians
may be used when one considers the length minimizing properties of a
Hamiltonian path. We refer to Oh [Oh3], Lemma 5.1, for the natural

optimal C°-version stated here.

LEMMA 8.1. - Let C ?-C be a sequence of normalized

Hamiltonians such that each Gi generates a path that minimizes the

positive Hofer length. If there is a normalized function G such that the
following convergence conditions are satisfied:
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then G also minimizes the positive Hofer length.

Remark 8.2. - Similar statements apply to the negative and stan-
dard Hofer lengths.

Remark 8.3. - The convergence criteria of Lemma 8.1 are satisfied

if Gi ~ G in the C2-topology.

Now, let H, K E 1t satisfy the hypotheses of Theorem 1.7. Recall that
this means that

( 1 ) H has an under-twisted fixed global maximum at P,

(2) H dominates K at P,

(3) K has a generically under-twisted fixed global maximum at P,

(4) the flow of K has no contractible I-periodic orbits with action greater
than AK(P)-
To prove Claim 5.1, we must find a pair of functions H’ and K’ such

that: H’ and K’ satisfy the hypotheses of Theorem 1.7, H’ and K’ have
the additional properties described in Claim 5.1, and H’ is arbitrarily close
to H in the sense of Lemma 8.1.

To do this, we will perturb H and K several times until the resulting
functions H’ and K’ have the properties described in Claim 5.1. Each

perturbation will be small in the sense of Lemma 8.1 and preserve the
conditions required by the hypotheses of Theorem 1.7. The only difficulty
occurs in the verification that the flow of K’ still has no contractible 1-

periodic orbits with action greater than 

We begin by replacing H and K with the periodic Hamiltonians

where a: [0, 1] ~ ~0, 1~ is a smooth function such that a(t) = 0 near t = 0,
c~(t) = 1 near t = 1, and a(t) - t is C°-small. These periodic Hamiltonians
are arbitrarily close to H and K in the sense of Lemma 8.1 and they still
satisfy the hypotheses of Theorem 1.7. In fact, the resulting flows are just
reparametrizations of the original ones by t -~ T(t). Thus, for simplicity,
we just may assume that H and K are periodic to begin with.

Now, let Up be a Darboux chart around P. Because P is a generically
under-twisted fixed maximum of K, it is an isolated fixed point and we can
choose Up to be small enough so that none of the other 1-periodic orbits
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of Øk enter Up. We denote the canonical norm in this chart by ~ ~ and the
ball of radius p by 

Consider the small bump function

where R is a smooth nonnegative function which strictly decreases
on [0, p2] and vanishes on [p2, oo~ . We choose p to be sufficiently small so
that (~K)-1 (x) E Up for all t E [0, 1] and x E Bp(P).

When g is sufficiently Cl-small, P is still an under-twisted fixed global
extrema for these new Hamiltonians which still clearly satisfy the first three

hypotheses of Theorem 1.7 and now have the second property of Claim 5.1.

We must now check that K’ has no I-periodic orbits with action

greater than (P). First we prove that the addition of the bump does
not create any new 1-periodic orbits. To do this, we adapt an argument of

Siburg’s in [Si].
The flow of K’ is equal to the composed flow cPk o ~9 (x) . The inside

flow is = R(t, where R is the rotation matrix

Note that 0’ K o 01 9 (x) whenever x ~ Bp(P). Hence, we only need
to prove that there are no new periodic orbits starting at x C Bp (P) .

Let ,S’r be a sphere of any radius r. We define on each S, the
normalized distance function, dr: Sr x Sr - which identifies ,S’r with
the unit sphere and measures the distance between points with respect to
the usual round metric.

Consider the lower semi-continuous function R+ given
by 

, ......../ . .....

Using the fact that the flow is close to its generically under-twisted
linearized flow near P , it is straightforward to check that DK is bounded
away from zero on Bp(P), for p sufficiently small. The flow 4J~ preserves
each sphere ,S’r for r E [0, p]. For a sufficiently C1-small g, we can conclude
that the perturbed function DK~ is also bounded away from zero. Hence,
the flow ~K, _ o ~9 (x) has no new 1-periodic orbits.
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By our construction, the I-periodic orbits of K’ are identical to those
of K. Furthermore, only the AK’-value of P is different than its AK-
value and &#x3E; ,A.K (P) . So, not only is AK,(P) still a maximum

in Crit(AK, ) , but it is now an isolated maximum.

Finally, we recall that the space is of second category in C°° (Sl x
M, R). We may then perturb H’ and K’, away from P, so that the resulting
functions (which we still call H’ and K’ ) are in After this final

perturbation, ,AK~ (P) is still an isolated maximum in The other

properties also persist.
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