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TRANSFORMATION OF MARKOV PROCESSES
BY MULTIPLICATIVE FUNCTIONALS

by Kiyosi ITO and Shinzo WATANABE

1.'Introduction.

Let X, = X,(S, PJ be a Markov process with the state space S and
the probability law P^ of the path starting at a and let a, be a multi-
plicative functional (m.f.) of X,. A Markov process X* = X*(S,P^)
is called the a-subprocess of X^ if

(1.1) P,*[X*eE]== f a^P, (Ec=S) .
JXt6E

An important example of the a-subprocess is the Doob /i-process
which is the subprocess of the Brownian motion with respect to the
m.f.

TO(1.2) a, w
whej;e h is a positive harmonic function. The /i-process plays an
important role in the potential theory. Another important example
is a diffusion process with the generator

(1.3) u = ̂ u - ku {k ^ 0)
This is the subprocess of the Brownian motion with respect to the
m.f.

(1.4) a,=explT -TOdsl.

The transformation to get this subprocess from the Brownian motion
is killing with the killing rate k.

The general a-subprocess was discussed by E. B. Dynkin [1] and
independently by H; Kunita and T. Watanabe [4] under the natural
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assumption

(1.5) E,(a,) ^ 1.
In this note we shall give another general method of the transforma-
tion which seems to be more probabilistic than theirs.

Let us now describe the outline of our construction of the a-sub-
process.

If there exists an increasing sequence of Markov times T^ whose
limit is no less than the least zero point T^ of the given m.f. a such
that o^ATn ls a martingale, we call o^ regular. We shall define the
subregularity and the superregularity of o^ by replacing martingale
with submartingale and supermartingale respectively in this defini-
tion; the superregularity of a, is equivalent to the condition (1.5).
We can prove that the factorization theorem that any superregular
m.f. is expressed as the product of a regular m.f. a}^ and a decreasing
m.f. a^. a^ is called the regular factor of o^ and a^ the decreasing
factor.

In order to construct the a-subprocess, we shall first distort the
probability law P^ of the original process as

(1.6) dP^ = lim a^PjF^,
n-»oo

T^ T T,, PjF^ = restriction of P, to F^

to get a Markov process X^^P^, S) which is semi-conservative in the
sense that the life time T^ can be approximated strictly from below
by a sequence of Markov times almost surely and next kill X^ by
the rate d^/^ to get the a-subprocess X*; the precise meaning
of (1.6) will be given in Section 4.

In Section 2 we shall prove a factorization theorem for positive
supermartingales. In Section 3 we shall use this to get a similar
theorem for superregular m.f/s which will be useful in the construc-
tion of the a-subprocess in Section 4. Interesting examples are given
in Section 5. Our idea can apply to the transformation by a sub-
regular m.f. in which case we should introduce a creation instead of
killing as is seen in Section 6.

We would like to express our hearty thanks to Professors M. Brelot,
G. Choquet and J. Deny who organized the Colloquium of Potential
Theory at University of Paris where the idea of our construction was
presented by one of us, Ito, and also to Professors S. Karlin and
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K. L. Chung at Stanford University for their friendly aid during
our preparation of this note.

2. Factorization theorem for positive supermartingales.

Let Q(F, P) be the basic probability measure space where F is
complete with respect to P and suppose that we are given an increa-
sing and right-continuous family of a-algebras F( c F, 0 ^ t < oo,
each containing all null sets. A non-negative random variable T is
called a Markov time if {T < t} e F, for every t. Given a Markov
time T we shall define F-r as the system of all sets A e F for which
A n {T < t} e F^ for every t ^ 0. Fy is clearly a a-algebra complete
with respect to P and it is easy to see by the right-continuity of F(
that FT = Vf for T = t. Fy is clearly strongly right-continuous in the
sense that (^ Fy^ == F-r for T^ [ T. However, we shall here assume

n
that it is also strongly left-continuous i.e. that f^F^ = Fy for T^ f T.

n
To avoid constant repetition of qualifying phrases, we assume that

T, TI, T^, etc., denote Markov times and that A(, Xy, etc., are
stochastic processes measurable (F,) at each time point t.

By a theorem due to P. Meyer [6] we have a decomposition of Q
for a given T

(2.1) Q = QT V (Q - Op) ^T e FT
such that

(2.2) QT ^ {^n T, < T}
a.s.

for some T,, f T and that

(2.3) Q - QT ^ {3n ^ = T}
a.s.

for every T^ f T, where « a.s.» means the inclusion modulo null sets.
Following P. Meyer we shall call a right-continuous process A(,

t ^ 0, natural if

(2.4) {AA^ > 0, T < 00} c: QT
a.s.

for every T, where AAy = Ay — A^-.
Since every supermartingale has a right-continuous version, we

assume that the supermartingale in consideration is always right
continuous.
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Given a positive (= nonnegative) supermartingale, we set

(2.5) Tx = inf(r: X, = 0) if X, = 0 for some t
=00 if otherwise

and denote with Qx the Op in (2.1) for T = Tx. It is clear that
X, = 0 for t ̂  Tx.

DEFINITION.—X,, 0 ^ t < oo, is called a local martingale if there
exists a sequence T^ f oo with P(T^ < oo) == 1 such that X^A,,
0 ^ ^ < oo, is a martingale.

Remark. — It is easy to see that if X,, 0 ^ t < oo is a local martin-
gale, then we can take T^ f oo such that X, A T;, is a martingale on
[0,oo].

The aim of this section is to prove the
FACTORIZATION THEOREM FOR POSITIVE SUPERMARTINGALES. — A

positive (= nonnegative) supermartingale X^ with P(Tx > 0) = 1 is
factorized as

(2.6) X^X^.X^

with a positive local martingale X^ and a natural decreasing process
X^X^ =1). If there are tw^o such factorizations, then they are
identical in 0 ^ t < Tx.

Before proving this w^e shall prove some preliminary facts.
Let X, be a positive supermartingale for which there exist a

constant M and an almost surely finite Markov time T such that

(2.7 a) ^ x, ^ M for every t < T,

(2.7 b) X, = XT for every t ^ T.
Let X, = Y^ - A, be the Meyer decomposition ofX^ which is possible
because X, is a supermartingale of class D by virtue of (2.7 a, b\ We
shall further impose the following conditions:

(2.7 c) A^ M for every t < T.

Now^, writing A^ for the continuous part of A, and setting

(2.8a) X^^X^TCxpfr^). n fl+^1
\J 0 u / O^u^tAT \ ^u /

AAu>0
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( / » t A T i A ( . \ / A A \~ 1

(2.8 &) X ^ = e x p - ^ n ^^"l •
•'0 A" / (Xu^AT ^ AM ^

AAu>0
AAIf t ^ T and X-r = 0, then the last factor 1 + ——r is meaninglessAy

and is to be interpreted by the following convention:

(2.8 c) xJl + ^AT) = XT + AAr in (2.8 a)\ AT /

fl 4-^) 1 = 0 in(2.8fc)
\ ^T/

Then X}0, ; = 0,1, are well-defined by virtue of (2.7 a, b, c).
LEMMA 2.1.—X( = X^Xj^ is the unique factorization of X, into

a martingale X^ and a natural decreasing process X^ wdth

^ = X^{i = 1, 2), X^ = 1 and ^0) ̂  Z

for some integrable Z.
Proof. — Let § = (0 == UQ < u^ < • • • < u ^ ' ' ' -^ oo) be a division

of [0, oo) wdth |^| = sup|i<i - M f _ i | < oo and define

(2.9) X^ = n f 1 + ^Y^ ' -^AT + A,,T - AJ
i^m\ Ay^ /

w^here m = m(r, T) is the maximum number for w^hich u^ < t A T.
Then it is easy to see that

(2.10) lim X^ = X{°\ 0 ^ X}0^ < e^X^ + A^).l^l-^o
Denoting wdth (f)(x) a function equal to 0 or x~1 according as

x = 0 or x > 0, and noticing

(2.11) X^ = X^_ Jl + ^(X,,_ ^)(Y, - Y,,_,)),

we can see

E(X^|F^,,)=X^.,,

and so

(2.12) E(X^'JF^) = X;,% (f < fe).
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Given any pair s < t, let us consider only § 9 s, t such that §\ -^ 0
and notice (2.10) to derive from (2.12)

(2.13) E(X{0)|F,) = X[°\
which proves that Xj^ is a martingale.

Since X^ has the same discontinuity points as Ay by the defini-
tion, X[l) is natural.

It is now easy to see that the factorization X, == X^Xj^ satisfies
the conditions stated in the lemma.

Now^ w^e shall prove the uniqueness.
Let X, = O^. cD^ be any such factorization and consider a

decomposition of X^:

(2.14) X, = Y; - A;

^;=x,-r ̂ d^\ A;= -rY; = X, - ^d^\ A; = - (D^dd)^.
•/ o J oo J o

Then it is clear that Ay is a natural increasing process. Now w^e
shall prove that Yy is a martingale. Using the division

S = (0 = UQ < u^ < ' ' ' — > oo)
used above, we shall define

(2.15) Y? = X, - ^ <>((&^ - (&^,) - ^((D^) - 0^))
i^m

(u^ < t ^ u^+i).
Writing Y^ as

(2.16) Y ^ = X o + K',^0'-^0',)

to see

(2.17) WJFJ = Y^, (/ < k),
and noticing

(2.18) H m Y ? = Y ; , |Y?| ^ X, + Z,
|<5|-»-0

w^ can see

(2.19) E(Y;|FJ = Y; (s < t\
w^ich proves that Y^ is a martingale.
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Therefore Xy = Y; — A, is the Meyer decompositions of X;, so
that Y; = Y, and A; = A,. Thus we have

(2.15) A, = - f ^d^ i.e. dA, = -$^ d^
J o

where d¥^ means the Lebesgue-Stieltjes measure induced by F,.
Let Ay = A^ + A? be the decomposition of A, into the continuous

part A? and the discontinuous part A? and ^1) = Oi^Y be the
factorization of O^ into the continuous factor ^^ and the dis-
continuous factor Oj^. Then (2.15) is written as

(2.16) d/^ + d^ == -W} d^ - 0^(D^ d<D^
Equating the continuous parts and the discontinuous parts of both
sides of (2.16) respectively, we get

(2.17) dA? = - (D^d)^ d<S>^\ riA? = - (I){°)(D{^ rid)}1,).

Consider now^ the case r < T, so that X, > 0. Recalling

X, = (D^O^ == O}0 ;̂1^1,
w^e can derive from (2.17)

dO^ df^(2.18 a)
^c X,

^=-^-
Since O^ is continuous and ̂ ), = 1, w^ get from (2.18 a)

/ /•?
^^expf-f^

\ J o " "
Since 0{^ is purely discontinuous and <I>% = 1, w^e get from (2.18 b)

O(D- n ^ n (\ ̂ ^\1
^t.d - [ [ ^(D- = 11 I 1 + y- I .

AAu > 0 ^u - ,d AAu > 0 \ ^u /
O^u^r O^M^r

Thus we have proved (D^ = O^O^ = X}^ and so O^ = X}0^ as
far as t < T.

Since 0^_ = X^_ is now evident, it is sufficient for the proof of
(D^) = x^ to recall the special care we took when we defined X^.
If t ̂  T, then O^0 = 0^ = X^ = X^, which completes the proof of
Lemma 1.
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LEMMA 2.—A positive supermartingale X, is decomposed uniquely
as X( = Y, - A,, where Y, is a local martingale and A, is a natural
increasing process with AQ = 0.

Proof.— Define T,, by

T, = min[inf(t;X, > n),n].
Then X,^ is a supermartingale of the class (D) and has a Meyer
decomposition

X , A ^ = Y ^ - A ^ .
By the uniqueness of the Meyer decomposition we have

Y?"" = Y^ and A^ = A00

for m < n and t ^ T^, so that we have a decomposition of X •
X, = Y, - A, such that Y, = Y^ and A, = A,"0 for t< T This
decomposition of X, satisfies the conditions in Lemma "2. The
uniqueness is easy to see.

LEMMA 3.—Let X, be a supermartingale and T a Markov time
Suppose that X, == X^ for t ^ T and that

(2.19) QT, n {T < 00} c {AX,. - 0, T < oo}.
a.s.

If there exists an increasing sequence T,, with lim T,, ^ T such that
X^i.,, is a martingale, then X, is a local martingale.

Proof. — Let X, = Y, - A, be the decomposition of Lemma 2
It is clear that A, = 0 for « T» and so for t < T. Since A. =A^{t^ T)
follows from X, = X^ (t ^ T), A, is a step function with a single jump
at t - T. Since Y, is a local martingale, we have a sequence of
Markov times S, f co such that Y,^ is a martingale. By a theorem
due to Meyer [6], we have

^n {T < co} <= U{AYT == 0,T < S,,} c{AY^o,T < oo},
a•s• n a.s. '

and so

QT^ {T < 00} cr {AY^ = O,AXT = 0,T < 00} c= {AA^ = 0,T < 00}
als' a.s. )

by (2.19), while

{AA-r> 0,T< 00} c QT-
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because Ay is natural. Thus

{AA^ > 0, T < 00} c= {AAT = 0, T < oo},
a.s.

which implies AAy = 0 almost surely and so X, = Y(.
Now we shall come back to the

Proof of the theorem. — Let X, be a positive supermartingale and
let X, = Y, — A( be the decomposition of Lemma 2 and define T,, by

T^ = inf ( t : X, ^ n or X,^ l or A, ^ n )

= oo

if there exists no such t and set T^ = min(T,,,n). Then it is clear
T^T.^limT^Tx.

Define X^ by

X^X^exprf^l n fl+^)
U 0 " J AAu>0 \ ^u /

O^u^t

(A^ = the continuous part of A^)
for t < Tx and

X^o) = xy = x^- on nx

Tx 0 on Q - Qx

for t ^ Tx. Then X}^^ is a martingale by Lemma 1 and therefore
a local martingale by Lemma 3.

Define X^ by

Xi-expf-f^ln (l^V
L J o u -IAA"> ° V A" /

O^M^t

for t < Tx and

0 on Qx^d) ^ ^d) ^ x

Tx X^- on n -Qx

if r ^ Tx. It is then clear that X^ is natural.
Thus X( = X^0^ X^^ is a decomposition which satisfies all condi-

tions of our theorem. The uniqueness follows at once from the
uniqueness part of Lemma 1.



22 KIYOSI ITO AND SHINZO WATANABE

3. Factorization theorem for multiplicative functionals.

Let us recall the definition and notations on Markov processes.
Let S be a locally compact Hausdorff space with a countable open
base and S = S V {A} the one-point compactification of S in case
S is not compact. If S is already compact, A is adjointed to S as an
isolated point. The topological a-algebra B(S) on S, i.e., the least
cr-algebra containing all open subsets of S is denoted by B(S). A
function w:[0,oo)-^ S is called a path if it satisfies the following
conditions:

(3.1 a) w(r) = A ==> w(s) = A for s ^ t,
(3.1 b) \v(t) is right-continuous,
(3.1 c) either lim \v(s) exists or \v{t) = A.

s ] t —

The space of all paths is denoted by W. To emphasize the fact that
w(^) is a function of w e W for each t, we shall write Xy(w) for w(().
The terminal time T^(w) of the path w is defined as

(inf(r:Xy(w) = A) if Xy(w) = A for some t
(3.2) T^(w)=

oo if otherwise

The shift transformation 0y in W is defined by

(3.3) 0,w(s) = w(s + t) i.e. X,(0yW) = Xy+,(w).

By is the least (7-algebra on W for which Xs(w) is measurable for
every s ^ t and B denotes the lattice sum of all By, t ^ 0. P^, x e S,
is a system of probability measures on W(B) such that

(3.4 a) P^(B) is B(S)-measurable in x for every B e B
(3.4 b) P,(Xo(w) = x) = 1
(3.4 c) (Markov property)

E,[/(0yW),B A (T^ > Q] = E,[Ex,(/),B A (TA > 0]
for every B e By, for every B-measurable/, every t ^ 0 and
every Be By.

The triple (Xy,P^,S) is called a Markov process and it is also
denoted by Xy(P^, S) or simply by Xy. Given a probability measure p.
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on S(B(S)), let P^ be the probability measure defined by

P,(B)=[ P,(B)^(a),
Js

B e B. Let N be the class of all sets N such that P^(N) = 0 for every
[i, and F, be the least a-algebra containing B, and N. F is defined
similarly as the least a-algebra containing B and N. A function
T:W-^[0,oo) is called a Markov time if (T < t)ef^ for every
t ^ 0. Given a Markov time T, Fy is defined as

(3.5) FT == (B e F: (T < t) A B e F, for every t).

A Markov process X((P^, S) is called a standard process if the follo-
wing two conditions are satisfied:

(3.6) (strict Markov property). For any Markov time

W{0^\ B A (T < T^)] = EJEx,(/),B A (T < TJ]

for every BeFy.
(3.7) (quasi-left continuity before T^). Given any Markov time T

if T^ is a sequence of Markov times such that T^ f T, then
P,(XT, -. XT/T < TJ = 1

A standard process is called a Hunt Process if the following two
conditions are satisfied

(3.8) (existence of left-limit).

P^(lim X( exists [T < oo) = 1
tiT- '

for every Markov time T,
(3.9) (quasi-left continuity). Given any Markov time T, if T^

is a sequence of Markov times such that T^ f T, then

P,(XT, -^ X^IT < w) = 1.

For a Hunt process X, we have
(3.10) Given any Markov time T, if T^ is a sequence of Markov

time such that !„ f T, then V F^ = Fy.n n

Let X, be a standard process.

DEFINITION.—a,(w), ^e(0,oo)weW, is called a multiplicative
functional (= m.f.), if it satisfies the following conditions

(3.11) a^(vv) is F^-measurable in w for each fixed t,
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(3.12) Except on a subset N of W such that P^(N) = 0 for every x,
we have

(i) ao(w) = 1
(ii) a^(vv) is right-continuous in t and has finite left limits in

0 < t < TA
(iii) a,(w) = 0,t ^ TA
(iv) a,+s(w) = ay(w)as(0,w), for every pair t, s ^ 0.

Given a m.f. a,, we shall denote inf(^:ay == 0) by T^.
DEFINITION.—A m.f. a< is called regular (superregular, subregular)

if there exists an increasing sequence of Markov times T^ such that
l imT^^T^ and that a^^ is a martingale (supermartingale,

n
submartingale) for each P^.

It is easy to see by Fatou's lemma on integrals that the following
conditions are equivalent to each other.

a) o^ is superregular
b) ^ is a supermartingale for each P^
c) E^(a() ^ 1 for every pair (t, x).
Suppose X( be a Hunt process and o^ a superregular m.f. Since a;

is a supermartingale by (&), we can apply the results of Section 1
to see that there exist a local martingale ^x) and a natural decreasing
process y^y^ = 1) such that o^ = ^(x). y^. Recalling how the
natural increasing part was constructed in the Meyer decomposition,
we can get a version ^ of ̂ x) and a version y, ofy^, both independent
of x. /?( and y, satisfy

^s(w) = Pt^W^)
(3.13) t + 5 < T,.

7<+s(w) == y((w)ys(^w)
We shall discuss the details in a separate paper.

Now we shall define a^ and a^ by

(3.14) a^ = ^[T.X]. ^a) = y^T.>r]
where ^[T«>(] takes 1 or 0 according as T,, > t or T^ ^ r. It is easy to
see that T^(O) = T^ij = T^a^ is regular. X^ is continuous at every
jump point of aj^ in [0, TJ since Y( is natural. Thus we have

FACTORIZATION THEOREM FOR M.F.—A m.f. o^ of a Hunt process
Xy(P^,S) such that EJaJ^l for every (t,x) can be factorized
uniquely as

a, = a^a^
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with a regular m.f. a^ and a decreasing m.f. a^ such that
Ta = TQ((O) = T^(D

and that a^ has no common discontinuity points with X^ on [0, TJ.

4. Construction of the a-subprocess of a Hunt process X,.

Let X((P^,, S) be a Hunt process and o^ be a multiplicative functional
for X^. We shall construct the a-subprocess ofX,.

Regular case. — Let a, be regular. Then we have a sequence of
Markov times T^ f T^ such that for each n, a^ M be a martingale on
[0, oo ] for every P^. We shall prove that there exists one and only
one standard process X(0\P(^\ S) that satisfies

(4.1) PM = E^ B] B e FT,, n = 1,2,...
and

(4.2) P^(TA=l imTJ=l .
Thfs process is semi-conservative, in fact, \^e have

(4.3) P^CL<TA)=I , n = l , 2 , . . . .
(4.1) and (4.2) are written symbolically as

(4.4) dP^= lima^P.pFr,.
n—^oo

Let o^ = P t . y, be the factorization that we introduced in Section
3. Since a, is regular, it is also the regular part of the factorization
of the m.f. o^, so that we have

(4.5) a, = ^T«>r] = A for t < T,.
Setting
(4.6) T = mm[inf(t: ̂  > 2), I],

we shall obtain
(4.7) EJ^|FJ=^;

in fact, since ^ is a local martingale, there exists a sequence of
Markov times S^ f oo such that PsnM ls a martingale on 0 ^ t ^ oo
and so we get

(4.8) E,[^Ar|FJ=j8s.ArAr,
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but since P^r ^ 2 + ^ follows from (4.6), we get (4.7) by letting
n tend to oo in (4.8).

Define T^, n = 1,2,... recursively by

(4.9) TI = T, T^W) = ^-i(w) + T(^_^W)

and set
(4.10) A = ft (0 ^ r ^ T,)

==^.A-T,CW (^ ̂ ^2)

=^.^-^^W) (T2^^3)

^c.
It is clear that

(4.11) A = a , for t < T , .

Using (4.9), we have
(4.12) E^JFJ=^.

It is easy to see that q{x, B) = E^[j8^ B] is a probability measure
in B e F^ for each x by (4.7) (t = 0) and measurable in x for each
BeF^, so that p(w,B) = ^(X^^(w, B) is also a probability measure
in BeF^ for each x and F^-measurable in (D for each BeF^. Using
lonescu Tulcea's theorem [2], we can define a probability measure
on the direct product space 0(3^) = W(B) x W(B) x .. . such that

P(co e Q: <^i e BI , co2 e B ^ , . . . , ̂  e BJ

r r= ... g(x,dwi)p(wi,dw2)...p(^-i,dw^
jBi JBn

where o^ denote the n-th component of 0 e Q.
Define ^(co) by

(4.13) ^ == X,(co,» 0 ^ t ^ T(coi),
= X^^+((co2) 0 < t ^ r((o^

= X^^+,^)+,(co3) 0 < t ^ r(co^

= A t ̂  ̂  r(Q),),
i

denote by P^ the probability law (on W(B)) of the stochastic
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process <^, 0 ^ t < oo, and define
(4.14) M = X,(w) ^ < T,

= A t^ T,

on the probability space W(B, P^). Using the properties of o^ and ^
and noticing (4.11) and (4.12), we can prove that the probability
law P^ of the stochastic process <^ ,0< t < oo satisfies (4.1) and
(4.2). (4.3) follows from

P^CL < TJ = E,(a^) = 1.

Decreasing case. — In this case the construction of the a-process
is the usual terminating procedure. Consider a probability measure
space Q = W x [0, oo ] associated with the probability measure
P^ such that

(4.15) P^([5, oo] x B) = f a,(w)rfP(w),
JB

BeB,

and define a stochastic process ^(oS), 0 ^ t < oo, on this probability
measure space by

X,(w) (^ < 5)

(4.16) ^(co) =
A (t ^ s}

for (o = (w, s). Let P^ be the probability law of the process ^(co),
0 ^ t < oo. Then X^P^, S) is the a-subprocess.

General case.—Let a, = a^a^ be the factorization of o^ into
the regular part a^ and the decreasing part a^. The a-subprocess
can be constructed by the superposition of the transformations by
a^ and by a^ in this order, each having been explained above.

Remark. — It is to be noted that the a-subprocess is not always a
Hunt process but a standard process in general, even if the original
one is a Hunt process. In order to construct the a-subprocess of a
standard process as Dynkin and Kunita-Watanabe did, we should
overcome some technical difficulties. We would like to discuss this
in a separate paper.



28 KIYOSI ITO AND SHINZO WATANABE

5. Examples.

a) Let the original process be the Brownian motion in the n-
dimensional domain D terminated at the boundary and let a, be
defined as

y(X,)/u(Xo) t < TA
(5.1) a, =

0 t^ TA,
where u is a positive superharmonic function of class C2 in D. Note
that TA is nothing but the exit time from D. In this case the regular
and decreasing parts of a, are expressed in t < T^ as

^ , (o) Ft' grad^XJ 1 f |grad ^(X,) , ~](5.2 .) ^ = exp^ -^y- ̂  - ̂ J^ L-^)- ̂ J

^ aw-^&Sds}
( i \ | x | ^-imyv^i , |'"''"pLsJ.w^-

since a formula of stochastic integrals shows

(5.3) log a, = log u(X,) - log «(Xo)

_ f gradupy 1 j" / _ |grad u^X,) u(X,)
], u(X,) dAS T 2], { u{X,)2 ' M(X,) ds-

In particular, a, is regular if and only if u is harmonic.
b) Let X((I\,, S) be a conservative Hunt process and X((P,, , S) be

the subprocess of X, by the multiplicative functional:

(5.4) o ,=exp f - f f(X,)ds\
\ J o /

Then

(5.5) ^ = ̂ x]

is a multiplicative functional of X;, whose regular and decreasing
parts are

(5.6 a) a^o^.expff f(X,)ds}
\J o /
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(5.6 b) a^^exp^- f f(X,)ds\.
\ Jo /

To prove this, observe

E,(a, - ao) = E/exp(- ['/(XJ^)) - 1
\ \ Jo / /

= -US expf- f f(X^du\f(K,)ds\
VJ o V J o / /

^ l \
= -E, a,./(XJd5

o /

to see that the increasing process A( appearing in the Meyer decom-
position of o^ is Joas/(Xs) ds. It is now easy to verify (5.6 a, b) by

o^ = expf- f dAS)= expfr /(X^).
V J o ^ / \Jo /

The a^-subprocess of X^ is exactly the process Xc
c) In the construction discussed in Section 4, the a^-subprocess

was semi-conservative. We shall prove that it is conservative if
E^(OC() tends to 1 uniformly in x as t tends to 0.

Let P^ be the probability law of the a^-subprocess. Then

P^TA > t) = E,[a{°>] ^ EJaJ
As we saw in Section 4, we have T^ f T such that

P^(X^€S)=P^(T^<TJ=I .
To complete the proof, we need only observe

P^CIA < <^) = lim P^(TA < ̂  + 0
n—»oo

= lim E<,°>[P^(T^ < t)]
W-K30 n

^ 1 ~ infE^(a,)^0 (r ̂  0).
xeS

d) Using the results of (c) we shall prove that a Hunt process on a
compact state space S "whose semi-group transforms C(S) into C(S)
can be obtained from a conservative Hunt process by terminating
procedure.

Since P^TA > 0 = T^IM is continuous in x e S and P^(T^ > 0 -> 1
(^ ->- 0), it is clear by Dini's theorem that the convergence is uniform,
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so that the m.f. a^ = ^(T^>O satisfies the condition of(c). Let o^ = a^a^
be the factorization of a,. Then X, is obtained by terminating pro-
cedure from its a^-subprocess which is conservative by (c).

Remark.—V. A. Volkonsky[8] discussed the same problem by a
different method.

6. Subregular multiplicative functionals and creation.

Let a, be a subregular multiplicative functional of a Hunt process
X,(P^,, S). Under reasonable conditions a; can be factorized as
o^ = a^a^ with a regular a^ and an increasing a^. Construct
first the a^-subprocess X^ which is semi-conservative and then
the branching process of the particle subject to the same probability
law as X^ except the particle will create a new particle of the same
probabilistic character by the rate da^/a^, each performing the
same random motion and creation. This branching process is called
the a-subprocess ofX,, because E(o^,X,6E) is the expected number
of the particles in E(e S) at time t. Several interesting results concer-
ning creation are found in [3] and [7], in case the original process is a
Brownian motion.
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