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CONNECTING ORBITS OF TIME DEPENDENT

LAGRANGIAN SYSTEMS

by Patrick BERNARD

Ann. Inst. Fourier, Grenoble
52, 5 (2002), 1533-1568

A very natural class of problems in dynamical systems is the existence
of orbits connecting prescribed regions of phase space. There are several
important open questions in this line, like the one posed by Arnold: Is a
generic Hamiltonian system transitive on its energy shells?

Birkhoff’s theory of regions of instability of twists maps, recently
extended by Mather using variational methods and by Le Calvez, provide
very relevant results in that direction. In short, these works establish the
existence, for a certain class of mappings of the annulus, of orbits visiting
in turn prescribed regions of the annulus under the hypothesis that these
regions are not separated by a rotational invariant circle.

John Mather has opened the way to a generalization in higher di-
mension of this celebrated theory by proposing what seems to be the ap-
propriate setting i.e. time dependent positive definite Lagrangian systems.
In this setting, he has obtained the existence of families of invariant sets

generalizing the well known Aubry-Mather invariant sets of twist maps.
Then he stated in 1993 a result on the existence of orbits visiting in turn

neighborhoods of an arbitrary sequence of these invariant sets. However,
the work of Mather is not a complete achievement since there is no relevant
example in high dimension to which it can be applied, and since it is not
completely optimal even in the case of Twist maps. There are examples
where two Aubry-Mather sets of a twist map are not separated by a rota-
tional invariant circle, hence can be connected by an orbit, but where this

Keywords: Connecting orbits - Lagrangian systems - Minimizing orbits.
Math. classification: 37J45 - 37J50 - 53D99 - 35F99.
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can’t be seen by the result of Mather.

In the present paper, we state a new result on the existence of

connecting orbits in higher dimension, with a full self-contained proof. This
result is very close to the one of Mather, and the main ideas of the proof are
the ones he introduced. It has the advantage that it is optimal when applied
to the twist map case, but it does not contain the theorem of Mather, which
we were not able to prove. 1

It is still an open question whether these results may be applied to
interesting example in higher dimension 2. On one hand, it is encouraging
that this theory is optimal when restricted to the case of twist maps,
but on the other hand we will prove that the result is useless in the

autonomous case. Additional work will be required both to weaken the
abstract hypotheses needed to prove the existence of connections, and to
understand when these hypotheses are satisfied.

I am grateful to Lucien Guillou who patiently encouraged me while
I was writing this paper, and to Albert Fathi for his careful reading of
the manuscript and for valuable comments which helped me to shorten
some of the proofs. It is also a pleasure to thank Daniel Massart for all the
discussions we had, which were very helpful to me.

0.1. - Let M be a smooth, compact, connected manifold, TM #
M its tangent bundle. In the following, we note S = R/Z. We choose once
and for all a Riemann metric g on M. It is classical that there is a canonical
way to associate to it a metric on TM. Let us fix a C2 Lagrangian function
L : TM x R - R. Given any compact interval I, we have an action
functional defined on C’(1, M) by

Here and in the following, we note for the curve --~ TM.

The extremals of L on I are the critical points of A with fixed endpoints.
We want to study the Lagrangian system associated with L, that is the
extremal curves of L. We suppose that L satisfies the following conditions
introduced by Mather [10]:

Periodicity. The Lagrangian L is I-periodic in time i.e. L(z, t) -
for all z E TM and all t E R.

1 As it is written in ~11), the proof contains a gap which I am not able to fill.
2 Just before I finished this text, John Mather has announced that he had been able to
prove an important result on Arnold diffusion, so the full achievement of the method
may soon be reached.
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Positive Definiteness. For each x E M and each t E R, the restriction
of L to Tx M x t is strictly convex with non degenerate Hessian.

Superlinear Growth. For each t E R,

Under these hypotheses, there exists a continuous vector field EL on
TM x S, the Euler-Lagrange vector-field, which has the property that a
C1 curve ~ is an extremal of L if and only if the curve mod 1) is an
integral curve of EL. Although this vector field is only continuous, it has a
local flow Ot on T M x ,5’ called the Euler-Lagrange flow. We assume:

Completeness. The local flow Ot is complete i.e. any trajectory X :
I 2013~ T M x S of the flow can be extended to a trajectory X : R ---+ T M x S.

0.2. - Let I - [a, b] be a compact interval of time. A curve

q E C1 (I, M) is called a minimizer or a minimal curve if it minimizes

the action among all curves ~ E C1 (I, M) which satisfy ~y(a) - ~(a) and
~y(b) - ~(b). If J is a non compact interval, the curve ~ E C1 (J, M) is

called a minimizer is minimal for any compact interval I c J. An
orbit X (t) of Ot is called minimizing if the curve 7r o X is minimizing, a

point (z, s) E T M x ,S’ is minimizing if its orbit s) ) is minimizing. Let
us call 9 the set of minimizing points of TM x S. We shall see that 9 is
a nonempty compact subset of TM x S, invariant for the Euler-Lagrange
flow.

0.3. - Let q be a 1-form of M x S. We associate to this form a
function on T M x R, still denoted q, and defined by

where (., .~ (~,s~ is the usual coupling between forms and vectors of

x S). If the form q is closed, then the Euler-Lagrange vector
field of L - q is the Euler-Lagrange vector field of L, and L - q satisfies all
the hypotheses of 0.1 if L does. Let us define the mapping

For any 1-form 1] on M x S, let us define the form 1]s on M by

is a closed 1-form, we define its class [1]] == E R), which does
not depend on s. Let q and p be two closed forms such that = [A]. It is
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clear that the minimizing curves of L - 7~ and L - /1 are the same. Let us
call ~ (c) the set of minimizing points associated to the Lagrangian L - 71,
where q is any closed one-form such that [7y] - c. Let us also define, for
each s E S, the set gs (c) C T M of points z E TM such that (z, s) 
We will also call C (c) and Cs (c) the projections of g(c) and Cs (c) on M x S
and M.

0.4. - Let w(c) be the union of w-limit points of minimizing
trajectories X : [0, oo) --~ TM x S. Let a(c) be the union of a-limit points
of minimizing trajectories X : (-oo, 0] ---~ TM x S. In both definitions

above, minimization is considered with Lagrangians L - q, where q is any
closed one-form on M x R satisfying [77] = c. We will consider the invariant
set

We will see that £(c) In addition, l is contained in the classical
Aubry set .4(c), hence satisfies the Lipschitz graph property, see Section 3
for more details.

0.5. - We associate to any subset A of M the subspace

U is an open neighborhood of A~ C HI (M, R) ,
where iU* : H1(U,Iae) - is the mapping induced by the
inclusion. There exists an open neighborhood U of A such that V(A) =
iu*Hi(U). We can now define, for each c E the following
subspace of H 1 (M, R):

Our improvement compared with [11] is that R(c) may be bigger than

V (go (c) ) 1.. , which was considered there. To be more precise, the minimizing
curves used in Mather’s work satisfy stronger conditions than belonging to
g, and their union is a smaller set called the Mane set N, see Section 3
for the definition. As a consequence, our result does not contain the result

stated in [11]. However, the proof is only sketched in Mather’s paper, and
it is not clear to me how it should be completed.

0.6. - We say that a continuous curve c : R - is

admissible if for each so E there exists 6 &#x3E; 0 such that c(s) - c(so) E
R(c(so)) for all s E so +6]. We say co, ci E are C-equivalent
if there exists an admissible continuous curve c : R --~ H’ (M, R) such



1537

that c(s) = co when s  0 and c(l) = ci when s &#x3E; 1. This is precisely the
definition of Mather [11] except that our R(c) is different from Mather’s

one. We are now in a position to state our main result:

THEOREM. - Let us fix a C-equivalence class C in H1(M,JR). Let
(ci)icz be a bi-infinite sequence of elements of C and (Ei)iEZ be a bi-infinite
sequence of positive numbers. There exist a trajectory X (t) of the Euler-
Lagrange flow and a bi-infinite increasing sequence ti of times such that

If in addition there exists a class co such that ci = co for large i, or a class
such that ci = c-o for small i, then the trajectory X is w-asymptotic

to or a-asymptotic to Z(c_(X)).

We shall state and prove in Section 2 slightly refined theorems, which
imply the following corollaries:

COROLLARY 1. - Let co and C1 be two C-equivalent classes. There
exists a trajectory of the Euler Lagrange flow the a-limit of which lies in
,C(o) and the w-limit of which lies in Z(C1).

COROLLARY 2. - If there exist two C-equivalent classes co and C1
such that are disjoint, then the time one map of the Euler-
Lagrange flow has positive topological entropy. There is another statement
using the function a of Mather, see Section 4. If there exist two C-equivalent
classes co and C1 such that not afline, then the time one map of
the Euler-Lagrange flow has positive topological entropy.

0.7. - Let us insist on the relations between our theorem and the

theorem of Mather in [11]. The only difference between these two results
lies in the definition of C-equivalence, and more precisely in the definition
of R(c). We replaced

as the subspace of allowed directions in [11], §12, by

where N is the set of semi-static curves, see Section 3. The bigger the
subspace of allowed directions is, the stronger the result. Our result does
not contain the result of Mather because we had to replace the set fii of
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semi-static orbits (see Section 3) by the larger set of minimizing orbits in
order to fill the proof. On the other hand our subspace is bigger in certain
cases for example in the twist map case. An important consequence is that
our result is optimal in the case M = ,5’ while the result of Mather was not.
In this case, two cohomology classes c and c’ are C-equivalent in our sense if
and only if the associated sets Q(c) belong to the same region of instability,
that is if they are not separated by an invariant graph. See Section 6 for the
details. Our result is equivalent to the result of Mather in the autonomous
case, however, as we shall explain in 4.11 it is of no interest in this case.

0.8. - In order to apply the theorem, it is necessary to be able

to describe the C-equivalence classes. This is not an easy task even in

the case M - S. It requires a good understanding of the set of

minimizing curves. A lot of literature is devoted to the study of globally
minimizing orbits. We give a review in Section 3. We focus in Section 4
on the dependence on the cohomology, and introduced the function a of
Mather. All these results provide a good description of a smaller set, the
Mane set. In Section 5, we see that the difference between the Mane set
and the set g is linked with the asymptotic behavior of the so-called Lax-
Oleinik semi-group. We exploit this remark to obtain some results on the
shape of the set 9. In Section 6, we apply these results to the case of twist
maps, and obtain that our theorem is optimal in this case. Unfortunately,
there is no hope to apply our result in the autonomous case, as is explained
in 4.11.

0.9. For the convenience of the reader, we list the sets of

minimizing orbits that will be considered in the sequel:

~ is the set of minimizing orbits, defined in 0.2.

L is defined in 0.4.

is the Mather set, defined in 2.4.

Ñ is the Mane set, defined in 3.4.

A is the Aubry set, defined in 3.4.

S are the static classes, defined in 3.11. They partition A.

We will prove in 3.9 the inclusion

The sets A4 , £, ... are the projections onto M of the corresponding invari-
ant sets in TM.
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1. Minimization.

It is useful to work in a slightly more general setting. In this section,
we will consider a Lagrangian L : T M x R ~ R, not necessarily
time-periodic, satisfying positive definiteness and superlinearity, but not
necessarily completeness.

1.1. - If the positive definiteness and superlinear growth are sat-
isfied, there is a continuous local flow Ot on TM such that the curve -y is
a C1 extremal of L if and only if the curve X(t) = is a trajectory of

Ot. This local flow, called the Euler-Lagrange flow, is not assumed to be

complete in the present section.

1.2. - The variational study of L relies on some standard results
proved in [10].

LEMMA. - Given a real number K and a compact interval [a, b], the
set of all absolutely continuous curves -y : [a, b] --+ M for which K

is compact for the topology of uniform convergence.

TONELLI’S THEOREM. - Let [a, b] be a compact interval, and let us
fix two points Xa and Xb in M. The action takes a finite minimum over the
set of absolutely continuous curves -y : [a, b] - M satisfying -y(a) - xa
and - Xb. If in addition the Euler-Lagrange local flow is complete,
then any curve ~ realizing this minimum is C1 and is a trajectory of
the Euler-Lagrange flow.

Let I = [a, b] be a compact interval of time. A curve y E M) is
called a minimizer or a minimal curve if it is minimizing the action among
all curves ~ C M) which satisfy ~y(a) - ~(a) and - ~(b). Let
J be any interval of R. A curve 1 E cae( J, M) is called a minimizer if

I is minimal for any compact interval I C J. Let us notice that if the

completeness is not assumed, the absolutely continuous minimizers need
not be C1, an example of this is given in [1].

1.3. PROPOSITION. - There exist absolutely continuous minimiz-
ers q C M). If the flow is complete, these minimizers are C1 ex-
tremals and the curves are trajectories of the Euler-Lagrange flow.

This proposition follows from the following lemmas, which are stated
in higher generality for later use.
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1.4. LEMMA. - Let us fix a positive definite superlinear La-

grangian L, a compact interval of time [a, b] and a positive constant C.
There exists a constant K with the following property: If L is a positive
definite superlinear Lagrangian such that

for all z E TM and all t E [a, b], and if q : [a, b] -~ M is a minimizer of L,
then 

L 1-

Proof. There exists a constant B depending on L, C and [a, b]
such that all minimizer q of L satisfies A(q) x B, where A is the action
associated to L. Since L is superlinear, there exists a constant D such that

for all z E T M and t E [a, &#x26;]. It follows that L? Ilzll- C - D, and we get
the first estimate

/*

We get the second estimate thanks to the inequality

This ends the proof of the lemma. D

1.5. LEMMA. - Let L be a positive definite superlinear Lagrangian,
and let [a, b] be a compact interval of time. Let Ln be a sequence of positive
definite superlinear Lagrangians, such that ILn(z, t) - L(z, t)1 ~ 
for all z E TM and all t E [a, b], where En is a sequence converging to 0. If
~yn : [a, b] -~ M is a sequence of minimizers of Ln converging uniformly to
~ : ~a, b~ --~ M, then

and q is a minimizer of L on a, b[.

Proof. In view of Lemma 1.4, the sequence A(1n) is bounded and
- 0. By Lemma 1. 2, the curve 7 is absolutely continuous,

and satisfies
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In order to prove the lemma, it is thus sufficient to prove that if x :

[a, b] - M is an absolutely continuous curve such that -y(t) = x(t) in
a neighborhood of a and b, then A(x) &#x3E;- Let x(t) be such
a curve. Recall that x is differentiable almost everywhere. Let us consider
an interval [a’, b’] c [a, b] such that x is differentiable at a’ and b’ and such
that ~y(a’) = x(a’) and ~y(b’) = x(b’). There exist positive constants 60 and
K such that, for all 6 C ] 0, 60 [,

As a consequence, there exists an integer N(6) such that

for all n &#x3E; N (b) . Now let us consider the geodesic ~ : ~a’, a’ + 6] - M
connecting and x(a’ + 6), and the geodesic ( : [b’ - 6, b’] ---+ M

connecting x(b’ - 6) and If 6 x 6o and n &#x3E; N(6), they satisfy
2K and 2K, hence there exists a constant B such that

An(g) x B6 and B6. Since qn is minimizing on ~a’, b’~, it follows

that

Taking the limit, we obtain

Since this holds for all 6 x 60, we get that A (~y ~ [a~,b~] ) &#x3E; lim sup A [a~,b~] ) .
At the limit a’ - a, b’ - b, we obtain that A(x) &#x3E;, lim sup A(-yn). 0

1.6. LEMMA. - Let In - [an, bn] be a nondecreasing sequence of
compact intervals and let J = Unln. Let Ln be a sequence of positive
definite superlinear Lagrangians, such that

for all z E T M and all t E In, where En -~ 0. If qn : In -~ M is
a sequence of minimizers of Ln, then there is an absolutely continuous
curve q : J -~ M which is minimizing for L on the interior of J, and a

subsequence which converges uniformly on compact sets of J to ’y.

Proof. In view of Lemma 1.4, the sequence

is bounded for each n. It follows from Lemma 1.2 that there is a subsequence
of k ~ converging uniformly. By diagonal extraction, we can build
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a subsequence of -yn which converges uniformly on compact sets to an
absolutely continuous limit q : J - M. By Lemma 1.5, this limit is a

minimizer of L on the interior of J. D

1. 7. - We will have in the following to consider one-forms on M x R
which are neither periodic nor closed. Let p be a 1-form of M x R. We
associate to this form a function on TM x R, still denoted /1, and defined

by

The new Lagrangian L - /1 is positive definite and superlinear if L is. If it
is closed, then the Euler-Lagrange flows of L and L - /1 are the same. Let
us define the mapping

and the form At = If p is closed, we define its homology [/~] = E

HI (M, R). We will often identify a form q on M x S with its periodic
pull-back on M x R.

2. Connecting orbits.

In this section, we prove Theorem 0.6. In fact, we will prove more
precise results, Theorems 2.10, which clearly imply Theorem 0.6 and the
corollaries. We suppose from now on that L satisfies all the hypotheses
of 0.1.

2.1. PROPOSITION. - The set ~(c) as defined in 0.3 is a non empty
compact subset of TM x S. It is invariant under the Euler-Lagrange flow.
The mapping c - C (c) is upper semi-continuous.

Proof. That ~(c) is not empty follows from Proposition 1.3. The
other statements are consequences of the following lemma.

2.2. LEMMA. - Let us consider a sequence cn ----+ c of cohomology
classes, a sequence Tn --+ oo of times, and a sequence 1n : ~-Tn, Tn~ ----t M
of curves minimizing L - cn. Then there exists a E M)
minimizing L - c and a subsequence 1k of such that the sequence d-y~
is converging uniformly on compact sets to dq.
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Proof. This lemma is mainly a special case of Lemma 1.6. How-
ever, we have to prove that the convergence of 1n to 7 holds in C1 topology.
Since all the curves qn satisfy the Euler-Lagrange equation associated to
L, the sequence 1n is relatively compact in the C1 topology if it is bounded
in this topology. This in turns follows from:

2.3. LEMMA. - Let us consider a compact set Q C H1(M, R).
There exists a constant K &#x3E; 0 such that, if b &#x3E; a + 1, all curve

~ : [a, b] 2013~ M minimizing L + c, with any c E Q satisfy K

for each t.

Proof. Let q : [a, b] 2013~ M be a curve minimizing L + c, with
c E Q. Let I be an interval of the form [a + i, a + i + 1] in [a, b], with
t E Z. By Lemma 1.4, there exists a constant K’ independent of I such
that K’. It follows that (d1, t mod 1) intersects the compact

C T M x ,5’ on each of the intervals I. Let us set

we have (d, t mod 1) E 1C for all t E [a, b]. On the other hand, the set
1C is compact in view of the continuity of the Euler-Lagrange flow, hence
contained KI for some K. 0

2.4. - The restriction of the Euler-Lagrange flow defines a contin-
uous flow on the compact set ~ (c) . By the Krylov Bogolioubov theorem,
this flow has invariant probability measures. The Mather set Ji4 (c) is the

closure of the union of all the supports of these invariant probability mea-
sures. We have the following lemma, which is a straightforward result of
topological dynamics in compact spaces:

LEMMA. - For all positive number E, there exists a positive number
T such that, if X : [0, T] ---+ ~(c) is a trajectory of the Euler-Lagrange
flow, there exists a time t E [0, T] such that E.

2.5. - Let U be an open subset of M x S. We also note U the open
subset in M x R of points (x, t) such that (x, t mod 1) E U. The one-form
of M x R is called a U-step form if there exists a closed form - on M x S,
also considered as a periodic one-form on M x R, such that the restriction

of J1 to t  0 is 0, the restriction of tc to t &#x3E; 1 is A, and such that the
restriction of p to the set U U {t ~ 01 U {t ~ 1~ is closed.
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2.6. - Let R(c) c be the vector subspace defined in
0.5. If (and only if) the class d belongs to R(c), then there exist an open
neighborhood U of g(c) and a U-step form J1 such that [p] = d. Since
H1(M, IR) is finite dimensional, there exists an open neighborhood U of

G(c) such that, for each d E R(c), there exists an U-step form satisfying
= d. Such a neighborhood U will be called an adapted neighborhood.

Proof. We shall only prove that if a class d belongs to R(c) then an
appropriate step form exists. The other implication will not be used, and its
proof is left to the reader. Let us fix a time t E [0, 1] and a cohomology class
d c V (gt (c)) -L. There exist an open neighborhood SZ of and a 6 &#x3E; 0

such that V(Q) = and such that c Q for all s E t - b, t -I- b .
Let us take a closed 1-form ft on M the support of which is disjoint from
Q and such that [p] = d. We can consider this one-form on M as a form
on ~VI x S. Let f : R - R be a smooth function such that f = 0 on

(-oo, t - 6] and f = 1 on [t + 6, oo). It is not hard to see that the form

is an U-step form satisfying [p] = d, where U is the open set M x [0, t -

2.7. PROPOSITION. - Let us fix a cohomology class c in H1(M, JR),
and let U be an adapted neighborhood of g(c). There exist a positive
number 6 and an integer To with the following property: If d E R(c) satisfies

6, then there exists an U-step form J1 satisfying [p] = d and such that
all the niinimizers q : [-To, To -i- 1] - M of L - J1 - r¡o are C1 extremals
of L, for each closed one-form 770 of M x R satisfying = c.

Proof. The minimizers of do not depend on the choice of
the form qo satisfying [qo] = c. As a consequence, it is enough to prove the
proposition for a fixed form qo. Since HI (M, R) is finite dimensional, it is
possible to take a finite dimensional subspace E of the space of all U-steps
forms on M x ,S’ such that the restriction to E of the linear map J1 -- [/2]
is onto. We shall prove by contradiction that, if p E E is sufficiently small,
there exists a minimizer q : [-To, To + 1] - M of L - TIO - p such
that (-y(t), t) E U for all t E [0, 1]. Else, there would exist a sequence
pn of elements of E such that J1n -~ 0 (this is meaningful in the finite
dimensional vector space E) and a sequence qn : [-Tn, Tn + 1] - M, with
Tn - oo, of absolutely continuous curves minimizing L - qo - J1n, such
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that U for some tn E [0, 1]. There exists a sequence En of
positive numbers such that En ---~ 0 and

for all (z, t) E TM x R. By Lemma 1.6, there exist a curve 1 C C1 (R, M)
minimizing for L - qo and a subsequence of qn converging uniformly on
compact sets to ~. This implies that t mod 1) E U for all t E ~0, l~
when n is large enough, which is a contradiction. This ends the proof of
the existence of a minimizer q : [-To, To + 1] - M of L - 770 - J-t such that
(~y(t), t) E U for all t E [0, 1]. The form qo -~- J1 is closed in a neighborhood
of the C M x R, hence -y is an extremal of L, hence
is C 1. 11

2.8. LEMMA. - Let co and ci be two C-equivalent classes as defined
in 0.6. There exist an integer T(co, C1) and a form tc on M x R such that

i) The restriction of J1 to {t ~ 01 is 0 and the restriction of J1 to
~t &#x3E; T(co, is a closed periodic one-form ~C satisfying [fit] = cl - co.

ii) If 7~0 is a closed periodic one-form such that [r¡o] = co, then any
absolutely continuous curve q : I --~ M minimizing for L - r¡o - J1 is an
extremal of L if I contains [0, T(co, 

Proof. Let c(t) : R - be an admissible curve such

that c(t) - co for all t ~ 0 and c(t) = ci for all t &#x3E; 1. Let us fix, for each
t E ~0,1~, an adapted neighborhood U(t) of ~(c(t)), and let 6(t) and To(t)
be the numbers given by applying Proposition 2.7 to c(t) and U(t). For
each t, there is a positive number 6’(t) such that c(s) - c(t) E R(c(t))
and Ic(s) - c(t)[ x 6(t) for all t E ]t - 108’(t), t + 106’(t)[. There is

a finite increasing sequence of times such that the intervals

]ti - 8’(ti), ti + b’ (t2 ) ~ [ cover ~0,1~ . We require in addition that to - 0
and tN - 1. To sum up, we have constructed a finite increasing sequence

such that

c( ti+1) - c(ti) E R(c(ti)) and c(ti+1 ) - 6(ti).
Let us call pi the step form given by Proposition 2.7 applied with d =

c(t,+i)-c(t,) for 0  i  N. Let us set Ti = 1 + max 0 ~

i  N - 1 and T-i = To (to ) + 1 and define the integers by
T_ 1 - 0 and Ti + T. We also consider Ti as the time translation

(q, t) - (q, t + Ti) on M x R. Let us define the one-form
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Setting T (co, c1 ) - TN, we consider an interval I containing [0, T(co, 
We have to prove that I -~ M is a minimizer of L - qo - p, then q
is an extremal of L. To check this we consider, for each 1 ~ i ~ N - 1, the
curve

which is a minimizer of

where is a closed form satisfying

Since and since Ti+1 - Ti == Ti ? TO(ti) + 1,
we are in a position to apply Proposition 2.7 and obtain that ~ is an

extremal of L on [Ti-, + for each i satisfying 
follows that L is an extremal of L on [0,,rN]. Since q is a closed periodic
one-form on I - Tn - the curve 1 is an extremal. 0

2.9. LEMMA. - For each cohomology class c and each positive
number E, there exists a positive number T (c) with the following properties:
If X : [0, L(c)] - TM x S is a trajectory of the Euler-Lagrange flow
minimizing L - c, then there exists a time t in [0, 7-,(c)] such that

is a trajectory of the Euler-Lagrange
flow minimizing L - c, then

Proof. Let us fix c &#x3E; 0, and consider a sequence Xi : [0, 2i] -
TM x S of trajectories minimizing L + c. By Lemma 2.2, there exists a
minimizing trajectory X E x ,S’) such that the curves Yk (t) -
Xk (t + k) are converging uniformly on compact sets to X (t) . On the other
hand, by Lemma 2.4, there exists a time t such that

It follows that
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when k is large enough, which proves the first part. The second part follows
from Lemma 2.2. 0

2.10. THEOREM (A). - Let us fix a C-equivalence class C in

H1(M,IR). Let (Ci)iEZ be a bi-infinite sequence of elements of C and

be a bi-infinite sequence of positive numbers. If t’ and t" are

bi-infinite sequences of real numbers such that t§’ - ti &#x3E; and

T (ci, ci+1 ), then there exist a trajectory X(t) of the Euler-
Lagrange flow and a bi-infinite sequence ti E ]t’, t~[ such that

If in addition there exists a class Coo such that ci = co for large i, or a class
such that ci = for small i, then the trajectory X is w-asymptotic

to or a-asymptotic to Recall that the sets ,C have been
defined in 0.4.

THEOREM (B). - Let us fix a C-equivalence class C in H1(M, R).
Let (Ci)iEZ be a bi-infinite sequence of elements of C and (Ei)iEZ be a bi-
infinite sequence of positive numbers. If ti is a bi-in.finite sequence of real

numbers such that and ti &#x3E; T (ci, + 4~ (ci) + 2E2+1 (Ci+1), then
there exists a trajectory X(t) of the Euler-Lagrange flow such that

If in addition there exists a class such that ci = for large i, or a class

c-o such that ci = for small i, then the trajectory X is w-asymptotic
to ,C(c~) or cx-asymptotic to 

Proof. Let us prove Theorem (A). Using Lemma 2.8, one can build
a 1-form 77 on M x R such that the minimizers of L - q are extremals of
L, and such that, for each i, the form is closed and periodic and
satisfies 

Let us consider a minimizer -y(t) of and the associated trajectory
of the Euler-Lagrange flow X (t) = By Lemma 2.9, there
exists a sequence ti G ti, [ of times such that

If the cohomology classes ci are equal to a fixed one Coo for i &#x3E; io, then
one can take q such that oo) is closed and periodic. The trajectory
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0 ,~) is then a minimizer of L - hence it is asymptotic to 
by definition. The same holds for a-limits.

The proof of (B) is similar. We use a 1-form 77 on M x R such that the
minimizers of L - q are extremals of L, and such that, for each i, the form

(~Z )~ is closed and periodic and satisfies = ci. We

then conclude that the minimizing trajectories of L - q have the desired
property using the second part of Lemma 2.9. 0

2.11. COROLLARY (see also 4.10). 2013 If there exist two C-equivalent
classes co and ci such that Ji4 (co) and are disjoint, then the time
one map of the Euler Lagrange flouT has positive topological entropy.

Proof. Notice first that and Q(C1) are disjoint if M(co) and
Ji4(ci) are. Else the intersection g(co) f1 would carry an invariant

measure, the support of which would belong both to .M(co) and 
Let us now chose E  d(~(co), ~(cl))/2. Let T be an integer greater than
T(co, C1) + T(C1, co) + ’4(co) + ’4(C1). Let CPT : TM - TM be the time T
flow, we want to prove that there exists a compact invariant set on which
the dynamics of CPT is semi-conjugated to a Bernoulli shift. To do so, we
consider the disjoint neighborhoods Ui = ld(X, el, for i = 0 or

1, and the compact §T-invariant set

Let f be the mapping from Uo U Ul to the set f 0, 11 which takes value
0 on Uo and 1 on U1. Let us endow the set £ = ~0,1 ~~ with the
product of discrete topologies. Define the continuous map h : K --4 E
by = By definition, we have h o OT = o, o h, where cr is
the shift a(a)i = The point here is that the map h is surjective, in
view of Theorem (B). More precisely, let us fix a sequence a = 
Applying the theorem with ci = can Ei = E and ti = iT, we obtain the
existence of a trajectory of OT in h-1 (ai). El

3. Globally minimizing orbits.

We have achieved our main goal, proving Theorem 0.6. However, the
hypothesis of this theorem is rather abstract, and some additional work is
required in order to understand this hypothesis. In the present section, we
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will describe the various sets of globally minimizing orbits which have been
defined in the literature. Since most of the proofs have been written only
in the autonomous case, we prove most of the results we state, except the

graph properties, mostly due to Mather, and for which we send the reader

to [10], &#x3E; [5] and [3].

3.1. - The Lagrangian L is called critical if the infimum of the

actions of all closed curves is 0. It is equivalent to require that the minimum
of the actions of all invariant probability measures is 0. Any Lagrangian
satisfying the hypotheses of 0.1 can be made critical by the addition of a
real constant. See Section 4 below for more details.

3.2. - Let L be a critical Lagrangian. For all t’ &#x3E; t we define the
function

T 1 ! 7 ! TT

where the minimum is taken on the set f of curves q E C1 (~t, t’~, M)
satisfying -y(t) - x and ~y(t’) = x’. We also define, for each (s, s’) E S’2
the function

where the infimum is taken on the set of (t, t’) E such that s = t mod 1,
s’ = t’ mod 1, and t’ &#x3E; t + 1. Following Mather, we introduce one more
function

where the liminf is restricted to the set of (t, t’) E R2 such that s = t mod 1
and s’ = t’ mod 1. These functions have symmetric counterparts

and

If L is critical, then d &#x3E; d &#x3E; 0.

3.3. LEMMA. - The function
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is Lipschitz and bounded on It’ -&#x3E; t + 1~.

Proof. - We first prove the Lipschitz property. The proof of bound-
edness will be given in 3.8. In order to study the dependence in the space
variables x and x’, let us fix a number A &#x3E; 1 greater than the diameter of
M. In view of Lemma 1.4 and 2.3, there exists a constant K such that, if
t’ &#x3E; t + 1 and if q E C1 ( ~t, t’~ , M) is a minimizer, K. Let us

set

Consider t’ &#x3E; ~+1 and four points in M. There is a minimizing
curve y E C1 (t, t’, M) such that = Let us set

The geodesic x E C1 (~t, t + 6], M) between x, and q(t + 6) satisfies

hence A(x) - B6. The same estimate is true with the geodesic x’ E

C1 ( ~t’ - 6’, t’], M) connecting -y(t’ - 6’) and x’ . We have

This proves that 2B is a Lipschitz constant for all the functions Ft,t, with
t’ &#x3E; t + 1. There remains to study the dependence in the time variable t’,
the dependence in t is similar. Let us consider three times t, t’, t" such that
t + 1 - t’ - t" and two points x and x’ in M. Let 1 : [0, t"] - M be a
minimizing curve between x and x’. Recall K. We have

Observing that
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in view of the definition of B and that

in view of the Lipschitz property just proved for Ft,t,, we conclude that

hence F is Lipschitz. We need to introduce some definitions before we prove
that this function is bounded. The proof will be given in 3.8.

3.4. - It is useful to define distinguished classes of minimizers.
Recall that L is a critical Lagrangian. A curve -y E C1 (I, M) is called

semi-static if

for all [a, b] c I. An orbit X (t) = (d1(t), t mod 1) is called semi-static if y
is a semi-static curve. It is clear that semi-static orbits are minimizing. A

curve ~ E M) is called static if

for all [a, b] C I. If q is not semi-static, then there exists [a, b] such that

hence

hence -y is not static. It follows that static curves are semi-static. We call N
the union in TM x ,S’ of the images of global semi-static orbits (semi-static
orbits with I = R) and A the union of global static orbits. Clearly,

It has became usual to call A the Aubry set, and R the Mane set.

3.5. - Let y E C1 (IR, M) be a static curve, and I C R be a
compact interval. There exist a sequence Tk - oo of integers and a

sequence qk : Tk/2] - M of piecewise C1 curves which satisfies
---~ 0 and such that 1kl1 = 111, and qk (Tk /2) = 

In order to prove this result, let us consider a sequence tk - o0 of

integer times. Since the curve 1 is static,

As a consequence, there exist a sequence 2tk + 1 of integers and a

sequence [tk, Tk - tk] - M of C1 curves such that = 
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be the periodic curve of period Tk which coincides with q on [-tk, tk] and
with xk on [tk,Tk - Setting qk - ykl[-Tk/2,T,/2], we have =

3.6. - Conversely, let us consider an absolutely continuous curve
~ : I ----+ M, where I C R is a compact interval of times. Assume that
there exists a sequence -Yk : R - M of absolutely continuous periodic
curves of period Tk E N which is converging uniformly on I to 7 and such
that - 0. Then the curve y is static.

We can assume without loss of generality that Tk is greater than the

length of I (Tk is not supposed to be the smallest period of 7k). Let us take
an interval [t, t’] C I. We have

On the other hand, we see from 1.2 that

We also have, by continuity of ~,

so that

and y is static.

3.7. LEMMA. - We have the equivalence

and the set ,A is a non empty compact invariant set.

- 

Proof. Since d &#x3E; d &#x3E; 0, it is enough to prove that 0

if 0 to prove the first equivalence. Assume that ds,s (x, x) = 0.
Recall that 2~s,s (x, x). Either the infimum in the definition
of ~ is a minimum, or it is a liminf. If it is a liminf, the proof is over. If
it is reached, there is a curve q : [t, t’] --~ M such that = 7(t’) - x
and t mod 1 = s = t’ mod 1, satisfying A(-y) - 0. In this case, we can paste
q with itself several times and build a curve qk : [t, t + k(t’ - t)] such
that = -Yk(t + k(t’ - t)) = x and such that A(-Yk) = 0. It follows
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that 0, hence d,,, (x, x) = 0. This ends the proof of the first
equivalence.

Let us suppose that 0, and prove that x E By
definition of d, there is a sequence 1k E t’ k 1, M) of minimizing
curves such that -~ 0, = x, = x and such that

tk mod 1 = s = t~ mod 1 -~ oo. We can see ~y~ as a sequence
of periodic curves in C1 (IR, M) of period t~ - tk. By Lemma 1.6 we can
suppose, taking a subsequence, that the curves qk are converging uniformly
on compact sets to a minimizer 1 E C1 (Il~, M). It follows from 3.6 that q
is static, hence x E ,As .

Conversely, if x E there exists a static curve q : R --~ M such
that 1( s) == x, where we also note s the real number such that s mod 1 = s.
It is then a direct consequence of 3.5 that d,,, (x, x) = 0. The set is

not empty because it is clear that the minimum of the continuous function
x ~ ds,s (x, x) has to be 0 for each s if L is critical. Finally, ~t is clearly
invariant since it is defined as a union of orbits. 0

3.8. - We are now in a position to prove that the function F is
bounded. Let

and

both A and B are finite. let 1 E C1 (IR, M) be a semi-static curve. There
exist semi-static curves since we just proved the existence of static curves.
Let us choose t’ &#x3E; t + 1 and x, x’ E M. We have

.... , ... ’B.

where we have used that, since 1 is semi-static,

Recalling that the functions Ft,t, are equilipschitz, we obtain the existence
of a constant C such that

for and all (x, x’) E M2. In order to end the proof, notice that,
when 1~ is an integer such that t + 1~ &#x3E; t’ + 1,
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hence

3.9. LEMMA. - We have the inclusions

Proof. It is enough to prove that E C A. Let X : [0, oo) ~
TM x ,S’ be a minimizing orbit and let -y = 7r o X be its projection on M.
There exists a sequence tk - oo of times such that tk mod 1 = s and

q(tk) - cv. We can assume in addition that -~ oo. Let us set

Xk(t) = X(t + Taking a subsequence if necessary, we can suppose
that the curves Xk are converging uniformly on compact sets to a curve

Y(t) = (dx (t), t mod 1 ) . In order to prove that x is a static curve, we write,

In these calculations, we have used Lemma 1.5 between the first line and
the second, and we have used Lemma 3.3 to obtain the last inequality. More
precisely, it follows from this lemma that the sum

is bounded, which implies that the liminf is not positive. D

3.10. FIRST GRAPH PROPERTY. - Let us call II : TM x S -

M x ,S’ the natural projection. Then is a bilipschitz homeomorphism
onto its image A. In addition, we have

In other words, there is a Lipschitz section v : A ---+ T M x ,S’ of II with

the property that, for each (x, s) E A, there is one and only one semi-static
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orbit X(t) satisfying H(X(0)) = (x, s), this orbit is static and is given by

3.11. - It is not hard to see that

if (x, s) c A or (x’, s’) E A. We define an equivalence relation on ,,4 by
saying that (x, s) and (x’, s’) are equivalent if and only if dS,SI (x, xl) = 0.
We call static class an equivalence class of this relation. We also call static
class the image by the Lipschitz vector field v of a static class in M x S.
Static classes are compact invariant subsets of A.

Remark. - [0, c)o) --~ M is minimizing, then the omega-limit
set of the orbit X (t) = (d1, t mod 1) is contained in a static class.

Proof. Let us consider sequences tk and t’ k such that tk mod 1 = s
and s’, and such that --+ 0 and X (t~ ) --+ 0’. We can
assume in addition ~ oo and that t~ - --~ oo. If wand

w’ are the projections on M of 0 and 0’, then

where the last liminf is not positive in view of Lemma 3.3 since is

convergent. D

A semi-static curve thus has its alpha-limit contained in a static
class, and its omega-limit contained in a static class. Each static class

intersects 

LEMMA. - A semi-static curve is static if and only if its alpha and

omega-limits belong to the same static class. If ,A contains only one static
class, then k - Ã. It is the case for example if j4 is transitive i.e. if it has
a dense orbit.

Proof. It is quite clear that if 1(t) is a static curve, then

for all t  t’. Taking the limit t ~ -oo and t’ ---~ oo we obtain that

the alpha and omega-limits belong to the same static class. On the other
hand, let -y(t) be a semi-static curve such that the alpha and omega-limits
belong to the same static class. Let us consider sequences tk --~ -oo and
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t~ --~ 00 of integers such that q(tk) has a limit a E M and q(t[) 2013~ cv.

The hypothesis is that do,o (a, w) = 0. For each t’ &#x3E; t, we have

and q is static.

3.12. - If S c TM x S is a static class, we call S+ the set of
points (z, s) E TM x R such that the orbit CPt(z, s) is semi-static on an

open neighborhood of and omega-asymptotic to S. We define S-
in the same way with alpha-limits.

SECOND GRAPH PROPERTY. - For each static class S, the restric-
tion of II to S+ is a bilipschitz homeomorphism onto its image, as well as
the restriction of II to S-. The set R is the union of the graphs fii n S+,
as well as the union of the graphs N n S- .

4. The averaged energy.

We will now explain the method introduced by Mather to associate
to each Lagrangian L satisfying the hypotheses 0.1 a family of invariant
sets. We will also define the averaged energy a of Mather, and state some
results of Massart [6] which establish a link between the averaged energy
and the topology of the Aubry set. These results will be useful later to
study the twist map case, and they show that no connecting orbit can be
obtained from our results in the autonomous case.

4. l. - Let us identify HI (S, R) with R in the standard way. To a
closed one-form q on M x S, we associate the cohomology A(q) E R of its
restriction to x S, this cohomology does not depend on x E M, and
depends only of the cohomology of q. Recall that we have defined in 0.3
the class [7y] E R) of any closed one-form q on M x S. The function

induces an isomorphism between H 1 (M x and H1(M,JR) x R.

4.2. - Let us fix a Lagrangian L, not necessarily critical. We say
that a closed one-form q on M x ,5’ is critical if L - q is critical.
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THEOREM (Mather [10]). - There exists a convex and superlinear
function

with the property that a closed one-form 71 is critical if and only if

We call the function a the averaged energy.

4.3. - Given a critical form 1], we can associate all the sets M, ,A., ...
to the critical Lagrangian L - ~. It is not hard to see that these sets depend
only on the class [1]] E H1 (M, R) . In view of Mather’s Theorem above, the
function 1] - restricted to critical forms is surjective, and induces
an isomorphism in cohomology i.e. the cohomology in x of a

critical form q is determined by its cohomology [1]] E H1(M,IR). We note

the sets Ji4 , £, ... associated to the critical Lagrangian where 77 is any
critical form satisfying ~r~~ = c. They are non empty compact sets invariant
under the Euler-Lagrange flow of L.

4.4. - We note aa(c) the subderivative of a at c, which is a compact
and convex subset of H1 (M, This is the set of rotation_vectors of
invariant measures of the Euler-Lagrange flow supported in A(c). These
measures are the minimizing measures defined by Mather in [10], see [5].

4.5. - Following Mather, we note

the Fenchel conjugate of a. We call it the averaged action. For each w E
H, (M, R), the number O(w) is the minimal action of invariant probability
measures of rotation vector w. There are interesting connections between
the size of the flats of the averaged energy a and the topology of the
invariant set A(c). In the following, we adapt to our needs some results of
Massart [6].

4.6. - A flat of a is a closed convex K C such that

a K is an affine function. To any closed convex set K, we associate the
vector subspace YK - Vect(K - K). A point c is said to be in the

interior of K if there exists a neighborhood U of 0 in V K such that
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d + U C K. The interior of a flat is not empty. Given c E 
we note F(c) the union of all flats containing c in their interior. It is

clear that F(c) is a flat, we note V F(c) the associated vector space. It

is easy to see that V8a(c) C VF(c)1, although the equality does not
always hold (for example, if a is differentiable at c, and strictly convex,
then VF(c) = ~0~).

4.7. PROPOSITION (Massart, [6]). - If F is a flat of a, there exists
an Aubry set .,4(F) which is the Aubry set ,,4.(c) for all cohomology class c
in the interior of F, and is contained in the Aubry set of any cohomology
class c E F.

Conversely, ifQ(c)nQ(c’) =I=- 0, then the segment [c, c’] between c and c’
is contained in a flat, or equivalently is affine. Here [c, c’] C R)
is the compact segment between c and c’ (the convex envelope of (c, c’l).

Proof. Let us consider a flat F of a. Let q be a critical form such

that - c is in the interior of F, and let p be a closed one-form such
that 1] + Ap is critical for A E [Ao, Ai] , where Ao  0  Ai. This is to say
that e = G TIF. Let us prove that c -J- Ae) for all A E [Ao, Ai] .
Recall that A(c) is the union of orbits which are static for L - 1], so that it
is enough to prove that each curve -y E C1 M) which is static for L - q
is also static for L 2013 7~ 2013 Ap. Let I c R be a compact interval, and let 1k
be the sequence of periodic curves given by 3.5 applied with ~ and I for
L - q, so that -~ 0. Since the form 77 + is critical and the curve

qk is closed, we have

where C H, (M, R) is the homology of We obtain that

when k - oo, hence ~ 0. This implies, in view of 3.6, that
is static for L - q - Since this holds for all I, the curve -Y is static

for the Lagrangian L - 77 - Ap when A E [Ao , Ai] .
In order to prove the converse, let us consider two cohomology

classes c and c’ such that ~(c) n ~(c’) ~ 0. It is clear that in this case

n .Jlil (c’) =1= 0. Choose a critical form r~ such that [17] = c and a closed
form p such that q + p is critical and satisfies [q + ~~ = c’. We are going to
prove that the form q + Ap is critical for each A E [0, 1]. Let us note 
the infimum of the actions of closed curves for L - q - Ap, we have to prove



1559

that I (A) = 0 on ~0,1~ . The function A ---7 is concave as an infimum of

linear functions, and ~(0) == = 0. As a consequence, l (~) &#x3E; 0 on ~0,1~ .
It remains to prove that 0. Let us consider a curve ~ E C (R, M)
whose lifting (d1( t), t mod 1) is a recurrent orbit of the Euler-Lagrange flow
contained in Let tk ---7 oo be a sequence of integer times such
that q(tk ) ~ 1(0). Let us set 6k = ~(O)). [0, tk] - M
be the closed continuous curve such that ] and

is a minimizing geodesic between its endpoints. Since the curve
q is static for L - r~, we have, using the action associated to L - 1]

and a simple calculation shows that A(1k) ~ 0. The same holds for
L - 77 - p, since the curve -y is also static for this Lagrangian. On the other
hand, the action of 7k associated to L - q - is a linear function

of A for each k. As a consequence, we have -~ 0 uniformly on ~0, l~ ,
hence 0 on ~0,1 ~ . 0

4.8. - Following Massart, let us define two subspaces of H1 (M, R)
associated to the topology of A(c). By cohomology class of a closed one-
form of M x S, we mean the cohomology class in H1 (M, R) defined in
0.3. The subspace E(c) C H1(M, R) is the set of cohomology classes in

H 1 ( H, R) of closed one-forms of M x ,S’ which have a support disjoint from
A(c). The subspace G(c) C H1(M,IR) is the set of cohomology classes
in of continuous closed one-forms of M x ,5’ which vanish on

x S) for each (x, s) E A(c). In the above definition, we call a
continuous one-form closed if it is locally the differential of a C1 function.
It is not hard to define the cohomology of such a closed form, for example
by considering its action on closed curves.

4.9. THEOREM (Massart, [6]). - We have the inclusions

The proof of this result in [6] is based on some regularity properties
of the function h discovered by Fathi, see [3]. The generalization from the
autonomous setting of [6] to the non autonomous setting here does not

present any difficulty.

4.10. - The orbits constructed in Section 2 are non-trivial if they
connect disjoint invariant sets. Hence interesting applications of these
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results are possible if and only if there exist C-equivalence classes which
are not contained in any flat of cx. For example, we have the following
restatement of Corollary 2.11.

COROLLARY. - If there exist two C-equivalent classes c and c’ such
that is not affine, or equivalently such that no flat F contains c and
c’, then the time one map of the Euler-Lagrange flow has positive entropy.

4.11. - In the autonomous case, the sets At (c) and Ct (c) C M do
not depend on t, and we have, using the notations of 0.5,

for each t. Hence each C-equivalence class is contained in a flat of a, so
that our results are of no interest in the autonomous case.

5. Convergence of the Lax-Oleinik semigroup.

The Graph properties provide a good description of the Mane set N.
However, the set involved in the hypothesis of Theorem 0.6 is the a priori
larger set ~. The relations between the sets ~ and N are related to the
asymptotic behavior of the so-called Lax-Oleinik semi-group. In all this

section, we will consider a critical Lagrangian L as defined in 3.1. Results
similar to the ones of this section have been obtained from the point of
view of Hamilton-Jacobi equations in [14] by J. M. Roquejoffre.

5.1. - We say that L is regular if the liminf in the definition of the
functions h,,,, given in 3.2 is a limit for all s, s’, x, x’. In this case, since
the functions Ft,t, are equilipschitz, we have uniform convergence of the
sequence Ft,t,, t mod 1 = s, t’ mod 1 = s’ to hs,s, for all s, s’. If L is regular
and if 77 is an exact one-form on M x S, then L - r~ is regular.

5.2. - It is usual to define the mapping
by the expression

The sequence (Tn)nEN is a semi-group called the Lax-Oleinik semi-group,
see [2], [3] and [4]. We say that the Lax-Oleinik semi-group is convergent
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if, for each function u C C(M, R), there exists a function U E C(M x S, R)
such that

It is known that the Lax-Oleinik semi-group is convergent if and only if L
is regular, see [2] and [4]. We recall the argument. If L is regular, then the
Lax-Oleinik semi-group is clearly convergent with limit

On the other hand, assume that the Lax-Oleinik semi-group is convergent.
Let us fix t E R and z E M, and set = where k E N is

chosen such that k &#x3E; For each t’ &#x3E; k, we have Ft, t, (z, x) - 
If we fix t’ mod 1 = s’ and let t’ go to infinity, this is converging to U(x, s’),
which has to be equal to hS,S/(Z,X). It follows that L is regular.

5.3. PROPOSITION. - If L is regular, JV.

Proof. Let ~ E C1 (lR, M) be a minimizing orbit. We have to prove
that this orbit is semi-static. Let us consider a sequence tk ~ -oo such
that s = tk mod 1 does not depend on 1~ and such that a = lim exists.

In the same way, we consider a sequence t’ k - oo and set s’ - t~ mod 1
and w = Since L is regular,we have

Let us consider a compact interval of times [a, b], and assume to make
things simpler that s’ - a mod 1 and s = b mod 1. For k large enough, we
have

Taking the limit, we get

On the other hand, we observe if L is regular that

As a consequence, we obtain

hence -y is semi-static.
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5.4. LEMMA. - If for each (x, s) E A4, the liminf in the definition
of hs,s (x, x) is a limit, i.e. if

for each (x, s) E A4 and each t satisfying t mod 1 = s, then L is regular.

COROLLARY. - If A~ is a union of I-periodic orbits, then L is
regular.

Proof. - Let us fix (x, s) and (x’, s’) in M x S, and E &#x3E; 0. We

want to prove that there exists T such that, if t and t’ satisfy t mod 1 = s,
t’ mod 1 = s’ and t’ &#x3E; t + T, then

Let K be a common Lipschitz constant of all functions Ft,t, with t’ &#x3E;
t + 1. Such a constant exists by Lemma 3.3. Let 1 : [t, t’] - M be a
minimizing curve such that A(~y) = Ft,t~ (x, x’) and such that -y(t) = x and
~y (t’ ) = x’. By Lemma 2.9, it is possible to choose to  to such that
to mod 1 = s and t’ mod 1 = s’, and a minimizing curve 1 E C1 ([to, M)
such that A(q) = Fto,t, (x, x’) and such that -y(to) = x, == x’
and E/4K. Since x’) = lim inf Ft,t~ (x, x’), we can
suppose in addition that

Let x, = we have

and there exists a point y E such that d(xl, y) x E/4K. It follows that

hence

Writing and i with n E N, we have

Taking the limsup yields

lim sup AI
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Since this holds for all E &#x3E; 0, the lemma is proved. Let us now prove the
corollary. If ~y E M) is 1-periodic and minimizing, then for each t the
sequence

is bounded, hence -y (t)) = 0 for each n. As a consequence, if Ji4
is a union of 1-periodic orbits, then the hypothesis of the lemma is satisfied
and L is regular. D

5.5. - One may wish to consider the given Lagrangian L, which is
1-periodic in time, as a k-periodic function of time only. This is best done
in our setting by considering the mapping

and the new 1-periodic Lagrangian L~ = L o Pk. This Lagrangian has the
property that a curve ~ C C1 (I, M) is an extremal of L k if and only if the
curve ~y~ : t ’2013~ is an extremal of L. We call various

sets associated to L~ . It is clear that

On the other hand, we have

but it is not hard to build examples where Ar ~4 (see [4]). Since
C Q, this provides examples where

A direct consequence of Corollary 5.4 and Proposition 5.3 is

LEMMA. - If Ji4 is a union of k-periodic orbits, then L~ is regular,

5.6. LEMMA. - If A4 is minimal in the sense of topological
dynamics and if there exists a sequence qn of n-periodic curves such that

-~ 0, then L is regular, hence Ã = Ñ = 1~.

Proof. - We can suppose that the curves -Yn are minimizers. Let us

consider the n-periodic orbits Xn (t) = (d1n (t), t mod 1 ) . Let us also note
Xn the image of Xn, which is a compact subset of TM x S. Each subse-

quence of Xn has a convergent subsequence (for the HauBdorff topology).
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The limit of such a subsequence is an invariant subset of M. Since JL4 is
minimal, this limit has to be M, hence Xn is converging to for the

HauBdorff topology. It follows that each point (x, s) 6 is the limit of a

sequence (-y,, (t,,), s) with tn mod 1 = s for each n. Using Lemma 3.3, we
get that

lim sup Ft,t+n (x, x) = = = 0

for each (x, s) E A4 and each t satisfying t mod 1 = s. By Lemma 5.4, L is
regular. 0

THEOREM (Fathi, [2]). - If L does not depend on t, then it is
regular. As a consequence, in the autonomous case, the sets ~ and fii are
the same, hence our result is precisely the result of Mather in this case. See
houTever 4.11.

6. Twist maps.

We are now going to specify our results in the case M = S. As we
shall see, unlike Mather’s theorem of [11], our result in high dimension is
optimal when restricted to this case, in the sense that two cohomology
classes c and c’ are C-equivalent if and only if the sets ~(c) and ~(c’) are
not separated by a rotational invariant curve.

6.1. - Let f : TS --~ T,S’ be the Poinear6 return map associated to
the section T,S’ x {0}. Moser has proved that any twist map of the annulus
T,S’ can be realized as the Poincar6 map of a Lagrangian flow satisfying our
hypotheses ([13]).

6.2. We identify and with R in the standard

way. We shall use the term Lipschitz graph for a set which is the image
of a subset of the basis ,5’ or ,S’ x ,S by a Lipschitz section of the tangent
bundle T,5’ --~ ,5’ or x ,S’ - S x S. We shall use the term full Lipschitz
graph for a set which is the image of a Lipschitz section of the tangent
bundle. A rotational invariant curve for f is a closed curve of TS which
is invariant by f and is not homotopic to a constant curve or equivalently
an invariant curve the complement of which has two unbounded connected
components. The Euler-Lagrange vectorfield gives a canonical homotopy
between the identity and f, hence each rotational invariant circle has a
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well defined real rotation number. For each c E the set Ao (c) is a
Lipschitz graph which is invariant by f. By the theory of homeomorphisms
of the circle, the map f restricted to Ao(c) has a rotation number, which is
the only subderivative of a at point c. Hence a is differentiable, and a’ (c)
is the rotation number of f 1.~C 0 (c).

6.3. THEOREM. - If R(c) = 0, then the set ~(c) contains a

rotational invariant curve of rotation number a’ (c) . This curve is a full
Lipschitz graph.

_ 

Note that R(c) = 0 if and only if C(c) = ,S’ x S. We have to prove that

C(c) contains a full Lipschitz graph if g(c) = S’ x S. Let us first mention a
corollary.

6.4. - Let C C R be the set of cohomology classes c C R such
that R(c) = 0, or equivalently such that C(c) = ,5’ x S. Since the mapping
c - C(c) is upper semi-continuous (see 2.1), the set C is closed. Let

a’(C) be the set of rotation numbers of the sets ~ (c) which contain
full Lipschitz graphs. Since the function a is convex and superlinear, the
set Q is closed. Assume that SZ ~ R, then the complement of Q contains
an open interval I. It follows from the theorem above that R(c) ~ 0 if
a’(c) E I, hence the set is contained in a C-equivalence class. On
the other hand, this set is not contained in a face of a, so that we have the
following consequence of Corollary 4.10:

COROLLARY. - then the diffeomorphism f has positive
topological entropy.

COROLLARY. If there such that no rotational

invariant curve of rotation number exist, then the diffeomorphism f has
positive topological entropy.

Let us now prove Theorem 6.3. We need the following result.

6.5. PROPOSITION (Mather [8]). - The function 0 is differentiable
at irrational points. Equivalently, all the flats of a of dimension 1 have

rational slope.

The original proof in [8], [7] of this result is rather complicated. We
shall obtain it as a consequence of the inclusion VF(c) C G(c) of 4.9. It is
enough to prove that any continuous closed form r of ,S x ,S’ which vanishes
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on has trivial cohomology in H1(M,IR). Let us consider the universal
cover JR2 of ,S’ x S. The closed one-form lifts to an exact form dg, where
g E C (R , R). We still call Ji4 the lifting of It is a union of embedded

lines, which will be called the trajectories of A4 . Since q = 0 on the

function g is constant on each trajectory of .J~t. Let us call go the restriction
of g to t = 0, i.e. go(x) - g(x,O), and A4 n (t = 01 c R. Proving
that q has trivial cohomology is equivalent to proving that the constant
go (x-~ 1 ) -go (x) is null. It is enough to prove that the function go is constant
on Let x - , X+ [ be a connected component of the complement of 
Let ~::I:: be the trajectory of M which contains 0). Since the function
g is Lipschitz and constant on ~- and ~+, and since the distance between
y- and y+ in R2 is zero, we have go (x- ) = go (x+) . Since this holds for all
connected component of the complement of Mao, there exists a continuous
function go E R) which is equal to go on and is constant on each

connected component of the complement. This function is differentiable at
each point, with zero derivative. Hence it is constant, so that the restriction
of go to is constant. 0

6.6. - Let us consider a rational number w = p/q in lowest terms.
Let us choose c E a~3(c,~). We see from the theory of homeomorphisms
of the circle that the Mather set is a union of orbits of period q,
whose lifting to the universal cover R satisfy ~y(t -f- q) _ ~y(t) + p. Among
the curves ~ E C1 (JR, ,S’) whose liftings ~ to the universal cover R satisfy
~ (t + q) - ~ (t) = p, those which are orbits of M (c) are precisely those which
minimize the action. As a consequence, these orbits all have the same action

= 

6. 7. RATIONAL ROTATION NUMBER. - Let us assume that a’ (c) is
a rational number p/q in lowest terms. By Lemma 5.5, we have g(c) ==

Let 7-~ be the closure of a connected component of the comple-
ment of (c) in M x S. The boundary of ?-~ is made of two periodic curves
~+ and ~-. We see from the second graph property that g( c) n is

the union of two graphs ~+ and ~-, where the orbits ~+ are heteroclinic
from 7- to -y+, as well as -y- and ~+ themselves, and the orbits of ~-, are
heteroclinic from -y+ to ~- as well as 7- and 7+. If none of the projected
sets g+ = II(9+) and g- == II(9-) is ~l, then their union is also properly
contained in ~L i. e. hence 9 (c) is properly contained in ,S’ x S
so that R(c) = R. Else, ~ (c) n contains a Lipschitz graph. If for all
possible choice of H the second option holds, then clearly all the Lipschitz



1567

graphs can be glued together, and ~(c) contains a full Lipschitz graph.

6.8. IRRATIONAL ROTATION NUMBER. Let us assume that a’(c)
is an irrational number w. The Mather set M (c) is minimal in the sense of
topological dynamics, and we have

As a consequence ~ (c) is a Lipschitz graph.

Proof. That the Mather set is minimal is a consequence of the

theory of homeomorphisms of the circle. We can assume by subtracting a
critical form 7y satisfying [q] = c that /~(~) = 0 = /~(~). In view of Lemma
5.6, it is enough to prove the existence of a sequence qn of n-periodic orbits
such that ~ 0. For each integer n, let us consider a real number
cn E so that M(cn) contains a periodic orbit qn of period
n and rotation number ~nw~ /n. In view of 6.6, the orbit qn has action
A(-yn ) = which is converging to 0 because ~3 (c,~ ) = 0 = {3’(w). D

6.9. - In terms of the Lax-Oleinik semi-group, we have proved the
following. Let L be a critical Lagrangian, and let cv be the rotation number
of A. Let us consider the integer k defined by k = 1 is irrational,
and k = q if w = p/q in lowest terms. Then the semi-group Tf, n E N
is converging. Here we may view equivalently Tn as Tkn, or as the Lax-
Oleinik semi-group associated to In other words, the semi-group Tn
has k-periodic asymptotic orbits. Part of this result was obtained by J. M.
Roquejoffre in [14]. In the paper of Roquejoffre, the convergence is proved
in the case of an irrational rotation number only under the additional
assumption that the Mather set is the full circle.

BIBLIOGRAPHY

[1] J. BALL. &#x26; V. MIZEL, One dimensional variational problems whose minimizers
do not satisfy the Euler-Lagrange equation, Arch. Rat. Mach. Anal., 90 (1985),
325-388.

[2] A. FATHI, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci.

Paris, Série I, 327 (1998), 267-270.

[3] A. FATHI, Book in preparation.

[4] A. FATHI &#x26; J. MATHER, Failure of convergence of the Lax-Oleinik semi-group in
the time periodic case, Bull. Soc. Math. France, 128 (2000), 473-483.



1568

[5] R. MAÑÉ, Lagrangian flows: The dynamics of globally minimizing orbits, Bol.
Soc. Bras. Mat., 28 (1997), 141-153; and G. CONTRERAS, J. DELGADO &#x26;
R.ITURRIAGA: Lagrangian flows: The dynamics of globally minimizing orbits II.
id. 155-196.

[6] D. MASSART, Aubry set and Mather’s action functional, Preprint (2001).

[7] J. MATHER, Destruction of invariant circles, Erg. The. and Dyn. Syst., 8 (1988)
199-214.

[8] J. MATHER, Differentiability of the minimial average action as a function of the
rotation number, Bol. Soc. Bras. Math., 21 (1990) 59-70.

[9] J. MATHER, Variational construction of orbits of twist diffeomorphisms, J. Amer.
Math. Soc., 4 (1991), 207-263.

[10] J. MATHER, Action minimizing invariant measures for positive definite Lagrangian
systems, Math. Z., 207 (1991), 169-207.

[11] J. MATHER, Variational construction of connecting orbits, Ann. Inst. Fourier, 43-5
(1993), 1349-136.

[12] J. MATHER &#x26; G. FORNI, Action minimizing orbits in Hamiltonian systems, in:
Transition to chaos in classical and quantum mechanics, Lect. Notes in Math.,
1589, Springer, (1994).

[13] J. MOSER, Monotone twist Mappings and the Calculs of Variations, Ergodic Theory
and Dyn. Syst., 6 (1986), 401-413.

[14] J.-M. ROQUEJOFFRE, Convergence to steady states or periodic solutions in a class
of Hamilton-Jacobi equations, J. Math. Pures Appl., 80 (2001), 85-104.

Manuscrit reCu le 23 octobre 2001,
revise le 4 avril 2002,
accepté le 24 avril 2002.

Patrick BERNARD,
Universite de Grenoble I
Institut Fourier
BP 74
38402 St Martin d’H6res Cedex(France).
patrick.bernard@ujf grenoble.fr


