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TAME SEMIFLOWS FOR

PIECEWISE LINEAR VECTOR FIELDS

by Daniel PANAZZOLO

1. Introduction.

Piecewise linear vector fields often appear in modeling physical and
chemical phenomena. They are also of interest in Control Theory and a
source of examples of so-called chaotic dynamics (see e.g. [ACT], [S]).

Given a decomposition R n = into pairwise disjoint subsets

(called cells), we shall say that a vector field X E is a piecewise
linear vector field on the decomposition £ == if

for some n x n real matrix Ai and a vector bi E We let denote

the set of all such vector fields.

Intuitively, it is quite clear that a flow for a vector field X E 
should be defined as a suitable composition of the following exponential
maps:

which correspond to the flow of each individual vector field Xi (x) = Aix+ bi.

Therefore, in view of the recent results concerning the o-minimality of
structures including the exponential function (see e.g. [W], [DMM], [LR]),

Keywords : Piecewise linear vector field - o-minimal - Semiflow.
Math. classification : 03C64 - 14P10 - 34C25 - 37G15.



1594

a natural question which arises is wherever the flow of a piecewise linear
vector field can be definable in one of such o-minimal structures.

In particular, this fact would imply the definability of Poincar6
first return maps in the same structure. In dimension two, an immediate

consequence would be the non-accumulation of limit cycles in planar
polycycles (in the same spirit of the work [MR]).

However, it is easy to convince ourselves that such flow is not always
definable in an o-minimal structure.

Examples 1.1.

(i) Let -4~ (t, x, y) be the flow of linear center x = -y, y - x. Any
structure S which contains the graph of also contains the graph
of sin(t), and obviously cannot be o-minimal.

(ii) Consider the one-dimensional vector field X defined as X(x) = 1 if
x E ~ and X(x) = 0 if x E R B Q. Then, a flow associated to X is clearly
non-definable in any o-minimal structure (for instance, because the set of
equilibrium points is not a finite union of intervals and points).

Our goal is to prove that the above two phenomena are the only
sources of non definability. That is, if we remove the infinite spiraling,
assume that the cells are in finite number (i.e. #I  oo) and that each
cell 0152i is definable in some sufficiently large o-minimal structure, then one
is able to prove some definability result.

It is important to remark that even the definition of a flow for a
discontinuous vector fields is a subtle problem (see e.g. [Fi], [Ha]). That is
the reason for introducing the notion of weak-semiflow in Section 3. Roughly
speaking, this is a class of semiflows which is stable by the operations of
composition and restriction.

Using this notion, we will be able to associate a weak-semiflow 
to each vector field X E PLn(£), when restricted to some finite list of

composable cells 03BE = (0152il’ ... , E is ) (we shall not define precisely this notion
here). In this context, we prove the following result:

THEOREM 1.2. - Let 9 be a cell decomposition definable in the

o-minimal structure Ran,exp, and suppose that a vector field X E PL"(S)
has bounded spiraling on a composable cell-list ç. Then, ~-restricted weak-
semiflow definable in Ran,exp* ·
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In the case where X E PLn(£) is continuous (and hence globally
Lipschitz), it will be an immediate consequence of the constructions that

~X,~ coincides with the restriction of the usual flow to the union of the

cells 

In the last section, we shall introduce the notion of definable polycycle
for a continuous piecewise linear vector field. Under suitable conditions, we
shall prove the definability of the Poincar6 first return map on a transversal
section to such polycycles.

Acknowledgment. - I wish to thank Prof. J. Sotomayor for posing
me the question which inspired this work.

2. Basic notions.

In this section, we fix some basic definitions and notations from the

theory of o-minimal structures. For this, we follow closely the book of
van den Dries [D].

DEFINITION 2.1. - An o-minimal structure on R is a sequence
S = such that for each m &#x3E; 0:

1) Sn is a boolean algebra of subsets of R n

is the projection
map;

6) the only sets in Sl are finite unions of intervals and points.

We shall say that a set A C JRn is definable if A C sn. A map
f : A - R’ is definable if its graph r( f ) C R’+’ is definable.

2.1. Cell decomposition.

Let us fix once and for all some o-minimal structure S over the field

of real numbers. For each definable set A in we put
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where -oo and +00 are seen as constant functions on A. If A is not an open
set, to say that f is C1 means that there exists a definable open set U C 
containing A and a definable C1-function F : U - R such that = f.

For f, g in C,,. (A), we write f  g if f (x)  g(x) for all x E A. In this
case, we define

DEFINITION 2.2. - Let (i 1, ... , im) be a sequence of zeros and ones
of length m. An (i 1, ... , im) -cell is a definable subset of R’ obtained by
induction on m as follows:

(i) A (0)-cell is a one-element set ~r~ C R, a (I)-cell is an interval

(ii) Suppose (i1, ... , im)-cells are already defined. Then

a (zi,..., im, 0)-cell is the graph r( f ) of a function f e where

-cell is a set ( f , g) A, where A is an (i 1, ... , im)-cell and

rell, for some sequence (il, ... , 

A decomposition of JRm is a special kind of partition of JRm into finitely
many cells. The definition is by induction on m:

(i) A decomposition of = R is a collection
I , ’" ~ , I - I

where a,  a2  ...  ak are points in R.

(ii) A decomposition of is a finite partition of into cells A

such that the set of projections is a decomposition of (Here
JRm+1 ---7 is the usual projection map.)

A decomposition D of R’ is said to partition a set S C if ,S’ is a union

of cells in D.

THEOREM 2.3 (C’-cell decomposition; see [D], Chap. 7, Section 3.2).
(Im) For any definable set A1, ... , Ak C there exists a decomposition

of R’ into cells partitioning ~4i,..., 

(IIm) For every definable function f : A - R, A C there exists a

decomposition of R’ into cells, partitioning A, such that each restriction
C - R is C1, for each cell C c A of the decomposition.
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2.2. The logical notation.

The logical formulas provide a synthetic way to show that a set belongs
to some o-minimal structures. We shall use them quite often, adopting the
usual conventions stated in [D].

It will be also convenient to adopt the following notation: given a
subset V E R"~ x and a point x E JRn, we let

denote the fcber of V over the point x.

3. Weak-semiflows.

DEFINITION 3.1. - A weak-semiflow (or shortly, a w-semiflow)
on JRn is a pair (D - (U, ~ ) , where Ll C R+ x R" is a subset such that

Vx E R" , Lh is either empty or an interval [0, t+)

for some t is a map with the following
properties:

(a) For all x C JRn such that 0, we have p(0, x) = x and the curve

is continuous. We call it the orbit of (D through x. When Llx - ø, uTe say

that the orbit ox is emptg.

(b) For all t E Ux, if we consider the point xt := (1)(t, x), then

The support of a a w-semiflow 4D - (U, -4~) is the set

Below, we shall need to drop the condition (b.i) in some special cases,
and replace it by the weaker condition

In this case, we shall say that the pair ~ - (U, ~) is an incomplete
semiflows (or shortly, an i-semiflow).
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Let ox(t) - be the orbit of &#x26; through x. We say that such
orbit has open end if one of the following two conditions hold:

. [0, t+) for some t+ E R+ and if there exists a x+ E Rn such
that

then we require that Ux+ == 0.

We shall say that the w-semiflow 4) is definable on some o-minimal
structure S when the graph F((D) is a definable set in x 

Remark 3.2. - If we assume in Definition 3.1 that Ll = R+ x Rn
and that + is continuous, we obtain the usual concept of a semiflow. This
concept is too restrictive for our purposes, since is not invariant by the
operations described below (see Remark 3.5).

3.1. Composing W-semiflows.

Let us consider two w-semiflows

We shall say that and ~2 are composable if

where ox denote the orbit of ~i through x (for i = 1, 2). In this case,
we define the composed w-semiflow by considering the following map IF:

Clearly, the map z = xF (t, x) has its domain on some subset V c R+ x JRn.
Notice that assumption (3) implies that if (t, x) E ul there is no

ambiguity in defining

LEMMA 3.3. and ~2 be composable w-semiflows. Then, the
pair * = (V, T) is a w-semiflow on JRn.
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Proof. All properties of Definition 3.1 are immediate to verify,
except for the semigroup properties on item (b). Let us fix a point x E 1~n
and a time t E Vx. We need to prove that for all s E we have

(i) 

(ii) ~ (t -~- s, x) _ ~ (s, xt ) .
First of all, if Llx =0 then necessarily Vx - Ux2 (because in this case

only the third option of (4) can be applied to defined the positive orbit
through x). We claim that

Indeed, if - 0, we are done. Otherwise, Assumption (3) implies that
and the orbit of 4~l and -4~’ through xt coincide, for all t.

A problem would appear if the orbit of &#x26; through xt could be
extended using the second option of (4), since this would imply that Vxt is

larger than Ux2,. But, since the orbits of ~1 and ~2 through xt coincide,
this would contradict the assumption that o’ has open end. This proves the
claim. Items (i) and (ii) easily follow.

Let us suppose now that 0. Then, either the second option of (4)
does not hold for the orbit through x, and then

or else there exists a point x+ E JRn such that

In the former case, the same reasoning of the previous paragraph allows
us to prove (i) and (ii). In the latter case, we have the three possible
configurations (2.i-iii) for the times t+, t and t + s which are shown
in Figure 1. 

-

Figure 1. The four possible time scales for Vx
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Here again, it is easy to adapt the arguments used in the proof of the
above claim to conclude the proof. D

When the hypothesis of the lemma hold, we shall call ~ the composed
w-semiflow, and note * = [~1, ~2].

LEMMA 3.4. is the composition

Proof. This is obvious from the definition of the composed flow. 0

Notice that, if all orbits of a w-semiflow 03A6 have open ends then 03A6 is

composable with itself. In this case, it is easy to verify that the composition
[~, ~] is equal to ~ (because the second option of (4) will never hold).

Remark 3.5. - Even if we assume that ~1 and p2 are continuous

maps, in general the T will not be continuous, as the simple example in

Figure 2 illustrates.

Figure 2. Example of composition of two continuous
w-semiflows which gives a discontinuous w-semiflow

Remark 3.6. - It follows directly from (3) that, given two w-semiflows
.p2, the condition supp ~1 n supp.p2 = 0 is sufficient to guarantee

that (D 1 and 03A62 are composable.

3.1.1. Definable case.

PROPOSITION 3.7. - Suppose that two composable w-semiflows

definable in some o-minimal structure S. Then, the w-semiflow
,p = also a definable in such o-minimal structure.
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Proof. We need to verify that the graph T of the map given in (4)
is definable. First of all, we define the the following subset Ll C R+ x R":

Thus, for each x, L~ is the length of the interval (it is undefined is

empty or unbounded). Now, we consider the set C~ C JRn x JRn given by

This relation associates to each point x the limit of its positive orbit (if it
exists). Of course, if Lx = 0 then C) = 0.

Let Pl and P2 be the graphs of 71 and ~2 on the space

(t, x, z) E R+ x R2, . For simplicity, we introduce the following auxiliary
subset ofR+ x R 2,:

and denote by Ui i the linear projection of pi into the space ~ z = 0},
for i = 1, 2, 3.

Now, the definition of W can be given as follows:

From these series of definitions, it is clear that if P1 and P2 belongs some
o-minimal structure S, then W also belongs to such o-minimal structure. 0

Remark 3.8. - In the definable case, the condition that the orbit

4l( . , x) : Ux - R" converges to a definite point x+ E JRn as t - t+ (where
t+ E R+ is the upper limit of the interval Ux) is equivalent to require

x) is a bounded set (see [D], Chap. 6, Section 4).

3.2. Restriction of a W-semiflow.

Given a subset V C R~ and a semiflow 4) = (U, ~) on R" , we consider
the set T+(V) c R+ x R" given as follows:

Intuitively, T + (V)x is the interval of time during which the orbit through x
remains in the set V.
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LEMMA 3.9. - Given a point x E following two situations can
occur:

is either empty, or has the form (0, t+), for

Here V denote the closure of Y in R’.

Proof - This follows immediately from continuity of the orbits of ~.
0

Let us consider now the subset LlY C Ll given as follows:

x is nonempty and t = 0)}
and the restriction := 4)luv of (D to such set. Clearly, the pair

= (Uv, defines a new w-semiflow.

We will say that the w-semiflow lllv = (Uv, 4bv) is the restriction of
~ to V. Given a point x E supp ~ (the support of (D defined in (1)), we
shall say that the orbit through x is

. inward pointing to V if T+ (V )~ ~ 0,

. outward pointing to V if it is inward pointing to V.

Remark 3.10. - Of course, there can be orbits which are neither

inward pointing nor outward pointing. For instance, take the one-

dimensional flow (D(t, x) = x -E- t and the set V c R given by all rational
numbers. Then, no orbit is inward or outward pointing to V.

The following result is immediate:

LEMMA 3.11. - The support of the restricted w-semiflow is the

set of points x E supp (D such that the orbit of &#x26; through x is inward
pointing to V.

Obviously, it follows also from Lemma 3.9 that supp 03A6V is a subset

of V.

Remark 3.12. - We can define exactly in the same way the restriction
of a i-semiflow to a subset V C R’.
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3.2.1. Definable case.

PROPOSITION 3.13. - Suppose that &#x26; and V are definable in some

o-minimal structure S. Then, ~~ is also definable in S.

Proof. If ~ is definable, the set T+(V) in (5) can be given by the
formula

which clearly shows that it is definable. The same is true for the set Uv
given in (6), which is defined by the formula

Thus, since the restriction of a definable function to a definable set is always
definable, the proposition is proved. 0

The following result is also an immediate consequence of the o-

minimality.

COROLLARY 3.14. - On the hypothesis of the above proposition, each
orbit of 4) is either inward or outward pointing to V.

Remark 3.15. - Exactly the same results hold for the restriction of a
definable i-semiflow to a definable subset V c R’.

3.3. Examples.

Example 3.16. - The map ~+ (t, x, y) _ (~ -~ t, y) defines a w-semiflow
lll+ = (U, 4Y+ ) on Ll = R+ x JR2. If we consider the domains

the domain of the restricted w-semiflow is given by

while the domain of is given by
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Figure 3. Compositions of w-semiflows

Similarly, if we consider the w-semiflow given by
(on the same set U),

Let us consider the several possible compositions of such flows:

1) The composition gives the w-semiflow .p+ itself.

2) The composition gives the w-semiflow W = 

3) The composition gives the w-semiflow
where

4) Finally, the composition [4 ] is undefined because these

flows are not composable. Indeed, is the subset S = f (t, x, y) I
x = 01 and the restriction of to ,S’ is different from the restriction

of to S.

Example 3.17. - Keeping the notations of the previous example, it
is also possible to introduce some slzding along axis ~x = 0} by considering
the flow ’ I

The composition followed by the composition
gives the w-semiflow shown in the bottom of Figure 3.
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Remark 3.18. - The above example illustrates the appearance of
orbits with different initial points which collapse in finite time. Thus, in
general it is not possible to go back to the past along the orbits of a
w-semiflow.

We conclude this section by remarking that the notion of w-semiflows
is analogous to the local semi-dynamical systems, which are treated

extensively in [BH]. For instance, we can consider the following dynamical
concepts:

. A stationary point is a point x C R~ such that I &#x3E; 0 and

x) = x for all t C Ux (here denotes the length of the interval Ux).
. The orbit ox through a point x E R n is periodic if there exists a

strictly positive number T E Ux such that

and (D(t, x) 54 x for all 0  t  T. Such T is called the period of the orbit.

. A subset M C JRn is invariant if for all x E M, the orbit ox is

entirely contained in M.

. Given a point x E R" with a non-empty orbit ox, we say that it is
attracted to a subset M C JRn if for each neighborhood U of M there exists
a T E Lh such x) E U for all T  t E Ux.

Notice however that some properties proved in [BH] will not hold in
our context because we do not require the continuity of the x).

4. Piecewise linear vector fields.

From now on, we shall fix ourselves in the o-minimal structure

that is, the expansion of (R, 0,1, +1 *1 ) (the semi-algebraic sets) by adding
the graphs of the exponential exp(x) and all restricted analytic functions
f E an.

We recall this last notion: Let ll~~xl, ... , denote the ring of all
real power series in that converge in a neighborhood of Im,
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with . we define the restricted analytic
function as follows:

We refer to [DMM] and [LR] for general results on such structure.

For shortness, from now on we shall use the word definable as a
synonym for the expression definable in JRan,exp’

DEFINITION 4.1. Let E be a definable cell-decomposition of Rn . A
vector field X(x) in R n will be called piecewise linear on.E if for each
cell E E E,

for some (A, b) E R, 2 x R~ (we identify the space of real n x n matrices
with JRn2).

Thus, fixing an of the cells, the space
of all piecewise linear vector fields on E is isomorphic to 

4.1. The exponential of a matrix.

Let us consider the analytic map

where Then, the pair

is a w-semiflow, according to Definition 3.1. We shall call that it the

exponential w-semiflow.

It is easy to see that if n &#x3E; 2, such w-semiflow cannot be defined in

any o-minimal structure, as the following simple example shows:

Example 4.2. Let n = 2. If we take the matrix

then x2 sin(t), xl sin(t) + X2COS(t)).
Clearly, the graphs of sin(t) and cos(t) are needed to define E.
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Our next goal is to prove that we can obtain a definable semiflow by
a suitable restriction of the domain of definition of E.

LEMMA 4.3. - There exists a semi-algebraic cell-decomposition
of the space real matrices such that on each E C,

the number of distinct real and non-real eigenvalues, resp. r = and

c = c(~), is constant. Moreover, on each cell the corresponding multiplicities
Ul, ... , vr and Ml,... , Me of such eigenvalues are constant and there is a
semi-algebraic continuous map ( the spectrum map)

which associates to each matrix its collection of distinct eigenvalues.

Proof. This is an immediate consequence of the general theory of
semi-algebraic sets (see e.g. [BR], [D]). 0

The structure of the map Exp can now be described as follows:

PROPOSITION 4.4 (see also [A]). - Suppose that the spectrum spec(A)
of the matrix A is formed by real eigenvalues Aj ( 1  j  r) of multiplicity vj
and complex eigenvalues aj ± iwj (1  j  c) of multiplicity Then, each

component Ei(t, A, x) of the Exp = (E1, ... , En) is a sum

where the are functions of the form

where polynomial of degree strictly less than vj in the

t-variable and rikj are polynomials of degree strictly less than /-Lj
in the t-variable. The eigenvalues A3, aj ± iWj and the coefficients of the
polynomials and are real semi-algebraic functions of the entries
of the matrix A E JRn2.

Proof. To prove such result, we will use the following beautiful
characterization of the exponential of a matrix:
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CLAIM. - Each entry of the matrix etA satisfies the n-th order

linear differential equation c(D) y - 0, where c(x) - det (xI - A) is the

characteristic polynomial of A and D = d/dt.

Indeed, the Hamilton-Cayley Theorem asserts that c(A) - 0. On
the other hand, = for each k E N. Therefore, 
etAc(A) = 0. This proves the claim.

Let us follow the study made on [F]. From the claim, it follows that
the matrix etA is the unique solution of the initial value problem

Suppose that A has n distinct real eigenvalues Ai,..., An . Then, the general
solution of the differential equation c(D) B (t) = 0 is

where the initial conditions in (10) determine that the n x n matrices of
constants Ck satisfy the following equations:

Solving these equations, one obtains the C~ as polynomials of degree at most
n - 1 in the entries of the matrix A. The coefficients of these polynomials
are the entries of the inverse of the Vandermonde matrix in Ai,..., Ain
(the coefficient matrix of the above linear system of equations). Therefore,
by Lemma 4.3, it is easy to see that each entry of C~ is a semi-algebraic
function of the entries of A.

Suppose now that A has r distinct real eigenvalues Ai,..., A, with
multiplicities vi, ... , vr. Then, the general solution of c(D) B (t) = 0 is

The initial conditions in (10) yield again a linear system of equations for
the matrices but now with a coefficient matrix which is the following



1609

confluent Vandermonde matrix:

The matrices Cj are again obtained as polynomials of degree at most n - 1
in the entries of A and the coefficients are the entries of the inverse of the

confluent Vandermonde matrix. By Lemma 4.3, it follows again that the
entries of C~ are semi-algebraic functions of the entries of A.

The case where A contains complex eigenvalues is treated in a very
similar way. D

Remark 4.5. - If we suppose that the characteristic polynomial 
factors as

each entry of etA is a linear combination of the elementary functions

4.2. Exponential semiflow.

Let us consider the cell decomposition C of which is described in

Lemma 4.3. On each cell C E C, we can define the semi-algebraic function

where, we recall, is the function which describes the number of distinct

eigenvalues with nonzero imaginary part.

Given a constant the k-periodic region (associated to the map
Exp) is the semi-algebraic subset Uk C R+ x JRn2+n defined as
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Remark 4.6. - Notice that if C E C is a cell such that = 0 then

(i.e. above each cell in which all eigenvalues are real, the fiber of Uk contains
the entire positive t-axis).

Let us consider the pair E k - (Uk , Ek), where E k - Exp ~ is the

restriction of the exponential map Exp to 

LEMMA 4.7. The pair is an i-semiflow.

Proof. - All properties in Definition 3.1 are trivially verified, except
for (b.i), which should be replaced by the condition (b.i)’ which is described
in (2). 0

We shall call Ek - (U’, E k) the k-periodic exponential i-semiflow.

THEOREM 4.8. - For each constant k E N, the k-periodic exponential
i-semiflow E~) is definable in the o-minimal structure Ran,exp . I

Proof of the theorem. - It is convenient to extend the map Ek to the
whole space R+ x by defining _it as the null map on the complement
of Let us call the resulting map E. Thus, it suffices to prove that E is
definable.

Consider the restricted analytic function Sk defined by

Then, we have the equality

Similarly, we define the function

From the Equation (9) in Proposition 4.4, it is clear that each column Ei
of Exp(t, A, x) is a semi-algebraic function of the form
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in which each variable is replaced by the function 
and sin(wjt), respectively. 

-

Clearly, the corresponding column of the map E(t, A, x)
can be written as

where each variable uj, vj, wj, yj is replaced as above and §uk is the (semi-
algebraic) characteristic function of the domain Uk (i.e. §uk * 1 on Uk and

0 on R+ x R 2+, B Using the expression of F2, we obtain

where we have written 0 = Ou, for shortness. Therefore, Ei is simply
obtained by replacing in Fi each uj , vj , wj , yj respectively 
exp(aj,t), Ocos(wjy) and O sin (wjt)

Let us recall now the definition of the domain Uk. Since m(A) &#x3E; t
for all 1  j  c,

Therefore, we know that the characteristic function ~(t, A, x) is identically
zero for the values of t such that

On the other hand (13) implies that, for t E I), sin(wjt) is

identical to llik (wjtj2k7r). Hence,

and, similarly, 0 cos(wjt) Therefore, it is clear that

each Ei is a function in Ran,exp~ and hence E is a map in Ran exp . I 0
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4.3. Non-homogeneous exponential semiflow.

The solution of the non-homogeneous linear differential equation
with (A, b) E JRn2+n and = x is

This motivates the introduction of another semiflow: the non-horrtogeneous
exponential w-semiflow is the pair L = (R+ x Rn2 x R" x R n, L), where £
is the analytic map

Now, in analogy with previous subsection, we introduce the following
objects: given the k-periodic non-homogeneous exponential i-semi-
flow is the pair where

being the k-periodic region in (12)), and 

A simple integration yields the following corollary to Theorem 4.8:

COROLLARY 4.9. - For the i-semiflow IL~ is definable

in Ran, exp. *

4.4. Semiflows associated to 

4.4.1. Semiflow on a cell. - Let X (x) - be a linear vector field

on R". The w-serrzi,fLow associated to X is the pair 4~x - (R+ x 
where x) = L(t, A, b, x) is the map defined in (14).

Remark 4.10. - Equivalently, the map lll x can be defined as the

composition

where 1: is the map defined in (15) and 7rx is the linear projection
(A, b, x) H x.

Let now X E PL’ (9) be a piecewise linear vector field on a cell
decomposition of R" and write Aix + bi for the
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restriction of the X to the cell We define the ith-restricted w-semiflow
to be the restriction of the w-semiflow to 0152~ (according to

Subsection 3.2).

Writing such restricted w-semiflow as the pair 4DX,i = (Z.l, ~), we shall
say that a piecewise linear vector field X C has bounded spiraling
on the cell 0152i if there exists some constant such that for all x E R" ,

where m (.) is the function defined in ( 11 ) and is the length of the time
interval 

PROPOSITION 4.11. - Suppose that X has bounded spiraling on a
cell Then, the the ith-restricted w-semiflow is definable.

Proof. Write 0152 == to simplify the notation. Let us denote
by (I~l~, ,C~) the restriction of the non-homogeneous exponential
w-semiflow L to the subset

Then, it is clear (see also Remark 4.10) that the w-semiflow = 

can be obtained by setting

, , , B , , , 
-- # , , , .

where 7r., is the linear projection (A, b, x) H x.

Let now k E N be the constant of inequality (16). Then, it follows

from the construction of restricted semiflows that the set is entirely
contained in the domain of definition of the k-periodic non-homogeneous
exponential i-semiflow IL~ (defined in Subsection 4.3). Thus, the restriction
of L to is identical to the restriction of to 

Since the i-semiflow Lk is definable, it follows from Proposition 3.13
that is also definable. Now, the equation (17) immediately implies that

is definable. This proves the result. 0

Example 4.12. - The hypothesis of bounded spiraling is clearly
necessary in the previous result. For instance, take the y, z) E

&#x3E; 0}, let X be the following linear vector field in I1~3:
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Figure 4. A non-definable Poincar6 map

and consider the transversal sections Ul = ~ (x, ~, z) I y = 1, 0  z  1 ~
and U2 - ~ (x, y, z) ( z - 1 ~ . It is clear that if the w-semiflow is

definable, the Poincar6 map P : U2 must also be definable.

Let us show that P is not definable. If we parameterize the points
on U1 by (xl, zl) and the points on U2 by (X2, Y2), the transition time
between Ul and U2 will be given by the function

Thus, the Poincar6 map will be

which is clearly not definable in any o-minimal structure. 
’

Notice however that if we had considered the E

p  z  Al for some constants A &#x3E; p &#x3E; 0, the restricted flow would
be definable since X would have bounded spiraling on 0152 (just take any
constant k &#x3E; ln(A/p) in inequality (16)).

4.4.2. Semiflows on cell-lists. - Let us generalize the previous
discussion to define a semiflow on a sequence of cells.

An ordered list will be called a

ceLl-list.

be the 03BEi-restricted w-semiflow corresponding to each one of
such cells. We shall say that a cell-list ç == (Ç1, ... , çt) is composable for X
when

Thus, it follows directly from Lemma 3.4 and Remark 3.6 that the

following definition makes sense:
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Figure 5. The semiflow 16 x, I
DEFINITION 4.13. - Given cell-list g which is composable for X, the

g -restricted .p X,ç is defined inductively as follows:

(ii) If .~ &#x3E; 2, we consider the sublist ~ _ (Ç1,." and define

where [, is the composition operation defined in Subsection 3.1.

We shall say that a piecewise linear vector field X E has

bounded spiraling on the cell-list ~ if it has bounded spiraling on each
cell 0152ç~, for 1 ~ i ~ s.

The next theorem is the main result of this paper:

THEOREM 4.14. - Suppose that a piecewise linear vector field

X E has bounded spiraling on a composable cell-list ~. Then,
~-restricted w-semiflow is definable.

Proof. It is a direct consequence of Proposition 4.11 and

Proposition 3.7. 0

5. Continuous piecevvise linear vector fields.

In general, it is a subtle problem to associate a global flow to a
piecewise linear vector field (see, for instance [Fi], [Ha]). In the previous
section, we have bypassed such problem by considering semiflows defined
only on composable cell-lists.

Let us see one special situation where such restriction can be dropped.
We shall say that a piecewise linear vector field X is continuous if each one
of its components Xn) is a continuous function on R" .
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Remark 5.1. - It is easy to prove that the set of continuous

vector fields is a definable subset of PLn (E) . We shall denote such subset
by C° ) .

LEMMA 5.2. - Given a continuous vector field X E PLn(E, C°), there
always exists a globally defined flow map

associated to it. Such flow map is continuous in (t, x) and C1 in the

t-variable.

Proof. It is clear that X is a K-Lipschitz function on R’, for the

Lipschitz constant K : := Thus, it suffices to apply
the existence theorem for solutions of ordinary differential equations. D

If X is a continuous vector field, such global flow induces the w-

semiflow 03A6X = (R+ x obtained by considering only the positive
orbits through each point.

PROPOSITION 5.3. - Let X C C°). Then, given a C S,
the i-restricted defined in Subsection 4.4.1 is equal to the
restriction of the to as defined in Subsection 3.2.

Proof. This is a trivial consequence of the construction of the

restricted semiflow. We omit the details for shortness. D

The following consequence is immediate.

COROLLARY 5.4. - Let X C PLn(£, C°). Then, given a cell-list

~ - (Ç1,’.’, çs) which is composable for X, the ~-restricted w-semiflow
4~x,~ is equal to the semiflow obtained by the composing successively the
restrictions to 0152Çl , ..., 

Another important consequence is that the condition of composabilzty
for cell-lists is immediately verified for continuous piecewise linear vector
fields.

COROLLARY 5.5. - Let X E PLn(£, CO). Then each cell-list

ç == (Ç1,’ ..., çs) which is formed by distinct cells (i. e. Çi =1= ~j for i ~ j ) is
composable for X.
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Proof. We have to prove that supp n supp is empty
for i = j

Suppose by absurd that there exists a point x E n

supp 4l x,i~ . Then, it follows from Lemma 3.11 and the previous proposition
that the positive orbit ~X (-, x) : II~+ ~ R’ through the point x is inward
pointing to both and That is, there exists some T &#x3E; 0 such that

But this clearly contradicts the fact that the cells 0152i and 0152j are disjoint. D

For the rest of this section, we shall restrict our discussion to the
set continuous piecewise linear vector fields. Thus, from now on the term
piecewise linear vector field will always refer to an element of PLn (E, CO).

5.1. Sufficient conditions for bounded spiraling.
Let us denote by Z(X) the set of singularities of a vector field X.

Clearly, if X C CO) then Z(X) is a definable set.
Given a n x n real matrix A, we shall decompose its spectrum in the

form

where l1s (resp. is the collection of all eigenvalues with negative
(resp. zero, positive) real part. Correspondingly, we have the direct sum
decomposition of R" into generalized eigenspaces,

The subspace of centers associated to A is the linear subspace Ecenter(A) C
EC(A) generated by all pairs of vectors x, y E JRn such that z = x + iy E en
is an eigenvector associated to some eigenvalue A E A .

Remark 5.6. - In particular, contains Ker(A).

Given a non-homogeneous linear vector field X = Ax + b, we define
the subspace of centers Ecenter(x) C as follows:

. otherwise,
arbitrary singular point.

Clearly, Ecenter(x) is independent of the choice of such c since for
any other c’ E Z(X), c - c’ E E center (A). We shall prove now the following
result:
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LEMMA 5.7. - Let K C R~ be a compact subset and let X = Ax + b
be a non-homogeneous linear vector field in such that

Then, for each x E K, there exists a positive time t such that x) ¢ K.

Proof. We write x(t) - ~ (t, x ) to simplify notation. Let

spec(A) = ~ ~ 1, ... , Ak I C C be the collection of distinct eigenvalues of A.
Up to a linear change of coordinates, we can suppose that A is in the real
Jordan canonical form. Thus, it is a block-diagonal matrix

where Aa2 is a J1i x J1i block diagonal matrix formed by Jordan elementary
blocks with eigenvalue Ai and Ai for each 1 ~ i  k. We consider also

the decomposition of R’ as a direct sum of the corresponding generalized
eigenspaces

Let us suppose, first of all, that the vector field Ax + b has no singular
points in R’. Then the equation Ax = -b has no solution. This implies
that A is not an isomorphism, and so zero is an eigenvalue. Moreover, the
projection of b in the corresponding eigenspace Eo is nonzero.

Suppose that (xl, ... , xs) are the coordinates in the subspace Eo.
We shall prove that there exists at least one 1  i  s such that

Take the first Jordan elementary block in Ao (of size, say, m x m). Then,
in the corresponding coordinates (x 1, ... , Xm), X projects into the vector
field

Of course, if bm = 0 then such vector field vanishes at the points (X 1, ... , 
such that Xm = ~-i,...,~2 = big. Using the same argument for each
Jordan elementary block in Ao, we conclude (from the assumption that
Ax = -b has no solution) that there exists at least one of such blocks, say
the first one, such that the last component bm of the vector b in such block
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is non-vanishing. But this implies that the ( - IXm -f- bmtl goes to
infinity as t - oo. This concludes the proof in the case where Ax + b has
no singular points.

We assume now that Ax + b has a singular point c. Then, up to the
translation x’ = x - c, it suffices to prove the claim for the homogeneous
vector field X = Ax.

Let ES, EU, E’ C JRn denote the subspaces generated by the sum of
the generalized eigenspaces corresponding to the eigenvalues with negative,
positive and zero real part, respectively. Each vector x C JRn can be uniquely
written in the form x + x,. The following two facts are obvious
from the basic properties of etA :

. If 0, then - oo as t 2013~ oc (exponentially fast).

2022 If xu = 0 and xs = 0 then
(exponentially fast).

Therefore, it suffices to prove the lemma for x C E~ . Recall that, by
assumption, x does not belong to the subspace of centers E center (A) C E~ .

For each purely imaginary eigenvalue i cv e A , the exponential of each
elementary 2m x 2m Jordan block B in Ai w can be written, in appropriate
complex coordinates (zl, ... , - (Xl + iX2,... , ~2~-1 + 

Since x is not contained in there exists some set of coordinates

as above such 0 for some 2  j  m. Therefore, if we let j
be the largest index for which this holds, the first component zl (t) of the
solution z(t) with z(0) = z is given by

which shows that I . This finishes the proof of
the lemma. D

PROPOSITION 5.8. E E be a relatively compact cell. Writing
= Aix + b2, let us suppose that
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Then, if yve consider the i th-restricted w-semiflow (U, 4D), there
exists some T E R+ such that, for all x E R",

Remark 5.9. - Intuitively, this means that each orbit through a point
x leaves the cell in an (uniformly bounded) finite time.

Proof. We have observed in Subsection 3.2 that Ux = 0 (and hence
Thus, we can suppose that x is in the compact

set K = ~2.

From the continuity of X, it follows that the restriction of X to K is
also given by the vector field Aix -~ bi . By the continuity of the flow x)
and the compactness of K, the proposition follows immediately from the
previous lemma. 0

COROLLARY 5.10. - Keeping the notations of the proposition, let 0152i
be a relatively compact cell such that either

. Hypothesis ( 18) holds.

Then, X has bounded spiraling on ~i .

Proof. It suffices to look at the definition of bounded spiraling (see
Condition (16) in Subsection 4.4). Nothing has to be proven if m(Ai) = 0.
Otherwise, it follows from the above proposition that there exists some

sufficiently large k c N such that, for all x E R~,

5.2. Definable polycycles.

A definable polycycle for X is a simple closed curve r which is

parameterized by a definable homeomorphism --~ R~ and invariant

by the flow of X.

Given an c &#x3E; 0, we define the c-neighborhood of r as the image
of the mapping

where . Of course, T~ (r) is a definable subset.
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Figure 6. Bounded spiraling

A point t E S’ will be called smooth for 1 if there exists some open
neighborhood of t in S’ where -y is C’ and y is nonzero. Since 1(t) is a

definable map, there exists a finite number of points tl , ... , E S’ such

that -y is Cl in each interval (ti, ti+1 ) (with the identification = tl ) .

Remark 5.11. - This last statement follows from the C’-cell

decomposition and the fact that the derivative of a definable C1 map
is also definable (see [M]).

For a smooth point t E ~1, we can consider the affine orthogonal
subspace

For simplicity, we shall say that a point x E r is smooth if it is the image of
a smooth point t E S1 under q.

Remark 5.12. - Notice that a smooth point x E r can be a singular
point of the vector field X. In fact, we do not exclude the case where

F C Z(X).

LEMMA 5.13. - Let x = E r be a smooth point. Then, there
exists an é x &#x3E; 0 (depending on x) such that for all 0  E  é x, the set

is the connected component rl rfl uThich (where 
is the open ball of radi us ~ centered at x ).
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Figure 7. The E-section

Remark 5.14. - If -y : S’ - is C1 and -y’ is nowhere vanishing, the
result is an immediate consequence of the tubular neighborhood theorem

(see e.g. [Hi]).

Proof. - Let io E ~ 1, ... , be the index such that t E tio + 1)’
We can choose constants &#x3E; 0 such that the closed interval

I :== [t - T/l, t + q2] is contained in (tio, and is a neat submanifold
with boundary of the closed ball (see definition in [Hi]). Let now

. ~’ &#x3E; 0 be the Hausdorff distance between the compact subsets

(t-~l~t+~2)) 
. " &#x3E; 0 be such that the submanifold has a tubular

neighborhood of radius ~" in Bp(x) (see [Hi], Theorem 6.3).

Then, it suffices to take Ex  E"}. a

Given a 0  ~  s~, the E-section at the smooth point x = is the

codimension-one disk ~~ (x) = hx n B~ (x) given above.

Now, we would like to define the Poincar6 first return map on such
section. We start by defining the set of returning points

the orbit through y stays on T~ (r) B 
for a positive time interval (0, t) and

intersects E~(~) again at time t ~ .
Thus, for each y C ~~. (x) there is associated a unique positive time,
say tEe (x) (y), such that the positive orbit through y remains on the é-
neighborhood of r for all times 0  s  tEe(x)(Y), and intersects 
again (for the first time) at The Poincaré first return map is

given by
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Figure 8. Illustration for Example 5.15

Even in the class of piecewise linear continuous vector field we can have
Poincar6 maps which are non-definable in any o-minimal structure.

Example 5.15. - In [ACT], the authors consider the following
piecewise linear vector field X:

where (3 &#x3E; 0 and f (x) is the piecewise linear function

If a and J.1 are positive, the system has two singularities at

A = ( -1 / a, 0, 0) and B = (1/~,0,0). For a convenient choice of a, ,~, ~c, it

is possible to prove that A is a saddle-focus and there exists an invariant
set SZ like the one illustrated in Figure (8.i), a Shilnikov-type homoclinic
connection.

Although SZ is not a definable polycycle (the spiraling prevents
this), we could (up to some technicalities) generalize the concept of

definable polycycles to allow components of different dimensions. Using
such generalized definition, we can show that the set h in Figure (8.ii) is

a definable polycycle. Now, it follows directly from the results of [ACT]
that the Poincar6 map on the section E cannot be definable (for instance,
because there is a countable set of horseshoes arbitrarily near r). A similar
observation has been made in [Ka].
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Example 5.16. - An even more dramatic example of non-definable
Poincar6 map is the so-called Chua’s circuit

where h(x) = mix + 2 (?7Zo 2013 11 - ~x - We refer to [S] for a
detailed discussion.

We shall prove in the next section that the non-definability of the
Poincar6 map is exactly due to the spiraling behavior which is present in
these examples.

5.3. Definable Poincar6 maps.

Let X E PL- (E, CO). A definable polycycle r for X is said to be
6-bounded away from spiraling (for some 6 &#x3E; 0) if for all cell 0152i E S,
writing = Aix + bi, we have

for all compact subset K (where d is the Hausdorff distance between
compact sets in R’).

THEOREM 5.17. - Let r be a definable polycycle for X which is

6-bounded away from spiraling. Let x E r be a smooth point and let Ex be
the constant given by Lemma 5.13. Then, for all 0  E  

(i) the set of returning points ~~ (x) C ~~ (x) is definable;

(ii) the Poincar6 first return map P : - ~~ (x) is definable.

Proof. - Let 0 = fail be a definable cell decomposition which
partitions simultaneously the sets T~ (r), E, (x) and all the cells in S. Clearly,
the vector field X can be naturally seen as an element of PLn(F, C° ) .

There exists a finite collection of distinct cells in T, say J m,
such that

Let am denote the set of all lists obtained by permutation of the indices

(1, ... , m). Then, for each cell-list ~ E am, we can consider the associated
~-restricted (?~lX,~, P x,ç), defined as in Subsection 4.4.2.
We now prove the following statement:
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CLAIM. - The w-semiflow is definable.

Indeed, notice that ai c Thus, each is a relatively
compact cell. Moreover, it follows from the choice of E that, if we write

Xj~ = Aix + bi, either

. m(Ai) = 0, or

. 

From Corollary 5.10 it follows that X has bounded spiraling on ai.
Now, the proof of the claim is concluded by direct application of

Theorem 4.14.

For each cell-list g E am, we introduce the set Pi c ~~ (x) x Rj x E, (x)
given as follows:

Clearly, Pç is a definable subset (the relation

is obviously definable). We define the Poincare domain

as the finite union of all P~ ,

The set of returning points can now be defined as Ec(x) == where

7ry is the linear projection (y, t, z) H y. Clearly, P is the graph of a map
over Ec(x)

The first function T(y) is the time of return and P(y) is the Poincar6 first
return map. D

5.4. Accumulation of periodic orbits in polycycles.

Let, be a periodic orbit of X. We shall say that, is a definable

polycycle r if  E (for the Hausdorff metric d). This is equivalent to
say that it is contained in the E-neighborhood TE(r) of r.

Let x E r be a smooth point and let Y,, (x) be an E-section as defined in
Theorem 5.17. The E-near periodic orbit, will be said to be k-intersecting
~~ (~) if, n E, (x) is composed of exactly k points.
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COROLLARY 5.18 (to Theorem 5.17). - Let r be a definable polycycle,
6-bounded away from spiraling and let x E r be a smooth point. For all
0  E  and let 0,,k the set of periodic orbits which
are c-near T and k-intersecting ~~(x). Then is a definable subset

ofT~(r).

Proof. First of all, for each i E N we can consider the ith iterate of
the Poincar6 map

It is obvious that P’ is a definable map with domain on some definable
subset ~~ (r) C such that

Now, it suffices to consider the set of its fixed points of period i,

and define the set of periodic point of minimum period equal to k as

The set of c-near, k-intersecting periodic orbits c ?e(r) can now be
defined by a straightforward procedure, very similar to the one used to
define the set P in the proof of Theorem 5.17. 0

5.5. Future work.

The corollary of the previous subsection has as an obvious consequence
the non-accumulation of semi-limit cycles in definable polycycles of planar
piecewise linear vector fields (a semi-limit cycle is a periodic orbit y which
is either cv-limit or a-limit of some point x E Iae 2 B ~y). In dimension 2, the
hypothesis for a definable polycycle of being bounded away from spiraling
can be dropped by using the Poincaré-Bendixson Theorem.

We intend to treat these matters in a forthcoming work, and prove
the following uniform finiteness result:

CONJECTURE. - Given a definable cell-decomposition E of R , there
exists a natural number N(E) (depending only £) such that each vector
field in C°) has at most N(£) semi-limit cycles.



1627

In the spirit of the Hilbert’s 16th Problem, we also treat the following
question: given two finite collections of real numbers

we consider the (obviously defined) cell-decomposition EJ-L,v of R 2 which
partitions the family of lines ~x = and ~y = 

Let PL2 (r, s, C° ) denote the set of continuous piecewise linear planar
vector fields in C°), for all possible collections J-t Rr, v C R’ as
above.

The original question which was posed to me by Prof. Sotomayor can
now be stated as follows:

CONJECTURE. - There exists a natural number N(r, s) (depending
only on r, s) such that each vector field in PL2 (r, s, C°) has at most N(r, s)
semi-limit cycles.

In fact, using the uniform bounds for the number of roots of expo-
nential polynomials which are given in [Kh], we believe that it is possible
to obtain an explicit upper estimate for N(r, s).
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