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1. Introduction.

1.1. Motivation.

In this article we will study the magnetic response properties of a non-
interacting electron gas in a strong, constant, magnetic field. The (local)
magnetic moment m of the gas is defined as the variational derivative of the

energy with respect to the magnetic field, i.e. it is the first order correction
to the energy when the magnetic field is slightly perturbed.

In the Pauli Hamiltonian describing the electron gas, it is not the

magnetic field B itself that appears but the magnetic vector potential
A; curl A = B. Therefore, it is more convenient to calculate the current

j = 8E/8Ã instead of ~n = From the results on the current,
corresponding results on the magnetisation can be derived using that
curl m = j .

The current in strong magnetic fields has already been studied in
a number of papers: In [FouOla] the semiclassical limit of the current was
calculated when the magnetic field strength p and the semiclassical param-
eter h satisfied the condition that ph remains bounded above as h tends
to zero. Furthermore, in [Fou99] the microlocal machinery of Ivrii [Ivr98]
and Sobolev [Sob94] was applied to the problem and asymptotic formulae
with good error estimates were obtained under conditions of smoothness of
the electrostatic potential V. When the microlocal techniques are applied,
the condition that ph is bounded can be replaced by the much weaker
assumption that is bounded for some arbitrary constant (.
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Though the microlocal techniques permit a much better control of
the error terms and were (in the same paper) applied to potentials with
a Coulomb singularity, some points are still unsatisfactory: The first is

that the assumption that phi be bounded should be superfluous; the
second is related to the connection between semiclassics and large atoms.
Semiclassical problems of an electron gas in a strong magnetic field appear
in the study of large atoms in strong magnetic fields. Here, the drawback
of the microlocal approach is that the relevant electrostatic potential - the

magnetic Thomas-Fermi potential VMTF - coming from the reduction of the
atomic problem to a one-particle problem, does not satisfy the smoothness
properties required for the microlocal techniques to work.

It is the objective of the present work to calculate the current at large
ph without any recourse to microlocal analysis. In doing so, we will solve
the two problems mentioned above.

1.2. Statement of the results.

Let V(x) be a (real-valued) function on R . The (Pauli) Hamiltonian
that we will work with is the following (where p and h are positive
parameters) :

where A = (-x2/2, xl/2, 0) (and therefore j9 = curl A- = (o, 0,1)). We will
always work under conditions that assure that H is a self-adjoint operator
on the Hilbert space L2 (I1~3 ) .

Notice that we have chosen for simplicity of notation to restrict the
usual spin-dependent Pauli operator living on £2 (JR3, (~2) to the spin-down
subspace identified with £2 (}R3, C). Since the magnetic field is constant, the
full Pauli operator splits into a direct sum of operators on the spin-down
and spin-up subspaces and therefore there is no loss of generality.

The current operator is the following:

is any test vector potential, and

With this notation the energy of the electron gas is defined as
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and the current j is defined (as a distribution) by

Let us first recall the semiclassical results on the energy. In [LSY94a]
it was proved that for A, as above, the following semiclassical formula holds

uniformly in the magnetic field strength:

where

Here, we have written [

Formally, ; == and we get by formal differentiation of the

expression ( 1.2) with respect to A (remembering that J
the following formal expression for the semiclassical current:

In particular, when 2ph &#x3E; - inf V, we get

It indeed turns out that this formal calculation gives the right result:

THEOREM 1.1. Suppose
I there exist ho, vo &#x3E; 0 such that if h  ho

and 1-th &#x3E; vo, then
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Remark 1.2 (A note on the type of limit). - The asymptotic problem
that we study involves a simultaneous limit in the two parameters h
(tending to zero) and 1-th (tending to infinity), i.e. it is the limit h +

(1-th) - 1 --4 0. We will use the standard o, O-notation with respect to that
limit. Thus a statement like

(as oc and h ---7 0) means that for all E &#x3E; 0 there exist ho, vo &#x3E; 0

such that if h  ho and ph &#x3E; vo, then

It is not yet known in complete generality that the parallel (to B)
current j3 is smaller than the perpendicular current ( j 1, j2 ) . However, we
can prove that j3 is small under certain symmetry assumptions:

THEOREM 1.3. - We have the following two cases:

1. If V satisfies the conditions of Theorem 1.1 and furthermore

satisfies the symmetry condition V(Xl, X2, X3) = V(XI, X2, -X3), then the
conclusion of Theorem l.l remains true with i

then

Notice that in Theorem 1.3 part 2, j3 vanishes; whereas in part 1,
it only becomes of lower order than the perpendicular current. Part 1 has
been proved in [FouOla] and the argument will not be repeated here. We
wish to point out, however, that one needs Theorem 1.1 in order to prove
part 1. In that sense it is a corollary of Theorem 1.1. The proof of part 2
is elementary and will be given in Section 3 below. Furthermore, it is a

symmetry argument and as such independent of any knowledge on the
perpendicular current ( j 1, j2 ) .

In applications the scalar potentials V under consideration will often
not be of the type required by Theorem 1.1. The main application we have
in mind is to large atoms in strong magnetic fields, where the mean field
potential is known to have (among others) a Coulomb singularity at the
origin. With similar (though a bit more technically involved) arguments as
for the above one can get Theorem 1.4 below.
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THEOREM 1.4 (Current in potentials with Coulomb singularities).
Let V (x) satisfy the following conditions:

. (This implies that H is self adjoint

bounded.

Remark 1.5. - One can apply localisation techniques such as those
described in [Sob95] and [Sob94] in order to analyse the situation with more
than one Coulomb singularity. It is beyond the scope of the present paper
to include this generalisation.

1.3. Results for MTF-theory.

In particular, Theorem 1.4 can be applied to the mean field potentials
VMTF and VSTF coming from the analysis of large atoms in terms of a
Thomas-Fermi type theory. The precise definition of these potentials will
be given in Section 2 below, where we will also prove that they both satisfy
the assumption of Theorem 1.4.

The difference between VMTF and VSTF is that in VMTF all Landau
bands are taken into account, whereas in VSTF one restricts to the lowest.
Since 2Jlh is the distance in energy between the Landau bands one would
expect the restriction to the lowest Landau band to be admissible in the
limit where Jlh ---7 00. It was shown in [LSY94b] and [LSY94a] that this is
correct for the highest order terms in the energy.

For the highest order term of the current we show that either of the
two potentials can be used:

THEOREM 1.6 (Current in the MTF mean field potentials). - Let
be the mean field potential from
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magnetic Thomas-Fermi theory, and let Y2 (x) = VSTF(r) be the mean
held potential from STF-theory. Write

Let i then we have for j = 1, 2:

as h - 0 and ph - oo. Furthermore, in the same limit

Remark 1. 7. - For bounded 1-th, the semiclassical limit of the current
in the MTF-potential was calculated in [FouOla]. Thus, Theorem 1.6

together with that paper constitute a complete semiclassical analysis of
the current in the mean field from magnetic Thomas-Fermi theory.

1.4. An outline of the paper.

The proof of part 2 of Theorem 1.3 is elementary and independent of
the general arguments in the paper, so it is given in Section 3. The proofs of
Theorems 1.1 and 1.4 will be the main objective of the paper. Both of these
theorems depend on a fairly easy analysis carried through in Section 3 and
an estimate on the number of electrons living in the second Landau band.
It is only in the nature of these estimates that the proofs are different.
The estimate for Theorem 1.1 is stated and proved in Section 6 and for
Theorem 1.4 in Section 7. The proof of Theorem 1.4 depends on choosing
a convenient gauge, and therefore it depends on Theorem 1.3.

Theorem 1.6, which is maybe the most interesting result of the paper,
will follow from an analysis of MTF-theory in Section 2. There it will

in particular be shown that VMTF and VSTF satisfy the assumptions of
Theorem 1.4.

1.5. Notation and preliminaries.

We will for shortness introduce the notation
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The kinetic energy operator k in the variables perpendicular to the
magnetic field plays a crucial role in magnetic field problems. It is defined
as

We will think of K as an operator on L2(JR3) (though it could equally well
be defined on L2(JR2)). It is well known that the spectrum of K is a set of
(infinitely degenerate) eigenvalues {O, 4ph, ...I - 2ph(Z+ U f 01), the
so-called Landau levels. We will often use the term "v’th Landau level"

both to describe the eigenvalue 2vph and to describe the corresponding
eigenspace of K. The projections onto these Landau levels will be used
repeatedly. We will now describe their explicit form (See [LSY94a, p. 95]):
Let

where we have written x E JR3 as with r i 1 B and B.
In (1.8), Lv are Laguerre polynomials normalized by Lv(0) = 1. The

projection on the v’th Landau level is now given as

where the tensor product refers to the decomposition

All tensor products in this paper will refer to this decomposition.

The lowest Landau level plays a special role, so we will often use the
decomposition I = IIo + which defines

We will also use the following raising and lowering operators1:

1 Notice that we will reserve the notation a for the lowering operator. The test
vector fields d in the definition of J(a) (see ( 1.1 ) ) will always have a vector arrow or a
tilde (as in a).
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Then

It is therefore easy to see that a* maps Ran IIv to Ran IIv+1, i.e. raises the
Landau level by one, and that a lowers it.

Define

Then it is clear that

We will use a number of different norms: For functions V we will

denote by IIVllp (with p &#x3E; 1) the LP norm of V - with the exception that
IIVII is the L2 norm. We will also need norms of operators: ilK II denotes the
operator (uniform) norm of the operator K, and (p &#x3E; 1) the Schatten
norm

in particular ||K||2 is the Hilbert-Schmidt norm. It will always be clear from
the context whether a given object is considered an operator or a function.

Finally, let us fix a number of standard notations: R(z), denote

the real and imaginary parts of the complex number (or the operator) z.
B(x, r) denotes the open ball of radius r around the point x. It will always
be clear from the context in which space the ball is taken. Lastly, Da
denotes the Jacobian of the function a.

We will also use the standard custom of letting c or C denote arbitrary
constants, the value of which may change from line to line or even within
a line. We will in general not try to keep track of the numerical value of
these constants.

2. The MTF potential.

In this section we will discuss the regularity and decay properties of
the MTF potential. It is well known (see [Lie81]) that in usual Thomas
Fermi theory (without magnetic field) the effective potential is a smooth
function except for a Coulomb singularity at the origin. In MTF-theory
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this is unfortunately not true, which is one of the reasons why precise
asymptotic formulae are difficult to obtain for large atoms in strong
magnetic fields. The MTF-potential turns out not only to have a Coulomb
singularity at the origin (at the nucleus) but also points of non-smoothness
on an infinite number of "surfaces" tending towards the origin as ph tends
to infinity.

The MTF-potential comes from the study of large atoms in strong
magnetic fields. By means of correlation estimates one can (with a small
error) reduce the study of a neutral atom with nuclear charge Z in the
constant magnetic field B to a semiclassical problem in a mean field VMTF
and parameters p, h given by

We will only discuss (scaled) MTF-theory in the case we are interested
in - i.e. JLh ---7 oo, which corresponds to {3 = B~Z4~3 --~ oo. Furthermore,
we will only describe the results we need for the proof of Theorem 1.6. For
a general discussion of MTF-theory see [LSY94a].

The mean field VMTF is found through the Thomas-Fermi equation
(2.3) below. However, in order to state that equation we need to introduce
some notation.

The Magnetic Thomas-Fermi (MTF) theory that correctly models
the behaviour (to leading order) of the energy of atoms in strong magnetic
fields is (after a scaling) given by the following functional:

Here V(x) is the Coulomb potential D(p, p) is the Coulomb

norm or airect uouiomo interaction
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and T~ is the kinetic energy density of an electron gas in a magnetic field,
given as the Legendre transform of the (scaled) pressure

with

Notice that the functional only depends on h, p through the parameter /3.
For simplicity this will be the only parameter appearing in this section. One
can restore the h, M’S using 2.1. The corresponding (scaled) MTF-energy is
now given as 2

The (scaled) STF-functional comes from taking formally the limit
, This gives

and therefore

Therefore,

Finally, the STF-energy is defined by (note that the domain is different
than for MTF-theory)

In order not to have to notationally distinguish STF and MTF theory,
let us define that ’ESTF = 

2 
For simplicity we restrict attention to neutral atoms, so the scaled density has to

integrate to (less than) one.
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From [LSY94a] we get the following results on minimizers of the MTF-
functional :

THEOREM 2.1 (Existence and properties of MTF-minimizers). - For
(3 E [1, oo] we have

. The functional ErTF has a unique minimizer p,~.
o The minimizer p,~ has support contained in a fixed (independent of

(3) compact set.

. The minimizer P/3 satisfies the (scaled) TF equation:

where the MT F-potential (efrecti ve potential) is defined as

o The TF equation can be written in the following form, involving
only 

From the above results we easily get

COROLLARY 2.2 (Properties of 

is an orthogonal matrix with determi-
nant J

Proof. The proof of 1 is simply the observation that p is positive
and thus p * ~ Ixl-1 as well. The symmetry property 2 follows from the

uniqueness of the minimizer Pj3 and the symmetry of the functional D

Furthermore, we get continuity of VMTF,j3 in {3:

Proof. From (2.4) it is clear that ~~~ . Therefore, using
Lebesgue’s theorem on dominated convergence, it is enough to prove that

(x) pointwise.
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Now,

From Theorem 2.1 we get that

for some fixed (independent of /3) R &#x3E; 0. Furthermore, for fixed x E JR3,
we have

1 1.

and - as a function of y - the function has compact
support. Since, using Theorem 2.1 again, p, is weakly convergent, this
finishes the proof. D

For the analysis of the current it will be very important for us that the
singularity of VMTF,f3 at the origin is essentially of Coulomb type ( ~ 
The precise thing that we need is that IxI2VMTF,f3 is differentiable. This we
will prove next:

LEMMA 2.4. - There exists 131 &#x3E; 1 such that if ,C3 &#x3E; ~31, then

and furthermore,

is bounded uniformly for)

Remark 2.5. - Notice that Lemma 2.3 and Lemma 2.4 make Theo-

rem 1.6 a corollary of Theorem 1.4.

Proof. Let us write

Now, general results (see for instance [LL97, Theorem 10.2]) give that

Eont(r) is continuous and bounded since /
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or 3. We need to prove that In

order to do that we write the TF equation for p, : 
I I

For 0 = oo we have p2 = 0. Notice that p2 and p,~ have compact support,
and therefore PI as well. Now, Ixl-I/2 close to the origin, so PI E L3+E .
Therefore if we define then (from [LL97, Theorem
10.2] again), we get that VI is So let us look at p2:

We will approximate the sum by an integral, so let us denote u = u(x) _

Since is decreasing (for positive t) we have

and therefore
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which implies that p4 is in £3+E (IR3) uniformly in 0. Thus (by [LL97,
Theorem 10.2]) P4 * so we only have to consider p3 .

It is clear that

and has compact support, so it is enough to look at

If we now choose g with 0 - 1 on a nbh. of 0, then we can write

We will argue that - We have

(if the constant c is chosen properly). Now the right hand side is (uniformly
in (3) in L3+E(JR3), and we can apply [LL97, Theorem 10.2] a final time. D

3. The parallel current.

In this short section we will prove Theorem 1.3 part 2. The idea of
the proof is to use the cylinder symmetry of V to prove that we may choose
the eigenfunctions to be of the x3)eimÐ, where ~ is real.
Once we have obtained that, it is easy to see that the parallel current of
such a function vanishes.

We need to calculate

(-ihåx3)a3) 1 (-~,o] (H)~ = 2~ (tr~a3 (-ih~~3 ) 1 (-~,o~ (H)~ ) .
Due to the cylinder symmetry of V we may choose the eigenfuntions of
H to be also eigenfunctions of the angular momentum operator LX3 or in
other words, to be of the form
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where m G Z X3) is an eigenfunction of

Now, H commutes with complex conjugation, so we may choose the

to be real. But if is real, then it is easy
to see that

This finishes the proof. D

4. Preliminary analysis.

4.1. Commutator formulae.

Two commutator formulae will be very important in the argument.
We will in this section repeatedly appeal to the fact that if is an

eigenfunction of the self-adjoint operator H, and A is any operator, then

(under very general conditions on A, H) :

This implies in particular that

Remark 4.1. - When A, H are unbounded operators the correctness
of the ’virial Theorem’ i.e. (4.1) is a bit delicate (see for instance [GG99]
for a discussion of this issue). However, standard methods can easily be
applied to prove that the formal calculations below are justified.

The first commutator formula proves gauge invariance of the current

in d:

LEMMA 4.2 (Gauge invariance of the current). - Let
then

where J is defined by (1.1).
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Proof. This follows by integration by parts or the following easily
proved identity:

The second commutator formula is essentially a virial theorem for
Schrodinger Hamiltonians in the presence of a magnetic field. This formula
has previously appeared in [FouOla] and [FouOlb].

LEMMA 4.3 (Magnetic virial theorem). - Suppose that d = a2, 0) E
Co’(R’) and deline ii = (-a2, aI, 0). Define furthermore M = -(Da +

then

where

and

Remark 4.4. - Notice that the term diva is equal to -b3.

Proof. We will only give the main idea of the proof. For further
details see [FouOla]. The proof of this statement also reduces to the

calculation of a commutator. This time the required formula is:

The proof of this formula is just a calculation using, in particular, that

4.2. Known results.

In this subsection we will recall some results on semiclassics of the

energy and density in a constant magnetic field. These are all taken

from [LSY94a].
The result on the semiclassics of the energy in a constant magnetic

field is:
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THEOREM 4.5. - Suppose
and J-L, V) be as given in Section l. Then

uniformly in the magnetic field strength J-L E [1,(0).

By the variational principle, one easily gets:

COROLLARY 4.6. - Let us keep the assumptions from Theorem 4.5.

Suppose then

and

as h --~ 0. Furthermore

Proof. Suppose . The variational

principle implies that for all t E R,

Thus, for t &#x3E; 0,

Letting now t B 0, we get the inequality,

If we let t  0, t ~‘ 0 instead, we will get the opposite inequality. This
proves the result for tr~~l(_~,o~ (H)~.

The same type of argument can be applied in the other two cases. 0
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5. Proof of Theorem 1.1 and Theorem 1.4.

5.1. Discussion and preliminaries.

We now pass to the proof of Theorem 1.1 and Theorem 1.4. The proofs
of these two theorems are the same until the final step where we need to
invoke an estimate on the number of electrons in the second Landau level.

This final estimate is different in the two situations.

The first part of the proof is identical to the argument in [FouOla].
First we apply the ’virial theorem’ (Lemma 4.3). Thus we have transformed
the question about the current to

where the a that appears in the definition of JKIN and JDENS is given as

(-~2,~1,0).
Now Corollary 4.6 readily gives (by integration by parts) that

Therefore the real task is to prove that

as h - 0 and ph - oo.

A standard technique for obtaining such a result would be to write

H(t) - H -~ tJKIN and then study E(t) = The

asymptotics of should then be obtained using the same
arguments (Feynman-Hellman) as applied for the density in [LSY94a].
However, this strategy will not work in the present case, since it can be

shown that E(t) is of order (1 + J-Lh) /:2 0, whereas E(O) is only
of order h2 . This is the reason why the work [FouOla], which applied this
strategy, had to be restricted to bounded ph.

The idea that we will apply below is that the main term of JKIN is an

operator that couples the lowest Landau level with the second. Formally,
this is clear since the projections ilj almost commute with functions:

[ilj,4&#x3E;] ~ Jh/J-L. This "almost" is made precise in a number of auxiliary
lemmas in Appendix A. Thus, if we can obtain a good bound on the number
of electrons living in the second Landau level, we can prove the bound (5.1)
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directly. In this section we will reduce the proof of (5.1) to an estimate on
the second Landau level ((5.10) below), the proof of which is technical and
will occupy the rest of the paper.

Let us decompose JKIN as follows. The matrix M can be written as

Here and

Notice that tr[N] = 0.

Using this decomposition we write

where

and

The motivation for this decomposition is that JKIN,diag almost re-
spects the Landau levels (and vanishes on the lowest one!) whereas JKIN,off
(to highest order) couples the j’th and the ( j + 2)’th Landau levels. For
JKIN,diag we could apply the analysis from [FouOla], but we will not do
this, since another more direct approach works, which is more in the spirit
of the present paper. The off-diagonal term JKIN,off is the problematic term
that makes the variational technique break down. But since it couples the
lowest and the second Landau levels it will suffice to get a good bound on
the density of states in the second Landau band, in order to estimate this
term.

Remark 5.1. - Below we will often use the following identity:
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for different operators O. For bounded operators this can be seen as the
well known cyclicity property of the trace, since I (- .,0] (H)’ = I (- .,0] (H).
In our case, 0 will often be unbounded - however, it will be H-bounded.
By definition,

where (ej ~~°_1 is an orthonormal basis for Ranl The equation
(5.5) clearly implies (5.4).

5.2. Estimate on JKiN,diag’ ·

LEMMA 5.2

Proof. By writing

we get a decomposition of into three terms that we

will treat separately.

II &#x3E;JKIN,diagII&#x3E;:
In this term we replace the matrix Mt with its absolute value and can

thereby estimate

by the weak localisation to the lowest Landau level; Corrollary 4.6.

For the last two terms we introduce the raising and lowering operators
from (1.9). We have pA,l = (a + a*)/2, p Ã,2 == (a - a*)/(2i). Thus an easy
calculation gives
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Let us remember that aHo = 0. Then

The double commutator gives h2 times a continuous, compactly supported
function 0. Choose f(X3) E such that f ~ _ 0. Then

We now use Lemma A.6 and Corollary 4.6 to get an estimate of order
h 20(1-tlh 2).

We calculate:

Now, [b3, a*] == ho, where 0 is a continuous compactly supported function.
such that

and we estimate

We now use Lemma A.6 and Corollary 4.6 to get an estimate of order

hO(M/h2). D
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5.3. First estimates on ·

One part of JKIN ,off is easy to handle - this is the part in the third
row or column. So let us consider that separately. We write

and define

LEMMA 5.3.

Proof. Let us notice that p Ã 3 commutes with the Ih’s. In terms
of the raising and lowering operators J3 becomes a sum of terms of the

as in the previous proof. We estimate as above

Furthermore
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Finally,

The last term is easily estimated, and the first is estimated as

5.4. Analysis of J2.

So we have isolated J2 as the problematic term. As will be seen in
the proof below, this term has as its main component a coupling of the
zeroeth Landau level to the second. So we need a very precise estimate
on the number of electrons in the second Landau band. In the proof of
Lemma 5.4 below we invoke such an estimate in order to finish the proof
of Theorem 1.1 and Theorem 1.4.

LEMMA 5.4.

Proof. - We write J2 using the raising and lowering operators

where

, so we only have to deal with
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The commutator terms above are easily seen to give negligible contribu-
tions, by the methods applied generally in this section, so we will not con-
sider those.

- 

Let us define = II&#x3E; - II2 and consider II0J2II&#x3E; (the other term,
can be estimated analogously). Now,

since II0aa = TIoaaTI2’ and II2II&#x3E; = 0. Let us choose ) such that

Then (since f(X3) commutes with a and Ho) :

It is clear from Corollary 4.6 that

From Lemma A.7 we get that

Finally, we see from Corollary 4.6 and cyclicity of trace that

So we get
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Therefore, we are left with Let us here choose

f (x3 ) as above and 0 E Co’(R 3) such that 00 = 0. Then we calculate as
follows:

where we used Lemma A.6 to estimate the operator norm.

Thus, in order to finish the proof, we need the estimate

Under the conditions in Theorem 1.1 this (without the 0 which can be
estimated is the result of Lemma A.6 below.

Under the conditions in Theorem 1.4, i.e. in the case where V(x) has
a Coulomb type singularity, we will apply Lemma 6.1 below. Notice that if

then we can write §(r) = ~1 (x)~2 (x1 ), with ~1 bounded and §2 E

~2 (o) - V’P2(O) == 0. Therefore, we only need to prove that
it is enough to consider 0 satisfying ( 5.11 ) . This will be accomplished by
a change of gauge. Remember from Lemma 4.2 that the current is gauge
invariant in a. Remember furthermore that

So changing will change

We choose
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where g(x-L) = 1 on a neighborhood of 0, and the are continuous

functions of X3 which can be matched against a Taylor expansion of 0
in x I Thereby it is clear that we can assure that (5.11) is satisfied. Notice
that the change of gauge will also affect a3, but since (using Theorem 1.3)
j3 = 0 this is of no importance. D

6. Estimate on the second Landau level.

In this section we will prove a bound on the density of states living
in the second Landau level.

Then there

exist constants c, ho and vo such that if h  ho and ph &#x3E; vo then

Proof. For the proof we will use the following integral represen-
tation for a function of a selfadjoint operator H in terms of its resolvent,
valid for all n and functions g E ([AdMBG91]):

For brevity, we will during the proof just think of the right hand side
as an integral transformation of the resolvent and abbreviate the above
formula as

V

Notice, that by integration by parts in (6.1), we get
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In the calculations below we will repeatedly use (1.11), which in particular
implies that

Let us now pass to the main part of the proof: By linearity we have
to study II2 (H - where z is either A + i or A + iT. By application
of the resolvent identity (
repeatedly, we get

which is to be understood as an identity of bounded operators, i.e. the

integrals converge in the space of bounded operators.
The first term in (6.4) satisfies

since

We will prove that the remaining terms are trace class and that the

integrals converge in trace norm. This is easily seen using Lemma A.2. For
instance, we bound the last integrand in (6.4) by

Suppose now we take the parameter n in (6.1) sufficiently big (bigger than
4), then the integrals converge in trace norm.



1929

Thus H2g(H)H2 is trace class and we have the following identity:

Let us first look at the first term in (6.5). We get from (6.3) and cyclicity
of trace

and by taking the integrals, we get (using the repre-
sentation (6.2)) which vanishes for large 1-th. Thus the first term in (6.5)
vanishes.

The last two terms in (6.5) will be the main terms. The first of these
we write as

We will use that when z varies over a compact set and ph - oo, then
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Thus we estimate the Ei’s, using (6.6), Lemmas A.2 and A.4 and the fact
that z varies over a compact set, as

Finally we need to estimate the last term in (6.5). This is done similarly

Now we take the trace norm under the integral sign and estimate using
(6.6) and Lemmas A.2 and A.4:

7. An estimate on the second Landau level

with a singular potential.

The aim of this section is to prove the following:

LEMMA 7.1. - Let

where , for some constant c &#x3E; 0 and . Suppose
Then for all E &#x3E; 0 there exist ho, vo (only
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depending on c, 0, such

that if h  ho and ph &#x3E; vo, then

The idea of the proof is as follows: We write g(H) (for a smooth g)
in terms of the resolvent. Then we apply the resolvent identity as much
as we can. Whenever II2 "hits" (Ho - we win a power of 

(essentially). If we can get 0 to multiply V, then the product OV becomes
differentiable, so we can commute II2 through OV - since [112, ~V~ ~ 
This will result in more terms where II2 hits a resolvent and therefore in an

improved estimate. We continue to play this game until we have collected
enough powers of for our purpose.

Proof. The proof of this lemma is fairly long, so we divide it into
a number of steps.

Preliminaries:

Let M (h) - - inf SpecH. We want to have an idea of the size of M(h).
Now, since V (x) &#x3E; we can use scaling and the known results on
the asymptotics of the groundstate energy of hydrogen in a strong magnetic
field ([AHS78], [FW94]) to conclude that M (h)  
See Appendix B for details.

Let us now choose g E 1]) such that g(H)I(-,,,O] (H) =
1(-,,,O](H) and such that c for all n and where the constant is

independent of h, p. We now have the obvious estimate

As in Section 6 we use the integral representation (6.1) for g(H). We once
again use the resolvent identity repeatedly and, since 0 is only a function
of the terms which of order 1 or 2 in (Ho - z)   vanish - just as in the
earlier section. Thus we are left with

For shortness we will often leave out the measure dJ1g,n in the integrals
below.
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Estimation of integrals:

There will be a number of error terms in the calculations below. These

terms will be estimated by taking the trace norm under the integral sign.
The trace norms will always be estimated by expressions of the form

where k = 0,1 and 1 = 3/2, 5/2 or 7/2, and where c(p, h) is an (important!)
expression in p, h that is independent of the integration variables T, A. It
therefore easily follows from the integral representation (6.1) that we can
estimate the integrals by

Commuting 0 through H2:

In order to be able to commute II2 through V, we need to get 0 to
multiply V. Therefore we will first commute 0 through II2. We write

acting in and

acting in. With this notation we have using



1933

To estimate E4 we use Lemma A.3 to write

Therefore, we get, using (7.2)

Now, , so this term satisfies the conclusion

E2 and E3 are similar to each other and can be treated in the same

way, so we will only deal explicitely with E2. Here we commute II2 through
cp V (notice that cp V is differentiable !).

In the last term b we write

This can be estimated using (7.2) and Lemmas A.2 and A.3 as
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For the term a we use the resolvent identity before we apply Lem-
mas A.2 and A.3 to get

Commuting II2 through ~V:

In the remaining term El we have 0 multiplying V, so we can

commute II2 through ~V:

The terms 0, q and 6 are estimated similarly to the terms above - making
in particular use of Lemma A.4:

For (3 (and 1 which is similar) we have to work a bit more - namely use the
resolvent identity once in order to profit from the II2 which hits (H - z) -’.
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Then these terms are also estimated using Lemmas A.2 - A.4 and (7.2):

Using the resolvent identity again:

In order to get a good estimate on a we need to apply the resolvent
identity twice and furthermore compare with the operator Ho + II2CpV II2 -
Let us write:

The last two terms 01522 and a3 are easily estimated using Lemmas A.2 - A.4
and (7.2):
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The term a3 is estimated similarly - the main difference being the
term (H - which is estimated in operator norm by 

Comparing with Ho + II2OVII2:

So finally we have to consider It is easy to see that if we estimate

the trace by the trace norm as we have done for all the other terms then
we would get the for this term. In order for thath2 (tth)2 (/,th)1/2
estimate to be acceptable we would need uh5 --&#x3E; oo. However, it turns out
that we can do much better by comparing with the operator 
This operator is self adjoint and maps the second Landau band to itself.

Furthermore,

so therefore we get

The first two terms {31, {32 vanish as we have seen in the proof of Lemma 6.1.
Therefore only fl3 is left. So we can now compare a1 and 

Now we can take the trace norm under the integral and get

A. Auxiliary results on the Ih’s.

If 4(r) is differentiable, then , i.e. the projections
onto Landau levels "almost" commute with the multiplication by functions.
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We will repeatedly need qualitative estimates on what "almost" means.
This gives a number of technical lemmas which have been collected in this
appendix.

The basic lemma is the following:

LEMMA A.l. There exists a constant c such that for all 0 E

CO,1 (JR3), we have

We will not prove this lemma since the proof is similar to (and easier
than) the proofs of Lemma A.6 and Lemma A.7.

First we have a number of estimates of Hilbert-Schmidt norms of

quantities involving a resolvent and sometimes also a commutator. These
are Lemmas A.2 to A.4.

LEMMA A.2. - There exists c &#x3E; 0 such that for all V E L2(II~3), we
have

1-1 - - 11 _ , _

where and r(z) was defined in (7.3).

Proof. The operator Q9 r (z)) V has integral kernel

where the kernel H(2) is known explicitely - see (1.8). The impor-
tant feature is that I II2 (x 1- , Y 1-) is a function F (gaussian times polynomial)
of I vi J1 / h (notice also the normalisation constant ph). Thus, by a
change of variables we easily get

LEMMA A.3. - There exists a constant c such that for all

~ the following estimate holds:

where 7 where r(z) was defined in (7.3).
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Proof. As in the previous proof we can explicitely write down the
/ 1-1 ’B 1

integral kernel K(x, y) of the operator in question i.e. (

Now, , and we get (with notation as in
the previous proof) that

LEMMA A.4. - Suppose ’ Then there exists a constant c

(depending on 0) such that

where

Here the first term is readily estimated using Lemmas A.1 and A.2. The
second term is

which can be estimated using Lemma A.3. D

Finally, we will need to prove bounds on some operator norms.

The idea is that IIo is essentially a local operator, so therefore 

( = o IIo o f ) is a bounded operator if the function f has compact
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support. We will actually need this for so we will first find the

integral kernel of II0a2 and then state and prove Lemmas A.6 and A.7:

PROPOSITION A.5. - The operator has integral kernel

Proof. The proof is just a calculation. Remember from (1.8) and
(1.9) that

Therefore,

Thus,
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LEMMA A.6. - Suppose f E CO(JR3), then we have the following
bounds on the operator norms:

where C is uniformly bounded in when J-l is sufficiently big and h is

sufficiently small.

Proof. We will only prove the last estimate since the first two are
similar. The operator _ has integral kernel

where . From Schur’s Lemma, we can
estimate the operator norm of the kernel K as

So we look at

Now, since f has compact support and G ( only depends on x 1 - y1, we
can estimate the last integral as

It is easy to get the following estimate:

so we see that

This finishes the estimate on sup.,

For the other part supy i a similar argument works. D



1941

LEMMA A.7. - . Then the operators J
satisfies the bound

where C - is uniformly bounded when p is

sufficiently big and h is sufficiently small.

Proof. The operator has the following integral kernel:

We have to estimate

Let us write the kernels of

where Pl , P2 are polynomials. Furthermore,

where

Thus
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Now, since 0 has compact support, supp

Let us now split the ~1 integral into integrations over the sets
. 2co}. For the integration over the bounded set
we estimate as follows:

So we have to bound

When 2co we can estimate

Therefore, we can use completion of the square to get
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Hereby,

The other integral, f IK(x, is treated similarly. 0

B. The lower bound of hydrogen atoms in magnetic fields.

In this appendix we recall results from [AH81] on how the bottom of
the spectrum of a hydrogen-like Hamiltonian in a constant magnetic field
depends on the strength of the magnetic field. Let

with curl 4 = (0, 0,1 ) . The result is the following:

PROPOSITION B,I. - There exists a (positive) constant c such that

Proof. Using the scaling r - h2x we have that H(h, JL) is unitarily
equivalent to the operator

Let us notice that the function b H inf is continuous for

b C [0, oc): For b &#x3E; 0 this follows from perturbation theory (see for instance
Reed and Simon [RS78, Chapter XII.2]). Continuity for b = 0 is a well-
known fact (Zeeman effect) and a rigorous proof is contained in [AH81,
Theorem 5.1].

Therefore, we only have to consider the asymptotics as b tends to

infinity. From [AH81] we know that

as b - oo. This finishes the proof.
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