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(ULTRA)DIFFERENTIABLE FUNCTIONAL CALCULUS
AND CURRENT EXTENSION

OF THE RESOLVENT MAPPING

by Mats ANDERSSON

1. Introduction.

Let al, ... , an be an n-tuple of commuting operators on a Banach

space X. For any polynomial or entire zn) one
can define an operator f (a) on X, simply by replacing each zj by aj in
the Taylor expansion for f (z) . One then gets an algebra homomorphism

,C(X ), usually called a functional calculus, where is the

space of bounded operators on X. In order to find extensions of this
functional calculus, one is led to consider the joint spectrum of the n-

tuple a; the relevant definition was found by Taylor, [16] 1970, and can
be described as follows. Let Tz be the complex tangent space at the point
z E and let 6,-a denote contraction with the operator-valued vector
field

We then have a complex

Partially supported by the Swedish Natural Science Research Council.
Keywords: Commuting operators - Generalized scalar operator - Functional calculus
- Bishop’s property (,Q) - Taylor spectrum - Ultradifferentiable function - Resolvent
mapping - Current.
Math. classification: 47A60 - 47A13 - 32A25.
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for each z E cn, and the Taylor spectrum a(a) of the n-tuple a is, by
definition, the set of all z E cn such that ( 1.1 ) is not exact. It turns out

that the spectrum is a compact nonempty (unless X = ~01) subset of CCn.
The fundamental result, due to Taylor [17], is

THEOREM 1.1 (Taylor). - Let a be an n-tuple of commuting
operators on the Banach space X. There is a continuous homomorphism

that extends the functional calculus is an

analytic mapping, fj E O(a(a)) and f (a) = ( fl(a), ... , fn(a)), then

The equality (1.3) will be referred to as the spectral mapping property.
It was proved in [12] that any two extensions of the functional calculus,
which fulfill the properties stated in Theorem 1.1, coincide.

Let ,A be an algebra of functions that contains (9(cr(a)). We say that
a admits an A functional calculus II if (1.2) has a continuous extension to
a homomorphism 

- . -, --,------..-/__’B

A natural attempt to obtain such an extension is by means of the resolvent
mapping Section 3. If ,f is holomorphic in a neighborhood of a(a)
and has compact support, then

J

However, the same formula may have meaning even for an f that is not
necessarily holomorphic in a full neighborhood of a( a), provided that
8j(z) has enough decay when approaching a(a) to balance the growth
of (some representative of) the resolvent. In one variable this approach was
first exploited by Dynkin, [8]; for several commuting operators a similar
approach is used by Droste, [7], and recently by Sandberg, [13]; for the
case when is real, see [4]. Notice that such an approach will always
require that a f - 0 on a( a) which is a very strong restriction if a(a)
contains some complex structure.

In this paper we will consider algebras ,A that contain the algebra
of germs of real-analytic functions on a(a), i.e., (equivalence

classes of) functions that are real-analytic in some neighborhood of a(a) .
The main results are contained in Sections 5, 6 and 7. Here we discuss
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various equivalent conditions for the existence of an extension to various
classes of ultradifferentiable functions. In particular, we study the case of a
functional calculus for smooth functions. We also give a new simple proof
for that the existence of a smooth functional calculus implies that the tuple
a has the property ((3) £’, .

To be able to relate to the holomorphic calculus we briefly recall
its definition in terms of the resolvent mapping. One of our conditions

equivalent to the existence of a ultradifferentiable extension of the real-

analytic functional calculus is expressed in terms of a possible current (or
ultracurrent) extension of the resolvent mapping over the spectrum. Our
main tool is Fourier transforms of differential forms and currents, and the

necessary definitions and results are introduced in Section 4.

Throughout this paper X is a Banach space and ex denotes the

identity element in L(X). If a is a tuple of operators, then (a) denotes the
closed subalgebra of generated by a, and (a)’ denotes the commutant
of a, i.e., the algebra of all b E that commute with each aj.

Contents.

1. Introduction
2. Real-analytic functional calculus
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4. Fourier transforms of forms and currents
5. Generalized scalar operators
6. The property for generalized scalar operators
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2. Real-analytic functional calculus.

Let a be a commuting n-tuple with spectrum a(a) and let CúJ (a( a))
denote the space of real-analytic functions defined in some neighborhood.
For each 0 E CúJ (a( a)) we have a function ~ (z, w), holomorphic in a
neighborhood E in C2,, such that ~(z,z-).
Sometimes it is natural instead to identify Q with the real-analytic function
(that we also denote ~(x, y) ) defined in a neighborhood 
JR2n; E such that y). The topology of CúJ(a(a))
is defined by the seminorms given by taking supremum of 0 over small

neighborhoods in C2n 
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Assume that a admits a real-analytic functional calculus H: 
~ ~(X), and let aj be the images of Zj. Then (a, a*) is a commuting
2n-tuple of operators, as well as (Rea, Im a) if Rea = (a + a*)/2 and
Im a = (a - a*)/2i. We claim that

By the spectral mapping property for the holomorphic functional calculus,
applied to the mapping (z, w) - ((z + w)/2, (z - w)/2i), (2.1) holds if and
only if

If w) is a holomorphic polynomial, then clearly

where the right hand side denotes the holomorphic functional calculus of

(a, a*). Moreover, (2.3) also holds for each entire function ~(z, w), since
it can be approximated in neighborhoods by polynomials. In

particular, if

then

and therefore, by the continuity of II, we get the estimate

, , 11 11 
- . I 1

We will need the following simple lemma; for a proof see, e.g., [4].

LEMMA 2.1. - Suppose that o;i,..., aN are commuting operators.
Then a(a) is real if and only if II exp(27ria . ç)11  

Notice that 27rz(Rea ’ . In

view of Lemma 2.1, therefore (2.5) implies that a (Re a, Im a) C hence

a(a,a*) c (w = Z-1, and by the spectral mapping property applied to the
projection (z, w) - z we get ( 2 .1 ) . Conversely, ( 2 .1 ) implies (2.5).

It now follows by approximation that (2.3) holds for all 1(z, w) that
are holomorphic in a neighborhood E ~(a) ~ since this set is
polynomially convex. By the holomorphic spectral mapping property,

and thus the spectral mapping property holds for II.
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If a is a commuting n-tuple and there is a commuting n-tuple a* E (a)’
such that (2.1) holds, then one can extend the holomorphic functional
calculus to an algebra homomorphism ,C(X ) by formula
(2.3). Summing up, we have proved

PROPOSITION 2.2. - Assume that a is a commuting n-tuple of

operators on X that admits a real-analytic functional calculus II: CW (a( a))
-~ /:(X), and let a* - II(z). Then (2.1) (and (2.2) and (2.5) hold, and (2.3)
holds for all ~ E (9({(~,~); ~ E Moreover, the spectral mapping
property 0 (o, (a)) holds for all 0 E CW(a(a)).

Conversely, if there is an n-tuple a* such that (a, a* ) is commuting,
and such that (2.1) or (2.5) hold, then a admits a real-analytic functional
calculus defined by (2.3).

In general a possible extension of the holomorphic functional calculus
to is not unique. We say that a tuple q is quasi-nilpotent if

a(q) = ~0~. This holds if and only if both q and iq have real spectra, and this
in turn holds, in view of Lemma 2.1, if and only if ||exp 11  exp 

for all (.

PROPOSITION 2.3. - Suppose that ,C(X) is a

CW(a(a)) functional calculus and a* = ll(z). Moreover, assume that

q E (a, a*)’ is a quasi-nilpotent commuting n-tuple. Then there is another
C- (a (a)) functional calculus II’ such that a* + q = ll’ (z). Conversely, any
two CW(a(a)) functional calculi II and H’ such that H(z) and II’(z) com-
mute are related in this way for some quasi-nilpotent n-tuple q.

Proof. If (2.5) holds and q is quasi-nilpotent then also (2.5) holds
for a* + q instead of a*, and hence a* + q corresponds to another CW
functional calculus according to Proposition 2.2. Conversely, if (2.5) holds
for both a* and a* + q and they are commuting, then II exp( 7riq . () )] 

and so q is quasi-nilpotent. 0

Example 1. - Let a be any nonzero quasi-nilpotent tuple. Then
a* = a and a* = 0 provide two different CW extensions. 0

Remark l. - Assume that a has real spectrum. Then a admits
a natural real-analytic functional calculus corresponding to the choice
a* = a in Proposition 2.2 (notice that then (2.5) holds). There is always a
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nontrivial extension of this C"-functional calculus (depending on the size
of o(~)), see [4]. ° lie

If a admits a C~’ functional calculus, we thus have that

where the right hand side is the natural real-analytic functional calculus
((2.6) is of course equivalent to (2.3)), and hence the question of possible
extensions to wider classes of functions is transformed to the question of

possible (nonholomorphic) extensions of the natural real-analytic functional
calculus of the 2n-tuple (Re a, Im a) with real spectrum. As was noted in
Remark 1 above, some nontrivial extension always exists. In subsequent
sections we shall consider specific such extensions.

3. The resolvent mapping.

In the case of one single operator, the extension of the functional
calculus from entire functions can be made by Cauchy’s integral formula,

where C D CC U, and X is a cutoff function in U which is identically
1 in a neighborhood of a(a), and

In the multidimensional case, for U D a( a), wz-a is a mapping

that we call the resolvent mapping.

For any open set V in C’ we let Sp,q (V, X) denote the space of smooth
X-valued (p, q)-forms, and O(V, X) the space of X-valued holomorphic
functions. The 8-operators extends to operators £p,q+l (V, X)
with 9=0, and Hp’q (V, X) are the corresponding cohomology spaces.a

If f E and x E X, then f x E X) and f (a) x is given by
(3.1) just as in the one-dimensional case. The definition of the resolvent
mapping is in short as follows; for more details, see [1] and [2]. Since

6z-a8 = -86z-a, ~~’~ (~~ X, v) _ is a double complex (with
bounded diagonals since it vanishes unless -n  .~  0 and 0  k  n)
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with the coboundary operators bz-a and D, and it gives rise to the total
complex

where N and

If V C Cn B a(a), then by definition 6,-aU = f is pointwise solvable in V if
0. It turns out that one actually can find a smooth solution then.

Thus X, V) has exact rows, and by a simple homological algebra
argument therefore (3.2) is exact for such a V. If now U D a ( a ) and
f E C~ ( U, X ) , then f defines a closed element in ,C° ( ~, U B ~ ( a ) , X ) and
hence there is a solution 1

denotes the component of u of bidegree (n, n - 1) it follows that = 0

and we define as the cohomology class of un . In particular, if there
is a v E L-’(E, U B a(a), (a)’) that solves Vz-av = eX in U B a(a), then

is defined by the form vn f . However, in general it is not possible to
find such a solution v close to r(a), but for large z one can take, e.g.,

where 8z-as = ex; a possible choice is

All the spaces O(V), D(V), £(V), S = s(cn), as well as their duals, are
nuclear. This implies that one can form topological tensor products like

~) == ~(~7)0~ in an unambiguous way, and that furthermore these
tensor product preserve exactness, see, e.g., [9]. For instance, since the
Dolbeault complex

is exact if V is pseudoconvex, it follows that the corresponding X-valued
Dolbeault complex

is exact as well. We will also consider spaces of X-valued currents, e.g.,
For further reference we include

LEMMA 3.1. - Suppose that and

f = 0 in V .
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Lhen there is a

4. Fourier transforms of forms and currents.

Our main tool is the Fourier transformation of vector-valued currents.

Roughly speaking the Fourier transform of a (p, q)-form (or current)
f - fIJ(z)dzJ A dzJ will A d(II, where ÎI J is the usual

Fourier transform of the coefficient fIJ and I’ and J’ denote complementary
indices. The idea with such a Fourier transformation is quite natural and

appeared already in [14], and occurs in [15]; this definition is quite different
from ours below but equivalent. Another definition, but again equivalent, is
introduced and used in [10]. Our definition makes it possible to give simple
arguments for the basic results that we need. Let

where etc. Since w has even degree, is

well-defined, and for a form f (z) with coefficients in S(C’) we let

Since we have an even real dimension it is immaterial whether we put
all differentials of d(, d( to the right or to the left before performing the

integration, and thus ~"/(() is a well-defined form with coefficients in S. To
reveal a more explicit form of the condensed definition (4.1) let us assume
that f E Sp,q. Then

for degree reasons, and hence h f is an (n - q, n - p)-form. In what follows
we let i mean the same as 

PROPOSITION 4.1. - We have the inversion formula
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Of course it can be deduced from the inversion formula for the usual

Fourier transform, but we prefer to repeat one of the well-known argument
in the form formalism.

Pro of. Take 1 such that 

Making the change of variables ( ~ (/,E, z H z + w, the right hand double
integrals becomes (the mapping is orientation preserving, so no minus sign
appears)

and since another change of variables ( ~ c( gives

which tends to cn f (w), where

Taking for instance ~(~) = exp(-1(12),-a simple computation reveals that
cn = (- 1) n. 11

Let bz-a denote contraction with the vector field ’. for

and since

it follows that

PROPOSITION 4.2. - If a E cn, then

where

for forms 0(().
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Identifying bidegrees we also get that

Proof. - By (4.3) we have that

I ""’ ’--"I

Integrating with respect to z we get (4.4), since j i7z-ag = 0 for forms g
in S. 0

It is readily verified that Propositions 4.1 and 4.2 hold for X-valued
forms (and currents, see below) and commuting n-tuples of operators a.
This is checked by applying functionals on both sides of each equality.

We now want to extend the Fourier transform to currents in S’, and
to this end we first notice that

for u, f E S. To see this, just notice that both sides are equal to

Moreover, one easily checks that = f (-z), then
Any u E S defines an element in S’ by

""-

For a general u E S’ it is therefore natural to define t by the formula

It is routine to extend 8z-a, a etc to S’, and verify that Proposition 4.2
still holds for currents u E S’.

Remark 2. - One can check that

since the conjugates of both sides are equal to

in view of the equality, I . One can then define the Fourier
transform of currents by means of formula (4.6) instead. 0
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LEMMA 4.3. - If [0] denotes the current integration at the point
0, then

Proof. In fact, for f E So,o we have

where the last equality follows from the inversion formula (4.2), holding in
mind that i is a (n, n)-form. In a similar way we have

since in this case f is an (n, n)-form.

We say that u E is a Cauchy current if

From Lemma 4.3 and Proposition 4.2 it follows that u is a Cauchy current
if and only if

For instance, if b(z) _ 8IzI2/2i, then

is a Cauchy current. In fact, since 8 z b( z) i= 0 outside 0 it follows that

i7zB (z) = 1 there, and the behaviour at 0 is easily checked. We will refer to
B (z) as the Bochner-Martinelli form. It follows that = 

and more precisely we have that

PROPOSITION 4.4. - If B(z) is the Bochner-Martinelli form (4.9),
then

In fact, one can verify that B(z) is the only Cauchy current that is
rotation invariant and 0-homogeneous. Since these properties are preserved
by T, the proposition follows. Alternatively, one can use the well-known
formulas for Fourier transforms of homogeneous functions in However,
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we prefer to give a direct argument that reflects the handiness of our

formalism. We begin with a lemma of independent interest.

Proof. It is convenient to use real coordinates, so let z = and

by an application of Cauchy’s theorem. By the translation invariance of
the Lebesgue integral we can make the change of variables z - x -+- ~,

y - y - ~, in the last integral which yields

and so the lemma follows.

If (3k = (3k / k!, then the lemma thus means that

for each k.

Proof of Proposition 4.4. - From (the remark after) Proposition 4.2
(and taking conjugates) we get that

Noting that and

using the homogeneity property of the Fourier transformation, we get that

and integrating in t over the positive real axis we get Proposition 4.4. 0

5. Generalized scalar operators.

Assume that al, ... , an is a commuting tuple that admits a S-
functional calculus, i.e., a continuous algebra homomorphism II: E(07 (a)) -
,C (X ) that extends (1.2). Such a tuple a is sometimes called a generalized
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scalar tuple. Here ~(cr(a)) denotes the algebra of germs of smooth functions
on Thus II is a (a)’-valued distribution in cn that is supported on
a(a) . The continuity assumption implies that there is a nonnegative integer
m such that for each U D a(a),

where

First we shall relate the existence of a E-functional calculus to the

existence of a current extension of the resolvent over the spectrum.

THEOREM 5.1. ~ Let a be a commuting n-tuple of operators. Then
the following conditions are equivalent:

(i) a admits a £-functional calculus II: ~ ((Cn ) ~ £(X).

(ii) There is a commuting n-tuple a* E (a)’ and a number m such
that

There is a such that

where [a] is an (a)’-valued (n, n)-current such that

In case these statements hold, then [a] is supported on a(a), rl(f) =
[a]./ for f C So,o (CCn ), and

where a* = 1-1(z-). Moreover,

Proof. If (i) holds and a* = II(zJ)’ then (a, a* ) is a commuting
2n-tuple and (2.4) holds, so (5.2) follows from ( 5 .1 ) .

Now assume that (ii) holds, and let 2 Re a - ~ = a - ~ -~ a* - (. Then
exp(-27rz’Re a () is in (a)’) so we can define an (a)’-valued (n, n)-
current [a] by formula (5.5), and then (5.4) will be satisfied since (a, a* ) is
commuting. Let u(z) be a Cauchy current in S’, e.g., the Bochner-Martinelli
form, cf. Section 4. Then ex - (_I)n [0] and hence
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By the assumption is in S’ and by Proposition 4.2 and
Lemma 4.3 then (5.3) holds if v = 

Finally, assume that (iii) holds. Then to begin with, = 0 so

[a] has support on a(a) according to Lemma 3.1. Thus [a] is in S’ although
we a priori only assume that v is in D, (Cn, (a)’), so that (5.4) anyway
has meaning. Let f be holomorphic in a neighborhood U of a( a) and let
u E /~~~(~,~7 B a~(a), X ) be a solution to f (z)x. Then, since v
is (a)’-valued, ’ 

1

so that un - is a-exact
in U B a (a), and hence vn f x is a current representative of the Dolbeault
cohomology class wz-a fz in ~7Bcr(a). Now, let II( f ) = [a] . f and let X be a
cut off function that is 1 in a neighborhood of a(a). Since [a] is supported

and 8vn = [a] we have that

J

according to (3.1). Thus II is an extension of the holomorphic functional
calculus and (5.4) ensures that it is multiplicative. Thus (iii) implies (i).

The first stated relations between II, [a], and a* follow from the proof
above, whereas (5.6) follows since -

Remark 3. - The proof of (ii) - (iii) above is based on the following
fact: If a (5.2) holds, then one can define translates fa(z) = f (z - a) of
currents f E S’ ((Cn , ,C (X ) ) , by multiplying with exp(-2Jri Re a . () on the
Fourier transform side (from the left), such that (i7z f)a = i7z-a fa . Given
a Cauchy current u, and taking v = Ua, we have that V,-aUa = 1 - [a],
since [a] is the a-translate of [0]. Of course we can think of v(z) as the
"convolution" 

A

If u(z) is chosen to be smooth outside 0, like the Bochner-Martinelli form,
it follows that v is smooth outside a(a). Hence there is a smooth solution to

= ex there. In particular, 6z-avi,o(z) = e, which implies that a(a)
coincides with the spectrum with respect to the commutative subalgebra
(a, a* ) of £(X), and with the splitting spectrum, see, e.g., [2]. 0

Remark 4. - We can write more suggestively
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and so it is natural to think of [a] as a generalized spectral measure (or
rather a spectral current).

Let X be a Hilbert space and a a commuting tuple of normal

operators; this means that (a, a*) is a commuting tuple, where a* is the

Hilbert space adjoints of a3 Then (Re a, Im a) is a self-adjoint commuting
tuple and hence )) 1. From Theorem 5.1 it follows that

a admits a S functional calculus. However, as is well-known, the spectral
current [a] in this case actually is a measure (an (n, n)-current of order
zero) so there is even a 0 (a( a)) functional calculus. 0

If a admits a E-functional calculus we know from Section 2 that

a (Re a, Im a) = ~(x, ~); E (r(a)}. Moreover, the mapping 0 (z) H
y) _ §(z + iy) extends to an isomorphism

~(~(a)) ^_~ E (a (Re a, Im a)),
where a (Re a, Im a) is considered as a subset of rae2n, and since the real-
analytic functions are dense the equality (2.6) extends to these spaces.
Since the spectral mapping property holds for the natural C’ functional
calculus for the commuting 2n-tuple (Re a, Im a), see [4], we have

PROPOSITION 5.2. - If a admits a E functional calculus II: 
- ,C(X), then = f(a(a)) for all f = (fl) fm), where fk E
E (,7 (a)) -

Assume that a admits a E functional calculus [a], let 
L(X) be a linear continuous mapping, and let 7r be the £(X)-valued (n, n)-
current supported on a(a) such that H( f) = for smooth f. Then the
following conditions are equivalent:

(i) II is a linear extension of the holomorphic functional calculus such
that for all a 3

(ii) There are ca E /~(X) such that

(iii) There is an current solution to N r in

Suppose that (i) holds. Then ( and thus, cf. Remark 3,
which means that
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Moreover, since and thus 7 (. +a) - 1 = ex, it follows that co = ex.
By translating back we get (5.7). On the other hand, if (5.7) holds, it is

easy to modify vn in a solution v to (5.3) so that the equation in (iii) is

satisfied. Finally, if (iii) holds, then as before it follows that 7r is supported
on and that 6z-aJr = 0. As in the proof of Theorem 5.1 this implies
(i) .

Thus any choice of coefficients c, E gives a current extension of
the representative un of the Dolbeault cohomology class resolvent Ú)z-a
over the spectrum a(a), and a linear extension II of the holomorphic
functional calculus such that (i) holds, but in general the extension will
not be multiplicative. In fact, it is if and only if 7r(( + C) _ 7r(27)7r(C).

,

However, in general there are several possible multiplicative exten-
sions of the holomorphic functional calculus. The following result is a mul-
tivariable version of a classical theorem, see [6].

THEOREM 5.3. - Suppose that IT and IT are two E-functional

calculi such that and TI’(z) are commuting. Then q = II(z) - 
a nilpotent (commuting) tuple, and

where m and m’ are the orders of II and II’ respectively. Conversely, if
II is a E-functional calculus, a* = II(z), and q E (a, a*)’ is a commuting
nilpotent tuple, then (5.8) defines another E -functional calculus.

Proof. - If [a] and [a]’ are the corresponding (n, n)-currents, then

and since

it follows that

which implies that q0152 = 0 for lal &#x3E; m + m’. Observe that

so that
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In view of (5.9) this means that (5.8) holds. The converse is obtained by
arguing backwards. 0

Remark 5. - If f E CW(a(a)) and f (z) - as in Section 2,
then II(a) = f(a, a*), and II’(a) = f(a, a* + q). Thus one can think of (5.8)
as the Taylor expansion of f (a, a* -I- q) at the "point" (a, a* ) . 0

6. The property for generalized scalar operators.

A commuting tuple of operators a has the property if the

complex

is exact at Sk,O (Cn, X) for 1~ &#x3E; 0 and the range of the last mapping is
closed. This is a variant of Bishop’s property ((3) which is the analogue
with S replaced by C7. For a background to these notions, see [4]. For large
Izl the (local) exactness of the complex follows by means of the homotopy
operator Sf = s A f, where, e.g., ~ == X~!~P/(!~P 2013 ~ ’ z). Therefore, one
can just as well replace s(cn, X) by £(cn, X) X) in the definition
of (/~)~. In [9] Eschmeier and Putinar proved

THEOREM 6.1. - If the tuple a admits a E functional calculus, then
it has property (/3)~.

If now a is a generalized scalar, i.e., it admits a £-functional calculus,
then we have a continuous mapping ~((Cn, X) -~ X, intuitively obtained
by replacing z by a, which we denote f H f (a). If f is in S(C’, X) it can
be defined by the current [a] acting on f or, equivalently, by the formula

This mapping is (this follows from (5.4)) and it commutes with
each aj (since [a] is (a)’-valued). Thus we can define the closed subspace

of So,o(cn, X). It immediately follows that = 0, and therefore

f E S8,0 if f (z) - 6z-au(z) for some u E Sl,O(cn, X). It turns out that
also the converse is true. Our main result in this section is
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THEOREM 6.2. - Assume that a is a generalized scalar, and let

Then the sequence

is exact.

Clearly Theorem 6.2 implies Theorem 6.1. If X - C (and thus
a E then Theorem 6.2 is an instance of Malgrange’s theorem on ideals
in E defined by analytic functions, see [11] Ch. 6.

Proof. Since

and

it follows that So,o ((Cn, X) via the Fourier transform corresponds to

where

Therefore, (6.2) is exact if and only if

is exact. On the other hand, since multiplication with is a

continuous isomorphism on s(cn,X), (6.3) is exact if and only if

is. However, from Malgrange’s theorem, and via the Fourier transformation,
we know that (6.4) is exact when X = C, and since the spaces Sn,q are
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nuclear, see, e.g., [9], the exactness is preserved when applying 0X, see
also Remark 6 below. Thus the theorem is proved. 0

The proof above may be rephrased in the following way. First notice
that there is a continous mapping f (z) ~ fa (z) = f (z - a) on S(C" , X) if
a is a generalized scalar, obtained by multiplying by with exp (- 27rt’Re a ~ ()
on the Fourier transform side, cf. Remark 3. By Malgrange’s theorem (the
X-valued version, e.g., obtained from the usual one by the nuclearity of S),
(6.2) is exact if a = 0. We then obtain the exactness in general by making
the "translation" by a. More concretely, if we have got an X-valued f (z)
such that bz-a f (z) = 0, then 6zf (z + a) = 0 and by the exactness hence
we can solve 6zv(z) = f (z + a). Thus bz-au = f if u(z) = v(z - a).

Remark 6. - One can prove the exactness of (6.4) (or equivalently
(6.2) for a = 0) directly, for X-valued forms, by weighted integral formulas.
In fact, simple such formulas give solutions um to = f that are

provided that f itself has a similar decay (and satisfies the
moment conditions in case f is an (n, n)-form). It is then quite easy to

piece together to a solution u with decay faster than all polynomials. 0

We conclude with a result which is somehow dual to Theorem 6.2,
but more elementary.

PROPOSITION 6.3. - Suppose that a is a generalized scalar tuple,
with E-functional calculus [a]. Then the sequence

is exact except at k = n, where the kernel is

I polynomial).

The same holds for S’ or S’ instead of D’. In particular, Proposi-
tion 6.3 implies that

is exact if

Sketch of proof. - For large z there is an (a)’-valued smooth form
s such that 6z-as = eX so if f E Dp,o, p  n, then 0 then

u = s n f is a solution to 6z-aU = f for large z, and hence we may assume
that f is in S’. Via the Fourier transformation and multiplication with

exp(27t* Re a - () the problem then is reduced to solving the a equation for
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X-valued currents in S’, and this can be done, e.g., by weighted integral
formulas. If f E Dn,o, and = 0, we know from Lemma 3.1 that f = 0
outside the spectrum; in particular f is in X), and (D(+A)i(() - 0;
thus

so that for some holomorphic polynomial p. 0

7. Ultradifferentiable functional calculus.

Most of the results from Section 5 hold for algebras of ultradifferen-
tiable functions instead of S. For simplicity we restrict to the nonquasi-
analytic case; however, for instance all Gevrey classes will be included.

Let h(() be a nonnegative, continuous, subadditive function on C’
with h(o) = 1, and let be the space of all tempered distributions f such
that i is a measure and

Then is an algebra, and if exp for all m, then

C S. We will also assume that

which ensures that ,A.h is nonquasi-analytic, i.e., it contains cut off functions
with arbitrary small supports, see [4] and [5]. Typically is h(() = 1(1’,
0  cx  1, which gives the Gevrey classes, but also nonradial h are allowed.
These algebras were introduced by Beurling in [5]. Since we have access to
cutoff functions we can easily localize the Ah-condition ; more precisely, for
an open set V we can define Ah (V) as the algebra of functions f in V
such that x f e for all cutoff functions X e with support in V. It
turns out that CW (V) is continuously embedded in Ah(V) and dense; for a
proof see [4]. For a compact set K we define Ah(K) as the inductive limit
of the spaces Ah (V), V D K. It is not hard to see that the dual space

Ah(V) consists of all ultradistributions u with compact support in V such
that lû( () I  C exp h(-(). We say that a ultradistribution u is in if

xu E for each cut off function X E Ah. These definitions can easily
be extended to vector-valued ultracurrents.
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Remark 7. - In the quasi-analytic case one can localize the Ah-
condition by means of a variant of the FBI transform and define spaces
Ah(V) that consist of all functions f such that roughly speaking f, locally
in V, belong to for some c &#x3E; 1. The dual space then consists of

hyperfunct ions u such that lû(()1  Cc exp ch(-() for all c &#x3E; 1, see [4].
It is possible to prove an analogue to Theorem 7.1 for these spaces as

well. 0

We say that a admits a Ah functional calculus if there is a continuous

mapping

that extends the holomorphic functional calculus. We have the following
analogue to Theorem 5.1. However, since we have no analogue to Lemma 3.1
for we have to formulate condition (iii) somewhat differently.

THEOREM 7.1. - Let a be a commuting n-tuple of operators. Then
the following are equivalent:

(i) a admits a Ah -functional calculus £(X).

(ii) There is a commuting n-tuple a* E (a)’ such that

(iii) There is an (a)’-valued ultracurrent v in &#x3E; that is

smooth outside a( a), such that

where [a] is an (a)’-valued (n, n)-ultracurrent in such that

In case these statements hold, then [a] is a (n, n)-ultracurrent sup-
ported on o-(a) such that I

where a* - I-I(z-). Moreover,

for
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Proof. Assume that (i) holds and define, as usual,
before we have that II(Et) = exp(

we have that _ and hence

- 

,

By the continuity of II we get the estimate (7.2).
Now assume that (7.2) holds. Then, as was proved in Section 2,

a(Re a, Im a) is real and equal y); x + iy E a(a) 1, and from [4]
it follows that the formula (7.6) defines a Ah(a(a)) functional calculus; in
particular, a (a)’-valued ultradistribution [a] in with support on a(a).
Moreover, II( f ) = f (a, a* ) for entire functions so [a](() = exp( - 2Jri Rea.(),
and so (7.4) will be satisfied since (a, a*) is commuting. Let u(z) be the
Bochner-Martinelli form, cf. Section 4, and let v = Since t

is bounded it follows that I  C exp h(-~) and hence v is in A’ , and
as before (7.3) holds. Since v is a convolution with [a] and u, it is smooth
outside the support of [a], i.e., a(a).

Finally, assume that (iii) holds. By the extra assumption on v it

follows from Lemma 3.1 that [a] is supported on a(a), and then (i) follows
in precisely same way as in the proof of Theorem 5.1. D

From the isomorphism

and the spectral mapping property for the functional calculus for tuples
with real spectrum, see [4], we get

PROPOSITION 7.2. - Suppose that a is a commuting tuple that ad-
mits a functional calculus -7 £(X). Then ==

As one can expect we also have an Ah-analogue to Proposition 2.3
and Theorem 5.3.

THEOREM 7.3. - Suppose that fl and IT are two 

functional calculi such that H(Z-) and fl’(Z-) are commuting. Then q -
II(z) - II’(z) is a quasi-nilpotent (commuting) tuple satisfying

Conversely, if f 1-1 is a Ah1 -functional calculus, a* = 1-1(z-), and q E (a, a*)’ is
a commuting nilpotent tuple such that II exp( 7riq . () II  C exp h2 ( (), then,

there is a Ah functional calculus H’ such that II’ (z) = a* + q.
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Proof. If a* = II(z) and a* + q = II’(z), then from Theorem 7.1
we have that and 11 (a* +
q) ~ ()II :S C exp h ((), and from this we immediately get (7.7). The second
statement is concluded in a similar way, again using Theorem 7.1. D

As in the [-case, and for the same reason, 11 and IT are related by
the formula

for all say real-analytic f.
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