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FIXED POINTS OF DISCRETE NILPOTENT

GROUP ACTIONS ON S2

by S. DRUCK (*), F. FANG (**) and S. FIRMO (*)

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1075-1091

1. Introduction.

The classical Poincaré Theorem [13] asserts that a C’ vector field
on a closed surface E with nonzero Euler characteristic has a singularity.
Another way to phrase this conclusion is to say that the flow tangent to
the vector field must have a stationary point. In [9], [10], [11] Lima proved
that pairwisely commuting vector fields on the surface E have a common
singularity. This result has been generalized by Plante [12] for connected
nilpotent Lie group actions on E. The same result does not hold for solvable
Lie group actions, as pointed out in the work of Lima.

From the Lefschetz Fixed Point Theorem any diffeomorphism of
the surface E homotopic to the identity map has a fixed point. This
strenghthened the Poincaré Theorem. A discrete analogue of Lima’s

Theorem was proved by Bonatti [1], [2] asserting that commuting diffeo-
morphisms of E have a common fixed point, provided they are sufficiently
Cl-close to the identity map.

In this paper we will prove a fixed point theorem for discrete nilpotent
group actions on the 2-sphere, extending Bonatti’s Theorem [1]. This may
be considered as a discrete version of Plante’s Theorem for ,S’2.

(*) The first and the third authors were partially supported by FINEP and FAPERJ
of Brazil.

(**) The second author was partially supported by CNPq of Brazil; RFDP, Qiu-Shi
Foundation and NSFC 19925104 of China.

Keywords : Group action - Nilpotent group - Fixed point.
Math. classification : 37B05 - 37C25 - 37C85.
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For a group G, its lower central series is

where G(~+1) - [G, G(k)]. The first 1~ &#x3E; 1 such that G(k) is trivial is called
the nilpotencg length of G. If such k exists then G is called a nilpotent group
with nilpotency length k, or shortly, a k-nilpotent group.

The group of C’ diffeomorphisms of S2 endowed with the C’ topology
is denoted by For each subset H of Diffl(S2), we denote by
Fix(H) the fixed point set of H, i.e.,

When H is a subgroup of Diff I (,S’2 ) , the fixed points of H will be called the
fixed points of the natural H-action on S’2 (shortly R-actz*on).

Our main results are as follows:

THEOREM 1.1. - There exists a decreasing nested sequence 
of open neighborhoods- of the identity map, in such that: if G

is a k-nilpotent subgroup ofDiffl(82) finitely generated by elements in Vk
then the G-action has a fixed point.

We refer to Section 5 for the precise definition of the open

neighborhood Vk, which is independent of the numbers of generators for
the group G.

Theorem 1.1 also holds for a k-nilpotent group G generated by any
family r of elements in Vk for the following reasoning (cf. Lima [11]).
Since G is a k-nilpotent group then any subgroup of G generated by a
finite subset of r is also nilpotent with nilpotency length at most k. By
Theorem 1.1 the fixed point set Fix(q) is nonempty for any finite subset q
of r. Therefore the family of closed subsets of 5~ has the
"finite intersection property" which implies that Fix(F) 0. Consequently
we get

COROLLARY 1.2. - Let Vk be given by Theorem 1.1. If G C 
is a k-nilpotent subgroup generated by elements in Vk then the G-action
has a fixed point.

Theorem 1.1 is just Bonatti’s Theorem when k = 1.

If the action in Theorem 1.1 has a finite but nontrivial orbit, i.e.,
the orbit contains at least two points, we have the following strengthened
theorem.
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THEOREM 1.3. - Let G and Vk be as in Theorem 1.1. If the G-action
has a finite nontrivial orbit then it has at least two fixed points.

As an immediate corollary we have:

COROLLARY 1.4. - Let G be as in Theorem 1.1 and let Z(G) be the
center of G. If there exists an element h E Z (G) such that the number of
fixed points of h satisfies 2  ~(Fix(h))  oo then the G-action has at

least two fixed points.

The above theorem should be compared with a result of Ghys [6]
which asserts that an analytic action of a nilpotent group on ,S’2 has always
a finite orbit.

Using the universal covering 52 ---+ RP2 it is easy to see that

Theorems 1.1 and 1.3, and Corollaries 1.2 and 1.4 hold identically replac-
ing ,S’2 by Rp2.

A typical application of Theorem 1.1 to foliation theory is the

following.

THEOREM 1.5. - Let F be a closed manifold with nilpotent
fundamental group. Then every foliation Cl-close to the trivial foliation
defined by the fibration F --~ F x ~2 ---+ E2 must have a compact leaf close
to some fiber, where E2 = S2 or Rp2.

Bonatti’s Theorem was generalized by Handel [8] to commuting
homeomorphisms of ,5’2 which are Co-close to the identity map. In view of
Handel and Plante’s Theorems, it is natural to ask the following questions:

(i) Do our theorems hold for nilpotent subgroups of homeomorphisms
of s2 ‘?

(ii) Does Plante’s Theorem hold for discrete nilpotent group actions on
surfaces with higher genus (at least 2)?

In a forthcoming paper [4] we will deal with the latter question,
corresponding to Bonatti’s work [2].

We conclude the introduction with the following remark.

An elementary result of Epstein and Thurston [5] asserts that finite
dimensional connected nilpotent Lie subgroup of is metabelian,
i.e., its commutator subgroup is abelian. By Ghys [6] any nilpotent subgroup
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of the real analytic diffeomorphisms group of ,5’2 is also metabelian. It is

not known if the same result holds for Cl diffeomorphisms. On the other
hand, there are examples (cf. [5]) of connected nilpotent metabelian Lie
subgroups of Diff 1 (1R2) with arbitrarily large nilpotency length.

Acknourledgement. - The paper was finished during the second
author’s visit to the Universidade Federal Fluminense in Brasil. He would

like to thank the institution for the hospitality.

2. An algebraic proposition.

In this section we prove an algebraic proposition concerning with the
choice of a set of generators for the commutator subgroup of a nilpotent
group. First we need the following two lemmas.

LEMMA 2.1. - Let G be a (k + 1)-nilpotent group where k &#x3E; 1. Then

In particular, whenever f E G and

Proof. - Note that G(k) is a subgroup of the center of G since G is

(1~ + 1)-nilpotent.
Let f, fl, f2 E G and h, hl, h2 E By definition [f, hi] and

~ f , h2] are elements of G(k) and so they are in the center of G. Therefore,

Similarly,

The proof is finished.

For each nonempty subset S of a group G we set

We shall denote by (H) the subgroup generated by the subset 7~ of a group.
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LEMMA 2.2. - If G is a k-nilpotent group generated by S then we
have (

Proof - We prove this lemma by induction on k.

The lemma is trivial for k = 1 since in this case we have

Suppose the lemma is true for some k &#x3E; 1. We need to prove it

for k + 1. For this, let G be a (k + I)-nilpotent group and let S be a set of
generators for G. Consider the lower central series

Since G(k) is a subgroup of the center of G, we get

for all

By 2.2.1 we have

Therefore is a k-nilpotent group generated by the projection S of S
onto by the quotient map. By the induction assumption we have
that

where denotes the projection of S(k-1) onto GjCCk) by the quotient
map. Therefore for each h E there exist

and

such that

Consequently, there exists a ~ E such that
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Note that each f E G can be written as where

and From the

identity (2.2.2) and Lemma 2.1 we get that

Since fi, hj] E this proves that is generated by S(k) and the proof
is finished. D

PROPOSITION 2.3. - If G is a k-nilpotent group generated by S then

G(1) _ ~s(1), ... , s~~)~. °

Proof. We use induction on k once again in the proof.

The case k = 1 is trivial. The case k = 2 follows from Lemma 2.2.

Suppose the lemma is true for some k &#x3E; 2. Let G be a 

group and let S be a set of generators for G. By the proof of the last lemma
we have

for all

and G IG(k) is k-nilpotent.
By the induction assumption we get

Consequently, for each h E G(j) its image h in the quotient group 
can be written as

where

and

It is easy to see that there exists a ~ E G(k) so that

On the other hand, by Lemma 2.2 there exist

and

so that

Therefore G(1) is generated by S(i) and the proof is finished. 0
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3. Invariance and recurrence.

If f, g are commuting diffeomorphisms then Fix(g) is f-invariant. In
this section we show that the fixed point set of the commutator subgroup,

with G C Diff 1 (82), has invariance and recurrence properties
even without the assumption of commutativity. These properties play an
important role in this paper.

Let f C The positive semi-orbit of a point p is the set

Its closure will be denoted by C~(/).
We say that p E S2 is w-recurrent for f if p is the limit of some

subsequence 

PROPOSITION 3.1. - Let G C Diffl(S2) be a subgroup and let

Then Fix(G(1), fl, ... , fn) is f-invariant. Moreover, it contains w-recurrent
points for f lying in 01;(f), for all p E Fix(G(I)’ fl, - .. , fn).

Proof. The first assertion is an immediate consequence of next

lemma. To prove the second assertion let p E Fix(G( 1) , f 1, ... , Since

Fix ( G ( 1 ) , f l , ... , f n ) is f-invariant it follows that

By Zorn’s Lemma f has a minimal set in C~P ( f ) . The points of C7p ( f ) in a
minimal set of f are w-recurrent points for f. This completes the proof. D

LEMMA 3.2. - Let G be as in Proposition 3.1. Then Fix(G(i), g) is

f-invariant for all f E G and g E where i &#x3E; 1.
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Thus

and

Therefore

which prove that Fix( G(i)’ g) is f-invariant. El

RemarA’. 2013 The results of this section hold for any group of

homemorphisms of an n-dimensional manifold M where M needs to be

compact for the second assertion in Proposition 3.1.

4. A character curve.

In this section we generalize Lemma 4.1 of [1] by proving it without
the commutativity hypothesis on f and g (cf. Lemmas 4.3 and 4.5 below).
This generalization will be an important tool in the proofs of our theorems.

First, let us fix some notations and definitions.

Let ,S’2 denote the unit 2-sphere in Jae3 endowed with the standard

norm, denoted by /1.11. If p : ,S2 -&#x3E; ]R3 is a C 1 map, we define

For a, b where a =1= -b, let [a, b] denote the oriented minimal
geodesic segment from a to b, and let d(a, b) denote its length.

For f E Diffl (82) without antipodal points and p E S’2 let

be the curve obtained joining the oriented minimal geodesic segments
where i E N and 0  p  oo. Note that JL = oo if p is a

nonfixed w-recurrent point for f.

Now let us fix the following neighborhood of the identity map of S’2:

We recall the following two results of Bonatti [1] concerning the
curve q) which will be used in the proofs of our results.
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PROPOSITION 4.1 (Bonatti). - Let f E V1.

1) If p E ~S’2 - Fix( f ) then f does not have any fixed point in the open
ball B (p, 4d(p, f (p) ) ) . In particular, f does not have fixed points along "Yj.

2) If p E ~S’2 - Fix( f ) is an w-recurrent point for f then there exists a
simple closed curve -y contained in "Yf’

We will call the simple closed curve ~y obtained in the above proposition
the character curve of f at p where p is an w-recurrent point for f.

11

PROPOSITION 4.2 (Bonatti). - Let f, hi,..., hr,, E V, be commuting
diffeomorphisms and n E Z+. Let p E Fix(h1, ... , hn) - Fix(f) be an

w-recurrent point for f and q C -yP its character curve at p. If D is a

disk enclosed by -y then f, hl, ... , hn have a common fixed point in the
interior of D.

Let G C be a subgroup and f, g, h 1, ... , hn E V, n G.

Suppose there exist two points p, q E S2 satisfying

With these assumptions we have the following three results.

LEMMA 4.3. - The curves rrj and _Ygq are disjoint.
Proof. Suppose not. Then there exist i, i E N so that

By the triangle inequality we have
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Consequently,
. either f3(p) is in the ball B(gi(q),3d(gi(q),gi+l(q))), which is

impossible by Proposition 3.1 and Proposition 4.1, since f3 (p) is a fixed

point of g;

. or is in the ball which is

impossible by Proposition 3.1 and Proposition 4.1 once again, since gi (q) is
a fixed point of f.

This shows that q) and -yq are disjoint curves. D

COROLLARY 4.4. - Suppose that q is an w-recurrent point for g and
p E Int(D), where D is a disk enclosed by the character curve ,) C Then

"’If C Int(D). In particular, C Int(D).

Proof. By Lemma 4.3 we have that "’If C Int(D) since p E Int(D)
and the curves "’If and _yq are disjoint. On the other hand, since

and g does not have fixed points along -y9 then we get

This completes the proof. 0

LEMMA 4.5. - Suppose there exists an r &#x3E; 0 such that

Proof. Suppose not. Then there are two points

Therefore

Now the same argument used in the proof of Lemma 4.3 applies to
conclude the lemma. 0
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5. The main lemma.

For each integer k &#x3E; 1 let Vk be the following open neighborhood of
the identity map of ,5’2 in the Cl topology:

It is an elementary exercise to verify that

PROPOSITION 5.1. - If f, g E V, then

Furthermore, if f l , ... , E Vk+l and k &#x3E; 1 then

For the sake of simplicity we use f o to denote the identity map.

MAIN LEMMA. - Let G C Diff 1(S2 ) be a k-nilpotent subgroup finitely
generated by elements in Vk and let /i,..., fn G. Let

be an w-recurrent point for f n and 1 C 11n be the character curve of fn
at p. If D is a disk enclosed by 1 then C(i), f l , ... , f n have a common fixed
point in the interior of D.

Proof. The proof will be by induction on the nilpotency length
of the group G. When l~ = 1, the group G is abelian and the lemma
is just Proposition 4.2. Assume now that for some k &#x3E; 1 the lemma is

true whenever the nilpotency length of G is .~, for all 1  .~  I~ and for
all n E Z+. Suppose that G is a ( 1~ + 1 )-nilpotent group finitely generated
by elements in as in the lemma. We now proceed by induction on the
number n of diffeomorphisms fl, ... , f,,.

Let f l E Vk+l n G and let p E Fix(G(j)) - Fix( f 1 ) be an w-recurrent
point for f 1. Let 1 be the character curve of fi and let D be a
disk enclosed by ~y. Joining Propositions 2.3 and 5.1 we obtain a finite
set ~gl , ... , which generates G( 1) . Let H be the subgroup of G
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generated by G(i) and fl. Note that c G~2~. Therefore H is a nilpotent
group with nilpotency length at most k and

By the induction assumption there exists a point q in the interior of the
disk D such that

This proves the case n = 1.

Assume now that the lemma holds for some n &#x3E; 1. In order to prove
and let

be an w-recurrent point for Let -y C be the character curve of

and let us fix a disk D enclosed by y.

Suppose by contradiction that G(j), fl, ..., fn, f,,+ 1 do not have

common fixed points in the interior of D. The induction assumption
on n asserts that G(l)’ fo,..., fn-l, f.+, have a common fixed point Ya
in Int(D). In view of our contradiction assumption we have that

Fix(G(j), fo, - - ., f.-,, f.+,) - Fix(f.)-
Applying Corollary 4.4 to the diffeomorphisms fn and we conclude

that 0+ (f,,) C Int(D). According to Proposition 3.1 the map f n has an
w-recurrent point yo E C Observe

that yo E Int(D) is a nonfixed w-recurrent point for fn, that is

From Proposition 4.1 and Corollary 4.4 we obtain a simple closed curve
1’0 C ~y f° and a closed disk Do enclosed by -yo so that Do C Int(D).
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Once again the induction assumption on n asserts that there exists a

point E Int (Do ) such that

Now we shall repeat the above argument. Corollary 4.4 applied to the
diffeomorphisms f n and gives C Int (Do ) and Propo-
sition 3.1 asserts that has an w-recurrent point

Thereby x 1 E Int (Do ) is an w-recurrent point for and

Proposition 4.1 and Corollary 4.4 give a simple closed curve 1’1 C 1’fXl and
an enclosed disk D 1 c Int(DO). 

f.+i

Remember we are assuming that G(i), f 1, ... , f n , do not have

common fixed points in the interior of D. Consequently, they do not have
common fixed points in D since by Proposition 4.1 the diffeomorphism 
does not have fixed points along 1’.

By the compactness of the sets

we get a constant r &#x3E; 0 such that for all

the distance d satisfies

Since 0+ (f,,) and are contained in D we conclude from the

inequalities 5.1.1 and Proposition 3.1 that

and

for all i G N. It follows from Lemma 4.5 that r. Consequently,
Int(Do) - Di contains a ball of radius 3 r.

Iterating this procedure we obtain an infinite decreasing nes-

ted sequence of closed disks (Di) iEN such that C Int(Di) and

Di+l contains a ball of radius 3 r, contradicting the fact that ,S’2
has finite diameter. This proves the desired result. D
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6. Proofs of Theorems 1.1 and 1.3.

We are now ready to prove our results addressed in the first section.
Let be the decreasing nested sequence of C’ neighborhoods of the
identity map of ,S’2 as defined in Section 5. It is easy to see that Theorem 1.1
follows immediately from the following result.

THEOREM 6.1. If G C is a k-nilpotent subgroup finitely
generated by elements in Vk then

Proof. We argue by induction on the nilpotency length of the
group G and we will follow the same steps as in the proof of the Main
Lemma. The 1 reduces to Bonatti’s Theorem. Assume that the

theorem is true for £-nilpotent subgroups with 1  .~  k. In order to

provethe theorem for the nilpotency length of G equal to k + 1 we shall use
induction on the number n of diffeomorphisms /i,..., fn .

Suppose G is a (I~ + I)-nilpotent subgroup finitely generated by
elements in Let f l E As in the proof of the Main Lemma the
subgroup H generated by G(j) and fl is nilpotent with length of nilpotency
at most k and G( 1 ) has a finite set of generators gnz) C Vk. The
induction assumption on k implies that

is nonempty. This proves the case n = 1.

Assume the theorem is true for some n &#x3E; 1. Suppose by contradiction
that there are fl, ... , fn, E vk+i n G such that

From the induction assumption on n it follows that there is a point
p E S’2 such that

Proposition 3.1 implies that there is a point
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which is an w-recurrent point for Moreover

Now fix the character curve ’1 C ’1fP n+l and a closed disk D enclosed by ’1.
Applying the Main Lemma we obtain

This contradicts the equality (6.1.1). The theorem is proved. D

Let p E ~S’2 and f E V, be such that f (p) ~ p. Suppose the orbit

C~(/) is finite. In that case, the point p is a nontrivial w-recurrent point
for f and we can consider the character curve rr given by Proposition
4.1.

In the proof of the next result we are repeating the arguments used in
the proofs of Main Lemma and Theorem 1.1.

To prove Theorem 1.3 it suffices to prove the following result.

THEOREM 6.2. - Let G C Diffl (82) be a k-nilpotent subgroup finitely
generated by elements in V. - Suppose there exists a point p E S2 with finite
nontrivial G-orbit. such that f (p) ~4 p then the G-action
has a fixed point in the interior of each disk enclosed by the character
curve rr C rrj.

Proof. The proof will be by induction on k.

For k = 1 the group G is commutative. To prove this case let p E S2,
f E V, n G and -y be as in the theorem. Let f 1, ... , f n be a set

of generators of G and fix a point q C Fix(G) given by Bonatti’s Theorem.

Let D C S2 - fql be the disk enclosed by rr. From Proposition 4.1
we know that there exists a point pl E Fix( f ) n Int(D). If pl is not a fixed
point for G then there exists an integer 0  A  n such that

and

where f o denotes the identity map.

Now, we use the fÀ+l-invariance of Fix( fo, ... , fa) and Corollary 4.4
to obtain a point PI E Fix( fo, ... , n Int(D) which is an w-recurrent
point for If i- pi, once again, Proposition 4.2 implies that



1090

there exists a point p2 E Fix( f o , ... , Int (D ) where D 1 c Int(D)
is the disk enclosed by the character curve 1’1 C ~y f~+1. . Repeating these
arguments no more than n times we get a point 4 E Fix( fi , ... , fn) nInt(D)
proving the theorem for the case k = 1.

Now, suppose for some k &#x3E; 1 the theorem is true for all 1  .~  k.
We will prove it for k + 1.

For this let p E ~S’2, f E G and C -yp be as in the theorem. Let
f 1, ... , f n E such that G = ( f 1, ... , fn) is a (k + 1 )-nilpotent group
and fix q E Fix(G) given by Theorem 1.1.

Let H - (G( 1 ) , f ~ . We know that H is nilpotent with length of
nilpotency at most k. It is finitely generated by elements in Vk and the
H-orbit of p is finite and nontrivial. Thus, from the induction assumption
on k there exists a point PI E Fix(G(1), f ) n Int(D) where D is given as
above.

Repeating the arguments as in the case k = 1 and using Proposi-
tion 3.1 and Corollary 4.4, and the Main Lemma we get, after no more
then n steps, that there exists a point 4 E Fix( f l , ... , fn ) n Int (D), and the
proof is finished. D
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