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GREEN FUNCTIONS ON SELF-SIMILAR GRAPHS AND

BOUNDS FOR THE SPECTRUM OF THE LAPLACIAN

by Bernhard KRÖN (*)

1. Introduction.

Self-similar graphs can be seen as discrete versions of fractals (more
precisely: compact, complete metric spaces defined as the fixed set of an
iterated system of contractions, see Hutchinson in [15]). The simple random
walk is a crucial tool in order to study diffusion on fractals, see Barlow and
Kigami ~1~, Barlow and Perkins [2], Grabner [11], Lindstrom [23] and many
others. In the present paper we study Green functions and the spectrum
of the corresponding Markov transition operator P and (equivalently) the
Laplacian 0 = I - P, where I is the identity.

There are different methods of spectral analysis on self-similar struc-
tures. Barlow and Kigami [1] and Sabot [33] used localized eigenfunctions
to study the spectrum and to prove that it is a pure point spectrum. A first
heuristic result on explicit spectra is due to Rammal [31] who investigated
the spectrum of the Sierpinski graph in the setting of statistical physics.
Malozemov and Teplyaev studied the spectral self-similarity of operators in
a series of papers. Their functional analytic method is fundamentally diffe-
rent from our probabilistic approach. Malozemov computed the spectrum
of the Koch graph in [24] and the spectrum of a self-similar tree in [25].
The spectrum of the Sierpinski graph was computed by Teplyaev in [34].
In [26] they discussed spectral properties of a class of self-similar graphs
which can be seen as discrete analogues to finitely ramified fractals such

(*) This work is part of the author’s PhD-thesis [20]. The author was supported by the
projects Y96-MAT and P14379-MAT of the Austrian Science Fund.
Keyivords : Self-similar graphs - Green functions.
Math. classification : 60J10 - 30D05 - 05C50.
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that the boundaries of their cells consist of two points. We give a first
axiomatic definition of self-similar graphs corresponding to fractals with
an arbitrary number of boundary points. With our method we do not only
obtain information about the spectrum but we are also able to describe
the analytic properties of the Green functions precisely. This axiomatic
definition of self-similarity of graphs and the central results of the present
paper are part of the author’s PhD thesis ~20~ ~ 1&#x3E; . In a recent preprint [27]
Malozemov and Teplyaev constructed a similar but more restricted class of
self-similar graphs and they obtained the same bounds for the spectrum as
in Theorem 5 of this paper.

Bartholdi and Grigorchuk, see [3] and [4], have computed the spectra
of several Schreier graphs of fractal groups of intermediate growth. The
reader is also referred to the survey article of Bartholdi, Grigorchuk and
Nekrashevych [5].

We introduce a new class of rather general self-similar graphs in
Section 2. In this definition there occurs a function ø which maps a set of
vertices to the set of all vertices. This function is a contraction with respect
to the natural graph metric and it can be interpreted as the ’self-similarity
function’ of the graph. A graph theoretic analogue of the Banach fixed
point theorem is proved: Either 0 fixes exactly one origin vertex, or it

contracts towards exactly one ’cell’ of the graph. The simple random walk
on self-similar graphs is recurrent if the graph has bounded geometry, which
means that the set of vertex degrees is bounded, the cells are finite and the
numbers of vertices in the boundaries of the cells are bounded. Properties
concerning bounded geometry and volume growth of self-similar graphs
were studied by the author in [21].

In Section 3 the class of ’symmetrically self-similar’ graphs is defined.
They correspond to finitely ramified fractals for which the renormalization
problem for the simple random walk (see Lindstrom [23] or Kigami [19])
can be solved by using only one variable. In other words: Starting at a point
in the boundary of a cell in a fractal, the transition times for the Brownian
motion to hit any other point in this boundary have the same distribution
for all boundary points. Our class of graphs contains the graphs studied
by Malozemov and Teplyaev but also other well-known graphs such as the
extensively studied Sierpinski graph, see Barlow and Perkins [2], Grabner

(1) Results and construction of self-similar graphs were presented at the DMV-conference
(Dresden, September 2000), ’Dynamic Odyssey’ (Luminy-Marseille, February 2001),
’Fractals’ (Graz, June 2001) and ’Random walks and Geometry’ (Vienna, June/July
2001).
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and Woess [12], Hambly [13] and Jones [17] or the Vicek graph which
corresponds to the Vicek snowflake, see Metz and Hambly [14] and [28].
A finite part of this graph can be seen in Figure 1.

Figure 1. A fini te part of the Vicek snowflake

We apply a variable substitution technique of generating functions
(see Goulden and Jackson [10]) in Section 4. This technique was used by
Grabner and Woess in [12] to derive a functional equation for a certain
Green function on the Sierpinski graph. Rammal and Toulouse used physical
arguments to obtain such a functional equation, see [30] and [32]. Grabner
and Woess calculated the asymptotic fluctuation behaviour of the n-step
return probabilities. Grabner gave further applications of this substitution
method in the context of the analysis of stopping times of Brownian motion
on the Sierpinski gasket, see [11]. We state similar functional equations for
all Green functions on any symmetrically self-similar graph. Such functional
equations reflecting the self-similarity of a graph, a group or a fractal occur
often in the literature. We refer for example to the papers mentioned above:
Bartholdi, Grigorchuk and Nekrashevych ([3], [4] and [5]) and Malozemov
and Teplyaev ([24], [25], [26] and [34]).

In Section 5 the functional equations for the Green functions of

the whole graph are extended to a decomposition formula. This formula
together with the fixed point theorem of Section 2 implies that any Green
function can be written as a finite sum of terms consisting of products and
concatenations of finitely many Green functions (of the origin cell and the
origin vertex) together with the return function f, the transition function d
and the inner transition functions h. The functions f, d and h are rational
Green functions of the simple random walk with absorbing boundary on
the finite subgraph which is spanned by a cell. This decomposition is one
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of the central tools in studying the singularities of the Green functions (see
also [22]) and in computing the spectrum of the Laplacian.

Green functions of the simple random walk with absorbing boundaries
on finite subgraphs spanned by the so-called ’n-cells’ are studied in

Section 6. These rational functions can be decomposed into the return
function, the transition function and the inner transition functions. The
zeroes of the return function turn out to be poles of the inner transition
functions.

Preliminary results concerning the dynamics of the transition

function d, the analytic continuations of the Green functions and the
spectrum of the transition operator are stated in Section 7. We define D as
the set of d-backward iterates of the poles of the return function and the
inner transition functions. This is the set of poles of the Green functions
studied in Section 6 being contained in ÏRB( -1,1). The reduction algorithm
in Section 5 yields the analytic continuation of all Green functions to the
immediate basin of attraction of the fixed point z = 0 of d except for
some points in D. It will turn out that coincides with the Fatou set of d.

In Section 8 we put all these results together and give explicit bounds
for the spectrum: the reciprocal spectrum

of the transition operator P of the simple random walk is the set of real
numbers z in R such that the Green functions cannot be continued uniquely
analytically to z from both half spheres in CB1R and

A crucial role is played by the singularity z = 1 of the Green functions.

The last Section 9 is devoted to the Julia set ~. The Julia set is either
a real Cantor set or it is a real interval in the extended complex plane C.
If ~ is a Cantor set, then the reciprocal spectrum coincides with the set
of all singularities of all Green functions. We give the example of the two
sided infinite line, where the reciprocal spectrum is II~B (- l,1 ) . In this case
the Green function has a branch cut along R B (-1,1 ) . Here the transition
functions are conjugated to the Chebychev polynomials.

2. Self similar graphs.

Graphs X = (VX, EX) are always assumed to be connected, locally
finite, infinite and without loops or multiple edges. If X is undirected, then
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each e = y~ is a set of vertices x and y in VX, if X is directed, then
EX C VX x VX. A path of length n from x to y is an (n + 1 )-tuple of vertices

such that xi is adjacent to xi+1 for 0  i  n - 1. The distance dx (x, y) is
the length of the shortest path from x to y. We define the vertex boundary
or boundary 0C of a set C of vertices in VX as the set of vertices in

VXBC which are adjacent to a vertex in C. The closure of C is defined
as C = C U Since we will use the topological closure only for sets of
complex numbers, this notion will cause no misunderstandings. The set C
is called connected if every pair of vertices in C can be connected by a path
in X that does not leave C. The set C is adjacent to a vertex x if x C ~(7.
Two sets of vertices are adjacent if their boundaries are not disjoint.

For a set F C VX let Cx (F) denote the set of connected components
in VXBF. We define a new graph XF by setting VX F = F and connecting
two elements x and y in VX F by an edge if and only if there exists a

C E Cx (F) such that x and y are in the boundary of C. The graph XF is
then called the reduced graph of X with respect to F.

DEFINITION 1. A graph X is called self-similar with respect to F if

(Fl) no vertices in F are adjacent in X,

(F2) the intersection of the closures of two different components in Cx (F)
contains no more than one vertex and

(F3) there exists an isomorphism V) : X - XF.

We will also write 0 instead of 0-1 and Fn instead of ’ljJnF, Fo is

defined as VX. The components of CX (Fn) are called n-cells, 1-cells are

also just called cells. Furthermore we define functions

where is the 2-cell that contains the cell C and

such that OSC is the cell whose boundary equivalently:
osc = ~(,S’(C) n F). A cell C such that OSC - C is called an origin cell, a
vertex which is a fixed point of 0 is called an origin vertex. If = C for

some integer m, then we call C a periodic origzn cell with period rrc.

Note that the boundary of any cell in X spans a complete graph
in XF.
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LEMMA 1. - Let C be an m-cell and D be an n-cell. Then either

Proof. If m = n, then this is equivalent to Axiom (F2) for the

graph XFrn-1 = Otherwise let us suppose that m  n. If there

are two different elements x and y in oc n OD, then they are adjacent
in XFrn. The vertices x and y are elements of Fn which is a subset of F’~’2+l.
Since the graph XFm is self-similar with respect to F~+~ , this contradicts
Axiom (F2) for XFm . D

The following theorem can be seen as a graph theoretic analogue for
the Banach fixed point theorem.

THEOREM 1. - Let X be a self-similar graph with respect to F.
Then X is also self-similar with respect to Fn . Either there exists exactly
one origin cell 0 and for every cell C there exists an integer n such that

or 0 has exactly one origin vertex and for any cell C there exists a periodic
origin cell Om with period m and an integer n such that

Proof. The graphs X and XF are isomorphic, and XF is isomorphic
to XF reduced by qb (F) which implies that X is isomorphic to XF2 . The first
statement now follows by induction.

Let x and y be vertices in F with dXF (x, y) = n. Since no vertices
in F are adjacent in X, every path in X connecting these vertices must
have length at least 2n. Thus

for all pairs of vertices x, y in F. For any cell C in Cx (F)

and the sequence ( r must eventually be zero.

If 0 has fixed points x and y, then

and x equals y.
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Let Cl and C2 be different cells such that CPsC1 = C2 and

dx (8C1, eC2) = 0. By Axiom (F2) there is exactly one vertex x in eC1 
In the case that C1 and C2 are in the same 2-cell, C2 is an origin-cell.
Otherwise we distinguish: If 0 OC2 lies in ,S’(C2), then cp( S ( C2) rl F) is the
cell Os C2 which contains 0 6C2, and Os C2 is an origin cell. If 0 does not

lie in S(C2), then and ecpsc2 must have non-empty intersection,
because 0. By Lemma 1 this intersection consists only
of the vertex x. Thus

and proceeding by induction we obtain x C 8§3Ci for every integer n.
Since X is locally finite, there must be indices 1~ and m such that

= SC,. The closures of all different 2-cells containing one of
the cells with x in their boundaries must have only the vertex x in common.
The function 0 maps these 2-cells onto the cells having x in their boundaries
and therefore it must fix x.

Suppose there is an origin cell C and no fixed point of 0. If 8C and
are disjoint, then no cell D which is not in S(C) can be fixed by 

because dx (BcpsD, must be zero for sufficiently large integers n,
and C is the only origin cell. If there is a vertex x in 8C then by
the above arguments

for any integer n and x must be fixed by 0.

LEMMA 2. - Let X be self-similar with respect to F and the

corresponding isomorphism 0 and let o be an origin vertex. Then there is
an integer k such that the su bgraphs A which are spanned by A = A U fol
for components A in are self-similar graphs with respect to

and they have exactly one origin cell OA.

Proof. The fixed point o of 0 must be contained in the boundary of
every periodic origin cell. Since X is locally finite, there exist only finitely
many periodic cells Cl, C2,..., Cr with periods ml, m2, ... , mr. For

we have , where i E ~ 1, 2,..., r}, and all cells Ci are origin
cells with respect to F~ and øk. Let Ai,n be the closed n-cell which
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contains Ci. Then, for n &#x3E; 2,

and if Ci is the origin cell with respect to Fkwhich lies in the component A
in Cx (f ol), then

LEMMA 3. - Let all cells,

be finite. Then the simple random walk on X is null recurrent.

Proof. - We apply Nash-Williams’ recurrence criterion, see [29], as
a special case of Rayleigh’s short-cut method which, for example, can be
found in the book of Doyle and Snell [8], Chapter 6, or in the book of
Woess [35], Theorem 2.19 and Corollary 2.20.

Let o be an origin vertex. By Lemma 2 we can choose F such that all
cells C with o E OC are origin cells. Let On be the union of the closures of
all n-cells Cn with o E ecn. If X has no origin vertex, we define On as the
closure of the n-cell which contains the (in this case unique) origin cell, see
Theorem 1. The sequence

is a one-dimensional partition of vX in the following sense:

and for any n &#x3E; 2 the sets An are finite and the vertices in An are only
adjacent to vertices in or Since

for every n E N and E F~ is bounded, the number an of edges
connecting two sets An and An+1 is also bounded. Thus

and, by the Nash-Williams’ recurrence criterion, the simple random walk
on X is recurrent. Recurrence of the simple random walk on infinite graphs
is always null recurrence, see for example [35], Theorem 1.18. D
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3. Symmetrically self-similar graphs.

DEFINITION 2. - Let X be a connected graph which is self similar
with respect to F and et C be the subgraph of X which is spanned by the
closure C of a cell C. From now on uTe suppose that

(Sl) all cells are finite and for any pair of cells C and D in Cx (F) there
exists a graph isomorphism cx : C - D such that cxBC = BD.

The graph X is called simply symmetrically self-similar if

(S2) Aut(C) acts transitively on 8C,
and doubly symmetrically self-similar or just symmetrically self-similar if

(S3) Aut(C) acts doubly transitively on BC, which means that it acts
transitively on the set of ordered pairs

where g((x, y)) is defined as (6

Let cellsx x be the number of cells which are adjacent to x. If X

satisfies (Sl), we write for the number of vertices in the boundary 8C
of some cell C.

If X satisfies Axiom (S 1 ) , then the number p of cells in a 2-cell is
independent of the choice of this 2-cell and for any cell C the graph C
consists of p copies of the complete graph This fact and many more

details can be found in [21].

Figure 2. The subgraph 0 for the Vi6ek graph.

Figure 2 shows the subgraph 0 for the Vicek graph. It consists of five
copies of the complete graph K4. The vertices which are drawn fat belong
to F; they constitute the boundary of C. Note that there are vertices which
are only contained in the boundary of one cell, see Figure 1, no matter
whether the graph has an origin vertex or an origin cell.
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LEMMA 4. - Let X be a self-similar graph satisfying Axiom (S 1 ) .
Then for any v E F,

Proof. Each w in the boundary of a cell C with v E 8C which is
different from v corresponds to a neighbour of v in XF. 0

LEMMA 5. - Let X be a simply symmetrically self-similar graph.
Then the following conditions are equivalent:

1) X has bounded geometry.

2) If v is in the boundary of some cell C, then

Proof. 1) # 2). Suppose X has bounded geometry but

for 1. By the simple symmetry this number is independent of
the choice of v and C. Since X and XF are isomorphic with respect to 1/J,
by (3.1) and Lemma 4, we have

and for any positive integer n,

Thus either (degxF ’ljJnv) nEN tends to zero, which is impossible, or XF,
and therefore also X, do not have bounded geometry.

2) =~3). If condition 2) is satisfied, then for all v E F,

3) # 1). The condition degx v = degXF v implies
for all vertices v in Fn . By Axiom (F3) we have

for all x in VX. For this means
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Because of Axiom (SI) the degrees of the vertices in VXBF are bounded.
For each v E F there is an n such that ønv is either a vertex in VXBF or
an origin vertex o. Thus, for any cell C,

is the maximal degree in X. 0

4. A functional equation for Green functions
on symmetrically self similar graphs.

Let P = (p(x, Y))x,YEVX be the matrix of the transition operator of
the simple random walk on the space of functions

- 1

with inner product

Throughout this article, we consider the compact Riemannian sphere C,
the closure of the complex numbers C. The Green function for vertices x
and y in YX is defined as the generating function for the n-step transition

probabilities (x, y) from x to ~. Let 1U denote the complex, open
unit disc, then

In matrix notation

whenever 1/z is not in the g2-spectrum of P.

Following Grabner and Woess in [12] we use the combinatorics of
paths to derive a functional equation for the Green functions. Let X be
symmetrically self-similar. We write TIx (x, y) for the set of paths in X
from x to y and TIx(x, g) for those paths from x which meet y only at
the end. The weight of a path 7r = (xo, ..., xn ) is defined as
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where z C C. For a set of paths II we set
Then we have

For vertices v and w in F and a path

where 0 and k = is the last index such that the last set is

nonempty. The shadow of 7r is defined as

which is a path in XF. Now let v and w be vertices in F that are adjacent
in XF. We define

and

For any transition matrix Q of a finite directed graph we write

The coordinates of Q* (z) are rational functions in z. They can easily be
computed explicitly. Let

denote the transition matrix of the simple random walk on C with absorbing
boundary B C OC. This means that

(Note that some authors set qB (x, x) = 1 for vertices x in the absorbing
boundary to get stochastic instead of substochastic transition matrices.)
Let v and w be two different vertices in OC. Then we define d, f : U - C by
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The function d is independent of the choice of v and w because Aut (C)
acts doubly transitively on 8C and f is independent of v by the simple
transitivity of Aut (C) on 8C. Now d is the generating function of the
probabilities that the simple random walk on C starting in some vertex v
in 9C hits a vertex in 8C)(v) for the first time after n steps, whereas f
describes the n-step return probabilities of the random walk to v without
hitting the absorbing boundary We call d the transition function
and f the return function.

LEMMA 6. - Let X be a graph which is symmetrically self-similar
with respect to F and 0, and let v and w be vertices in F. Then

Proof. For sets of paths ill and II2 let II1 o H2 be the set of all
possible concatenations of paths in ill with paths in H2. Then for any path

in we have

For the weight function this implies

The function d describes the transition from vi to any vertex in a boundary
of any cell which is adjacent to vi and by Lemma 4

and

Thus
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where GXF denotes the Green function on XF. 0

Remark 1. - The main arguments in the proof of Lemma 6 are:

(i) The graphs X and XF are isomorphic. The set of shadows of all
paths in X connecting two vertices v and w in F is the set of all paths
in XF connecting v and w.

(ii) A transition along an edge in EX F from v. to corresponds to all
possible paths in X from vi to vi+1 in the sense of the transition function d.
These paths starting in vi may return to v2 arbitrarily often and is

the first vertex they hit in This is a concatenation of generating
functions in the sense of Lemma 2.2.22 in Goulden and Jackson’s book [10]
and we substitute z ~ d(z).

(iii) By the substitution in (ii) we did not consider the possibility of
returning again to w, after hitting w for the first time. The concatenation of
paths that hit w for the first time with their last vertex and paths that start
in w and return to w arbitrarily often corresponds to a product of generating
functions with distinct configurations in the sense of Lemma 2.2.14 in [10].
Thus G(ov, cpw has to be multiplied by f (z) .

5. Decomposition of the Green functions.

Let C be a cell of a symmetrically self-similar graph X. For any x E C
and y E C we define

as the (x, y)-coordinate of In other words, is the

generating function of the n-step transition probabilities of the simple
random walk on C with absorbing boundary 8C starting in x and ending
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in y. If x E 8C and y E C, then we define

This is the generating function for the probabilities that the simple random
walk on C, starting in x, hits y after n steps without returning to x and
without hitting any other vertex in These functions h and h are called
inner transition functions. Axiom (Sl) implies that there are only finitely
many different inner transition functions. Note that any simple random
walk is reversible and that G(b, a for any
vertices a and b. The cell which contains some given vertex x E VXBF is
denoted by C(x).

THEOREM 2. - Let x, y E VXBF and v, w E F, then

where 6 denotes the usual Kronecker symbol.

Proof. Let x and y be two vertices in VXBF such that C(x) 7~ C(().
We decompose paths of the simple random walk on X starting in x and

ending into

(a) a path from x to a vertex v whose vertices are all contained in C(x)
except for the last vertex v E 8C(x) ,

(b) a path from v to a vertex w E 8C(y) and

(c) a path from w to y which is contained in C(y) except for its first
vertex w.
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This implies the product decomposition of (iii):

If x and y lie in the same cell C(x) = C(y), then paths from x to y
need not contain vertices of 8C(x) and we get the additional additive
term hc(x) (x, y I z) -

Let x be a vertex in VXBF and let w be a vertex in F. Then part (c) of
the above path decomposition and therefore also the functions hc(y) (w, y I .)
are cancelled. This implies (ii).

The identity (i) corresponds to Lemma 6. 0

By iterating formula (i) in Theorem 2, we obtain:

COROLLARY 1. - Let v and w be vertices in Fn . Then

For arbitrary vertices x and y we have

6. Green functions on n-cells.

Let poles(g) be the set of poles and let zeroes(g) be the set of zeroes of
a complex function g. For a cell C of a symmetrically self-similar graph X
we define

Axiom (SI) of course implies that poles(C) does not depend on the choice
of the cell C.
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LEMMA 7. - The zeroes of the return function f are poles of the inner
transition functions h,

Proof. We consider the simple random walk on C with absorbing
boundary for some given vertex v in 8C. Let be the

corresponding Green function on C for vertices x and y in C and we define

where q (n) (X, Y) is the n-step transition probability starting in x for the
first hit if n &#x3E; 0, while q(o) (x, y) = 0. We have

A proof for this identity can be found for example in [35], Lemma 1.13 (a).
Note that any zero of f is a pole of For some fixed positive
integer n, let r(n) (v, x) be the n-step transition probability from v to x
such that the random walk meets v only at the beginning. If the random
walk returns to v for the first time after k steps, then either it returns after
1~ steps, where 2  k  n, or after n transitions it is in a vertex x C C,
without hitting v during these first n steps, and then it returns to v (after
k-n steps, 1  k-n) in the sense of the inner transition function f ~’).
In other words:

This identity holds for any positive integer n. In particular, any pole of

F (v, v ~ - ) is a pole in poles(C) which implies zeroes(/) C poles((7). 0

LEMMA 8. - Let Cn be the graph spanned by the closure of an
n-cell Cn and let v be a vertex in the boundary 8Cn. By -) we
denote the Green functions of the simple random walk on Cn with absorbing
boundary 8Cn)(v) and by G) (x, y -) tllose with absorbing boundary OC,,.
Let w be a vertex in 8Cn)(v) , and let y be a vertex in Fn-1 n Cn. Then
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Proof. - For n = 1 the identities (6.1), (6.2) and (6.3) are just the
definitions of the functions d, f and h ; we recall that Fo = VX. Suppose
these identities are true for n -1. Then we use the same path decomposition
and the same substitution z ~ d(z) as in the proof of Lemma 6, with the
difference that in (6.1) and in (6.3) the end point of the random walk
is an absorbing vertex. Thus we do not have the possibility of returning
again to the end point, which means that we do not multiply w I z)
and with f (z), see Remark 1 (iii). In (6.2) the vertex v is not
absorbing and we have to perform this multiplication. 0

7. Analytic continuation of Green functions.

Let X again be a doubly symmetrically self-similar graph. The Julia
set of d is denoted by J.

LEMMA 9. - The point z = 0 is a superattracting fixed point and z = 1
is a repelling fixed point of the transition function d. The order of d at z = 0
is the diameter of the boundary of a cell.

Proof. - Let v and w be any two different vertices in F. Then

p(O)(v, w) = 0. Since, by Axiom (Fl), no pair of vertices in the boundary of
a cell C is adjacent, the order of d at z = 0 is diam OC which is at least 2.
Thus d(O) = 0 and d’ (o) = 0.

The function d is probability generating which implies d(l) = 1.

Starting in a vertex v E F, the derivative d’ ( 1 ) is the expected number of
steps needed to hit any other vertex in F for the first time. Hence d’(1) &#x3E; 2.

m

We call discrete exceptional set the set

Let Ao be the basin of attraction of o. Its immediate basin of attraction

(the connected component of Ao which contains 0) is denoted by Aô. Let S
be the set of all singularities of all Green functions.

THEOREM 3. There is a unique analytic continuation of any Green
function to contains AôBÐ, and
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Proof. Let z be a complex number in Aô. Then there is an integer n
and a neighbourhood U(z) of z such that U(z) and dn(U(z)) is

contained in the open unit disc U. Let x and y be any two vertices in VX.
Starting with the formula for G(x, y I -) in Theorem 2 and applying it again
to the Green functions G(ov, Ov I d( .)), we obtain an expression with Green
functions of the form ~2w) ~ d2( ~)). Iterating this formula n times in
this way we get a term of the form

with a finite sum over Green functions of vertices ønv and O’w, v and w
are elements of F’, and rational functions A and B which are analytic
in CCBD. We obtain the analytic continuation of G(x, y I .) in U(z) if z is an
element of This also implies S C D. If z is a point in DBS then
again ( 7.1 ) yields the analytic continuation of G (x, y ~ ~ ) in U (z). In this
case z is a pole in D which is cancelled in the above sum in (7.1 ) . Thus all
Green functions are analytic in AoBS. Note that the choice of n does only
depend on z and not on the vertices x and y. A suitable choice for n is
such that I dn (z )  1. Uniqueness of the analytic continuation of the Green
function at the point z follows from the explicit form of (7.1 ) . In particular,
if z is real, then we see that there is an E &#x3E; 0 such that for any x and y
in VX the function G(x, y ~) is real and analytic in (z - ~, z -f- ~). Thus the
inversion formula for the resolvent of a self adjoint operator (see Dunford
and Schwarz [9], Theorem X.6, implies that 1/z is not in the spectrum
of the transition operator P. This method was, for example, also used by
Kesten (see [18], Lemma 2.1). The values of the Green functions at z are
the coordinates of the inverse operator

8. Non-polar singularities and the Julia set of
the transition function.

Let x and y be vertices of a locally finite graph Y. We consider
the simple random walk starting in x. Let q~n&#x3E; (x, y) be the probability of
hitting y for the first time after n-steps. We define
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The following fact is in principle well known, though hard to be found
explicitly stated in the literature.

LEMMA 10. - Let the simple random walk on a locally finite, infinite
graph X be recurrent. Then for any pair of vertices x and y in VX the
point z = 1 is a non-polar singularity of the Green function G(x, y I .).

Proof. - Green functions are defined as power series around z = 0

with positive coefficients. Pringsheim’s theorem implies that the radius of
convergence is a singularity. By recurrence the radius of convergence is l.

Now suppose that z = 1 is a pole of order k &#x3E; 1 of G(x, y ~). Then, near 1,

where G is analytic in a neighbourhood of 1 and 0. We rewrite

as

Note that recurrence implies F (x, y 1 ) = 1 for all pairs of vertices x and y.
Let z H 1- along the real axis. Then we obtain F’(y, y 1-)  oo. But this

is the expected return time to y, which has to be infinite because recurrence
of the simple random walk on infinite, connected graphs is equivalent to null
recurrence. 0

We are interested in the spectrum of the Laplacian

on f2(X), where I denotes the identity. These operators are selfadjoint and

We recall that S is the set of all singularities of all Green functions and
that spec-1 P is the reciprocal spectrum {1/A ; A E specP}.

The next lemma follows immediately from the fact that the resolvent
is analytic outside the spectrum.
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LEMMA 11. - For any locally finite graph uTe have

For the rest of this section let X again be a symmetrically self-similar
graph with bounded geometry.

LEMMA 12. - One has

Proof - The identities (6.1 ) and (6.3) imply that dn-1 (poles( f ) ) and
dn-l (poles(C)) are poles of W I .) and G’ (y, v ~), respectively. Let zo
be a point in Either zo is a pole of

or, if it is cancelled in this product, it is a zero of one of the factors f o dk,
for an integer k with 0  k  n - 2. In other words, zo E d -k (zeroes(f)).
Then Lemma 7 implies zo E d-k(poles(ê)) and, by the above argument,
zo is a pole of a Green function i ). We conclude that all points
in are poles of Green functions of

type GAn or GBn.
Since all our Green functions are analytic in U, their singularities lie

in CB 1U. By Lemma 11 the reciprocal values of these singularities are in the
corresponding spectrum of a self-adjoint operator. Thus they are real and

for any positive integer n, which implies

Let us define two complex numbers z, and Z2 as equivalent if there
are integers rrt and n such that = A complex number is
called exceptional if the corresponding equivalence class is finite. The Julia
set of d is denoted by J, the Fatou set by .~’.

THEOREM 4. - For the reciprocal spectrum we have

It is the set of points z in such that there is a Green function
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which cannot be continued analytically from both half spheres of (C B ïae to z.
The super attracting fixed point z = 0 is the only attracting fixed point
of d, 0 = Ao and J is the set of accumulation points of D. Either
d has no exceptional points or z = 0 is the only exceptional point of d.
In particular, the discrete exceptional set D does not contain exceptional
points.

Proof. - The immediate basin of attraction of z = 0 is the

component of the Fatou set which contains z = 0, see Theorm 6.3.1 in
the book of Beardon [6]. Suppose there is a point zo in 8Aô, which is a subset
of J, and a Green function Go which continues analytically from 
open neighbourhood U(zo) of zo. The Julia set contains all repelling fixed
points, and the backward iterates of any point in ,~ are dense in J, see for

example [6], Theorem 4.2.7 (ii) or Theorems 1.1 and 1.6 in Chapter III of the
book of Carlson and Gamelin [7]. Thus there is a z in U(zo) and an integer n
such that dn (z) = 1. The function d is finitely branched. Corollary 1 implies
that the Green function Go continues analytically to an open neighbourhood
of z = 1 except for a finite set of singularities. Now z = 1 is an isolated

singularity of Go which is non-polar (see Lemma 10), therefore it is an

essential singularity. Corollary 1 also implies that all d-backward iterates of
z = 1 are essential singularities of Go. These backward iterates are dense
in J in contradiction to the assumption that Go continues analytically
to an open neighbourhood U(zo) of zo in J. Since all Green functions

are analytic on C B spec-1 P, this implies 8Aô c spec-1 P. The reciprocal
spectrum spec-1 P is real and it follows that z = 0 is the only attracting
fixed point of d and Ao = Ao = J7. This implies J = aAo . The set S o 0
is contained in spec-1 P and Theorem 3 implies that 0 ) S is contained
in C B spec- 1 P. We conclude, spec  P = ,7 U S. Since d is rational of degree
at least 2, there are at most two exceptional points (see [6], Theorem 4.1.2).
Exceptional points are contained in the Fatou set (see [6], Corollary 4.1.3).
Thus z = 0 is the only exceptional point, or there are no exceptional points.
By Lemma 12, there are no exceptional points in D and Theorem 4.2.7 (i)
in [6] now implies that J is the set of accumulation points of D. D

Combining Theorems 3 and 4, we obtain:

THEOREM 5. - One has

Note that spec
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9. The Julia set of the transition function.

From the theory of iteration of rational maps we know that the
Julia set of a rational function of degree at least 2 is either connected

in the complex sphere C or has uncountably many components and each
point in the Julia set is an accumulation point of infinitely many distinct
components of J, see for example [6], Theorem 5.7.1 or [16], Lemma 4.
In our case the Julia set is real and we obtain the following theorem:

THEOREM 6. - Either the Julia set of the transition function of a

symmetrically self-similar graph is a real interval in C or it is a Cantor set.

Example 1. - Let o be an origin vertex of the two sided infinite
line. The graphs C can be paths of length n for any integer n. Technical
calculations show that for the corresponding transition function dn we have

these functions are conjugated to the Chebychev polynomials Tn,

and We consider this Green function as the solution

of the functional equation

where the graphs C spanned by the closures of the cells are paths of

length 2. This solution converges as an infinite product in CB:J to

The fact that the product diverges on j corresponds to the existence of
two different branches of the square root.
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THEOREM 7. - Let J be the Julia set of the transition function of
a symmetrically self-similar graph. Then the reciprocal spectrum spec-1 P
coincides with the set of singularities of all Green functions S.

Proof. - The branches of the analytic continuations from U to the
half spheres in coincide at the real part of the Fatou set .~ n R which
is dense in ,7 because ,7 is supposed to be a Cantor set. None of these
branches can be continued locally analytically to any point in J since
this local continuation would then have to coincide with both branches of

the Green function, which is impossible since no Green function can be
continued analytically to a point in the Julia set. For points in we

have already proved that they are in the spectrum if and only if they are
singularities of a Green function, see Theorem 3 and Lemma 11. 0

For symmetrically self-similar graphs with bounded geometry we
conjecture that the Julia set J is an interval if and only if the cell-graph C
is a finite line, otherwise it is a Cantor set. According to Lemma 2, the cell
graph C is a finite line if and only if X is a ’star’ consisting of finitely many
one-sided infinite lines which have exactly one vertex in common.

Sabot showed in [33] that the integrated density of states for nested
fractals with at least three essential fixed points is completely generated
by the so-called Neumann-Dirichlet eigenvalues. In [26] Malozemov and
Teplyaev proved similar results for symmetric self-similar graphs where
each cell has exactly two boundary points.

Acknowledgements. - The author wants to thank Peter Grabner,
Elmar Teufl and Wolfgang Woess for fruitful discussions. Representative
for many contributions: the idea of choosing a proper set F in Definition 1

(self-similarity of graphs) is due to Peter Grabner, Elmar Teufl found a

right idea for the proof of Lemma 7 and Wolfgang Woess is the author of
the proof of Lemma 10.

BIBLIOGRAPHY

[1] M.T. BARLOW, J. KIGAMI, Localized eigenfunctions of the Laplacian on p.c.f.
self-similar sets, J. London Math. Soc., 56-2 (1997), 320-332.

[2] M.T. BARLOW, E.A. PERKINS, Brownian motion on the Sierpi0144ski gasket, Prob.
Theory Related Fields, 79-4 (1988), 543-623.

[3] L. BARTHOLDI, Croissance de groupes agissant sur des arbres, Ph. D. thesis,
Université de Genève, 2000.



1899

[4] L. BARTHOLDI, R.I. GRIGORCHUK, On the spectrum of Hecke type operators
related to some fractal groups, Tr. Mat. Inst. Steklova (Din. Sist., Avtom. i

Beskon. Gruppy), 231 (2000), 5-45.

[5] L. BARTHOLDI, R.I. GRIGORCHUK, V. NEKRASHEVYCH, From fractal groups
to fractal sets, in ’Fractals in Graz 2001’, P.J. Grabner and W. Woess, eds., Birk-
häuser, 2002.

[6] A.F. BEARDON, Iteration of rational functions, Springer-Verlag, New York, 1991.

[7] L. CARLESON, T.W. GAMELIN, Complex dynamics, Springer-Verlag, New York,
1993.

[8] P.G. DOYLE, J.L. SNELL, Random walks and electric networks, Math. Association
of America, Washington, DC, 1984.

[9] N. DUNFORD, J.T. SCHWARTZ, Linear Operators I-II, Interscience, New York,
1963.

[10] I.P. GOULDEN, D.M. JACKSON, Combinatorial enumeration, John Wiley &#x26; Sons,
New York, 1983.

[11] P.J. GRABNER, Functional iterations and stopping times for Brownian motion on
the Sierpi0144ski gasket, Mathematika, 44-2 (1997), 374-400.

[12] P.J. GRABNER, W. WOESS, Functional iterations and periodic oscillations for

simple random walk on the Sierpi0144ski graph, Stochastic Process. Appl., 69-1

(1997), 127-138.

[13] B.M. HAMBLY, On the asymptotics of the eigenvalue counting function for random
recursive Sierpinski gaskets, Prob. Theory Related Fields, 117-2 (2000), 221-247.

[14] B.M. HAMBLY, V. METZ, The homogenization problem for the Vicsek set,
Stochastic Process. Appl., 76-2 (1998), 167-190.

[15] J.E. HUTCHINSON, Fractals and self-similarity, Indiana Univ. Math. J., 30-5

(1981), 713-747.

[16] C. INNINGER, Rational iteration, Dissertation, Universitätsverlag Rudolf Trauner,
University of Linz, 2001.

[17] O.D. JONES, Transition probabilities for the simple random walk on the Sierpi0144ski
graph, Stochastic Process. Appl., 61-1 (1996), 45-69.

[18] H. KESTEN, Symmetric random walks on groups, Trans. Amer. Math. Soc., 1959.

[19] J. KIGAMI, Harmonic calculus on p.c.f. self-similar sets., Trans. Amer. Math.

Soc., 1993.

[20] B. KRÖN, Spectral and structural theory of infinite graphs, PhD. thesis, Graz
University of Technology, 2001.

[21] B. KRÖN, Growth of self-similar graphs, preprint, 2002.

[22] B. KRÖN, E. TEUFL, Asymptotics of the transition probabilities of the simple
random walk on self-similar graphs, preprint, 2002.

[23] T. LINDSTRØM, Brownian motion on nested fractals, Mem. Amer. Math. Soc.,
83 (1990), 420.

[24] L. MALOZEMOV, The integrated density of states for the difference Laplacian on
the modified Koch graph, Comm. Math. Phys., 156-2 (1993), 387-397.

[25] L. MALOZEMOV, Random walk and chaos of the spectrum. Solvable model, Chaos
Solitons Fractals, 5-6 (1995), 895-907.



1900

[26] L. MALOZEMOV, A. TEPLYAEV, Pure point spectrum of the Laplacians on fractal
graphs, J. Funct. Anal., 129-2 (1995), 390-405.

[27] L. MALOZEMOV, A. TEPLYAEV, Self-similarity, operators and dynamics, pre-
print, 2001.

[28] V. METZ, How many diffusions exist on the Vicsek snowflake?, Acta Appl. Math.,
32-3 (1993), 227-241.

[29] C.S.J.A. NASH-WILLIAMS, Random walk and electric currents in networks, Proc.
Cambridge Phil. Soc., 55 (1959), 181-194.

[30] R. RAMMAL, Random walk statistics on fractal structures, J. Stat. Phys., 36-5-6
(1984), 547-560.

[31] R. RAMMAL, Spectrum of harmonic excitations on fractals, J. Physique, 45-2
(1984), 191-206.

[32] R. RAMMAL, TOULOUSE, Random walks on fractal structures and percolation
clusters, J. Physique - Lettres 44, 36-L13-L22 (1983).

[33] C. SABOT, Pure point spectrum for the Laplacian on unbounded nested fractals,
J. Funct. Anal., 173-2 (2000), 497-524.

[34] A. TEPLYAEV., Spectral analysis on infinite Sierpi0144ski gaskets, J. Funct. Anal.,
159-2 (1998), 537-567.

[35] W. WOESS, Random Walks on Infinite Graphs and Groups, Cambridge University
Press, Cambridge, 2000.

Manuscrit reçu le 8 avril 2002,
accepté le 16 mai 2002.

Bernhard KRON,
Erwin Schrodinger Institute (ESI)
Boltzmanngasse 9
1090 Wien (Austria).
bernhard.kroen~univie.ac.at.


