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THE MUMFORD-TATE GROUP OF 1-MOTIVES

by Cristiana BERTOLIN

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1041-1059

Introduction.

The Mumford-Tate group of a 1-motive M defined over C, MT(M),
is an algebraic Q -group acting on the Hodge realization of M and endowed
with an increasing filtration W.. In this paper we study the structure and
the degeneracies of this group.

After recalling some definitions, in Section 1 we investigate the
structure of MT(M): the main result of this section is the structural

lemma (1.4), where we prove that the unipotent radical of MT(M), which
is is an extension by W-2(MT(M)) of the unipotent
radical of the Mumford-Tate group of a 1-motive without toric part,
and that injects into a "generalized" Heisenberg group.
As a corollary, we can compute the dimension of MT (M) (corollary on
dimensions 1.5). We then explain how to reduce to the study of the
Mumford-Tate group of a direct sum of 1-motives whose torus’s character

group and whose lattice are both of rank 1 (Theorem 1.7).
In Section 2, we classify the degeneracies of MT(M), i.e., those

phenomena which imply the decrease of the dimension of MT(M). The 1-
motive M is deficient if W_2 (MT (M) ) = 0. This degeneracy was discovered
by K. Ribet and O. Jacquinot (cf. [JR87]). The 1-motive M is quasi-
deficient if W-,(MT(M)) is abelian and it is depressive if the dimension

Keywords: 1-motives - Mumford-Tate group - Degeneracies - Poincaré biextension.
Math. classification: 14L17 - lIG99.
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of W_2 (MT (M) ) is not maximal. The last two degeneracies are new. Then
there are the "trivial degeneracies" : the trivial deficient and the trivial
quasi-deficient. We call them trivial because they are induced by trivial
phenomena: for example, they appear when the 1-motive is without toric
part, or without abelian part, or when its underlying extension is split, ...

At the end of this section we give several examples.

Using the structural lemma, in Section 3 we give a geometrical in-
terpretation of deficience and quasi-deficience and we show that these two
degeneracies are trivial; more precisely a deficient 1-motive is trivially de-
ficient and a quasi-deficient 1-motive is trivially quasi-deficient (Theorems
3.5 and 3.7).

Acknowledgements. - The study of the Mumford-Tate group of 1-
motives is part of my doctoral dissertation, written under the supervision
of Y. André. I want to express my gratitude to D. Bertrand for the various
discussions we have had on this subject. I thank also B. Moonen for his

suggestions. Finally, I am very grateful to P. Deligne and K. Ribet for their
interest in this work.

1. The structure of the Mumford-Tate group.

1.1. A 1-motive M over C consists of

(a) a finitely generated free Z-module X,

(b) an extension G, defined over C, of an abelian variety A by a torus T,

(c) a homomorphism u : X - G(C).
The 1-motive M = (X, A, T, G, u) can be view also as a complex of

commutative group schemes concentrated in degree 0 and 1: M = [X ~G~ .
A morphism of 1-motives is a morphism of complexes of commutative
group schemes. An isogeny between two 1-motives Mi = ] and
M2 = [X2 #G2] is a morphism of 1-motives such that fx : - X2 is

injective with finite cokernel, and fG : GI - G2 is surjective with finite
kernel.

We can define an increasing filtration W. on M = [X#G] in the
following way:
If we denotes I
r - .."’I -

we have I
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The Cartier dual of M is the 1-motive M" - (XV, Av, Tv, I

where X" = Hom(T, Gm) , AV is the dual abelian variety of A, TV is the
torus with character group X, Gv = Ext’(M/W-2 (M), Gm ) and uv comes
from the long exact sequence

associated to the short exact sequence

The notion of biextension allows for a more symmetric description
of 1-motives: Consider the 7-uplet where X and

Xv are two finitely generated free Z-modules, A and A" are two abelian
varieties dual to each other, v : X - A and vv : Xv --~ Av are two
homomorphisms, and 0 is a trivialization of the pull-back by (v, of the

Poincaré biextension P of (A, A~). From this 7-uplet (A, AV, X, X~, v, 
it is easy to reconstruct the 1-motive M = (X, A, T, G, u) and its Cartier
dual M" _ (cf. [D75] (10.2.12)).
1.2. To each 1-motive M = (X, A, T, G, u) defined over C, one can attach a
mixed Hodge structure: Let = Lie(G) be the fibred product of

Lie(G) and X over G. The Q -vector space T~ (M) = is called

the Hodge realization of M. The filtration W, on M induces an increasing
filtration W. on Tz(M) :

In particular we have that 
and Hi (T, Z). According to [D75] (10.1.3) on 
we define a decreasing filtration F’ such that the triplet (Tz(M), W., F")
we obtain is a Z -mixed Hodge structure without torsion, of level  1, of

type ~(0, 0), (0, -1), (-1, 0), (-1, -I)}, and with GrW (Tz (M)) polarisable.
Let AHSQ be the neutral tannakian category of Q-mixed Hodge

structures. Denote T(M) = (TQ(M), We,Fe) the Q-mixed Hodge struc-
ture attached to the 1-motive M and (T(M)~® the neutral tannakian sub-
category of MHSQ generated by T(M). This subcategory is endowed with
the fiber functor w which sends each object of to its underly-
ing vector space. By [DM82] 2.11 is representable by a closed
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algebraic Q-subgroup P of GL(TQ(M)) and w defines an equivalence of
tensorial categories (T(M))(8) ~ where is the

category of finite dimensional representations of P over Q. We call P the
Mumford-Tate group of M and often we denote it by MT(M). By defini-
tion the notion of Mumford-Tate group is stable under isogeny and duality
and so in this article we can work modulo isogenies. By [S72] Chapter 2 §2,
P is endowed with an increasing filtration, W., defined over Q:

The inclusion

that
implies

Since is a unipotent group, the derived group of is

contained in W- 2 (P). Let Grw (P) = PI W- I (P). According to [By831 32.2,
we know that acts trivially on and by homotheties
on and that the image of in is

the Mumford-Tate group of A, MT(A). In particular, is reductive

and W-i(P) is the unipotent radical of P.

1.3. Let M = be a 1-motive defined over C and

P its Mumford-Tate group. Let = x x

Consider the following group law on if (9,:E, iv),
(t, y, ~~) are two elements of ~CM we define

where ( , ~~ : x - Q(l) is the Weil pairing. We call
the generalized Heisenberg group associaded to M.

Using the canonical isomorphisms Hom(

from the definition of W, we have the inclusions
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1.4. STRUCTURAL LEMMA.

(1) The following sequence:

is exact.

(2) There exists an injective homomorphism of groups I : W- 1 (P) --&#x3E;

such that the following diagram commutes:

Proof.

(1) Since is contained in (T(M))~, by 2.21 [DM82] we
have the surjective homomorphism

By definition of MSc, we have that g E Ker(A) if and only if both the

restrictions of g to and to W- ITQ (M) are trivial. But this
means that W_2 (P) ^--J Ker(A), and so we obtain the exact sequence

which implies ( 1.4.1 ) since P preserves the filtration W..

(2) The existence of I : - is given by (1.4.1) and
by the inclusions defined in (1.3.2). We only have to prove that I is

an homomorphism of groups. In order to simplify notations, we identify
W-i (P) with C and g2 - are

any two elements of we have

where T is a map from x Hi (A, Q) to Q(l). In order
to determine T, we have to understand how 91 o g2 acts on the Hodge
realization TQ(M) of M. Let MI = M/W_2M, M2 - MVIW-2Mv and
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Pi = MT(MI) for i = l, 2. According to 2.21 [DM82] we have the
surjections pri : W_ 1 (PSC) - w- i (Pi) -

Let 7r : W-,(P) - be the surjection constructed in ( 1) .
By definition of we have

Hence modulo the canonical isomorphism Hom(X; HI (A, Q)) ~ HI (A, 
which allows us to identify id with x, we obtain that

Since M2 - W_ 1 (M), pr2 ( 7r g2) acts on a contravariant way on

and therefore we have

where the symbol ’ denote the contravariant action. Consequently, modulo
the canonical isomorphism which

allows us to identify pr2 (~r g2 )’ - id we have that

Again modulo the canonical isomorphism 
from (1.4.4) and (1.4.5) we finally get

Hence and using (1.4.3) we can conclude.
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Remarks. - (1) If rkX = rkX’ = 1 then 1t is a Heisenberg group.

(2) In [DO1] P. Deligne proposes to the author another approach to
the study of the structure of the Mumford-Tate group of M: he suggests
one investigate the of the Lie algebra of the motivic Galois group of
M interpreted as a 1-motive.

1.5. COROLLARY ON DIMENSIONS.

(1) If A fl 0, let A be the connected component of the identity in the
Zariski closure of v x v"(X x X") and F = End A ® Q. Then

(2) If A = 0, let T be the connected component of the identity in the
Zariski closure of u(X) and F’ = End T 0 Q. Then

where

remark that Hence applying [A92]
prop. 1 to MSc, we find that

1.6. Let M = (X, X", A, AV, v, be a 1-motive defined over C. Denote

r = rank X and s = rankX~. Moreover, let fxil (resp. be a basis

of X (resp. of X~). We can also consider M as a complex M = [X ---~ G]
where G is an extension of A by T = Hom(Xv, Gm) . Denote by 
the pushout of G T - which is the extension of A by Cm
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parametrized by the point and by the point on the fibre
of (xj)*(G) above v (xi ) corresponding Consider the 1-motive

where and We can also write

~ in the form where and

are the homomorphisms defined by and

respectively, and V)i3- is the restriction of

1.7. THEOREM. - The 1-motives M and ®i 1 EBj=1 Mij generate the
same neutral tannakian subcategory of M1tSQ’ In particular, MT (M) _

Proof. Via the isomorphism
the extension G corresponds to the product of extensions
and so

which implies that

To conclude, it is enough to show that
We remark that for each

i = 1,..., r the homomorphisms vrj represent the same extension Gj and
so we can let v~ = vYj. In order to simplify computations, we identify X
with zr and X~ with Z . If dz : Z 2013~ 7~S is the diagonal homomorphism,
for each i = 1,..., r we have

Hence taking the sum for i = 1, ... , r, we obtain

where is the 1-motive
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with the extension defined by the homomorphism

, The Cartier dual of

1-motive

If Z’ - (Z’)’ is the diagonal homomorphism of Z’ in we

observe that

where is the 1-motive

with the extension defined by the homomorphism
Now the homomor-

phism

defines a surjection between the 1-motives and

which lifts to a surjection from M to Hence M is a

quotient of and so by ( 1. 7.1 ) and ( 1. 7. 2 ) , we can write
M as a quotient of
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1.8. Let M = [Z # G] be a 1-motive over C, where G is the extension
of A by Gm parametrized by = Q E AV(C), and is the point
S E G(C) which lifts the point v ( 1 ) - R E A(C). Its Cartier dual is the

v

1-motive M" _ where Gv is defined by the point R E A(C) and
E G~(C) lifts the point Q E 

The diagonal homomorphism d : Z ---~ Z x Z of Z and the multipli-
cation law p : Gm x Gem ~ Gm of induce the morphisms of 1-motives

and ~ J
In [Be98] Thm 1, Bertrand constructs the 1-motive

where G is the extension of A = A x A v by Cm parametrized by the point
(Q, R) E A~(C) and U(l) is the point S E G(C) which lifts the point

1.9. LEMMA.

According to (1.4.2), we have that.
and . Since

we observe that and

we remark that

which implies that Hence we have 1

and so we obtain that

We now have to verify that
By definition we have the inclusions

Since the notion of Mumford-Tate group is stable under duality we have
~ - A~ and by construction of M we remark that A = A + ~" - 2A.
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Therefore we can conclude that

which implies that

2. The degeneracies of the Mumford-Tate group.

2.1. Let M be a 1-motive defined over C and P its Mumford-Tate group.
Consider the following subgroups of P:

Clearly and

0, then is a subcategory of and so the natural

homomorphism P - factorises via P - 

which implies that C U~2&#x3E; (P). Finally, if P’ is the Mumford-Tate
group of M", then U~3~ (P) = U(4) (Pv) and U(4) (P) = U(3) (PV).

2.2. LEMMA

Proof. By [A921 Lemma 2 (c), P respects the filtration W. of

TQ(M). Moreover each element of P acts trivially on and

so if g E P we have (g - id) TQ (M) C We remark also that

The result now follows from the definitions of and of W_2(P).
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2.3. The Mumford-Tate group P of a 1-motive M can present some dege-
neracies which correspond to decreases of the dimension of P. We classify
these degeneracies in the following way:

o M is deficient if W-2 (P) = 0. Among the deficient 1-motives, there
are those which are trivially deficient: M is trivially deficient if W- 1 (P) =
U~4~ (P) and W- 2 (P) - 0 (or dually if W_ 1 (P) - U(3)(p) n U(2)(p) and
W-2 (P) = 0), or if W_ 1 (P) = 0.

. M is quasi-deficient if W- 1 (P) is abelian. Since the derived group of
W- i (P) is contained in W- 2 (P), deficience implies quasi-deficience. Among
the quasi-deficient 1-motives, there are those which are trivially quasi-
deficient : M is trivially quasi-deficient if W_1 (P) = U(4)(p) (or dually
if = U (3) (P) n U~~~ (P)), or if = W_2 (P).

o M is depressive if 0  dimQ W-2(P)  rankx - rankXv.

2.4. Examples

(1) The 1-motives M = such that the image
of v consists of torsion points are examples of trivially quasi-deficient 1-

motives.

(2) The 1-motives without toric part or the 1-motives M = 
with the image of u consisting of torsion points are trivially deficient 1-

motives.

(3) In [JR87] Jacquinot and Ribet construct a deficient 1-motive using
an abelian variety A with complex multiplication, a point in A" and a
homomorphism f : Av --+ A.

(4) In order to construct a quasi-deficient 1-motive it is enough to take
a deficient 1-motive à la Jacquinot-Ribet and to "perturb" its trivialization
~ by an element of which is not a root of unity.

(5) As example of quasi-deficient depressive 1-motives we can take the
1-motive M = [Z -~ with u ( 1 ) _ (q, q2 ) and q not a root of unity. If
we want a depressive but not quasi-deficient 1-motive, it is enough to take
the 1-motive M © M, with llil any 1-motive which is not quasi-deficient.
Unfortunately, for the moment we have only trivial examples of depression,
i.e., examples where the depression can be explain in terms of deficience or

isogeny.
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3. Geometrical interpretation of deficience
and of quasi-deficience.

3.1. We first introduce some notations due in great part to D. Bertrand (cf.
[Be94], [Be98]): Let M = be a 1-motive over C and

P the Poincaré biextension of (A, A’). An abelian subvariety B of A x A"
is said to be isotropic if the restriction of P to B is trivial or of order 2.
For each pair (x, XV) in X x Xv consider the following conditions:

(i) there exists an isotropic abelian subvariety B(x,xv) of A x All, which
contains a sufficiently large multiple of (v(x), We denote ~ the
canonical splitting of the square of 

x,x &#x3E;

(ii) if 13 is the restriction of (v, vv) to the group Z generated by a
sufficiently large multiple of (x, xv) in X x Xv, the trivializations 01 z and
(3* ç coincide.

We say that M is quasi-isotropic (resp. isotropic) if (i) (resp. (i)
and (ii)) is (resp. are) satisfied for each pair (x, XV) in X x Xv. If we

consider the 1-motive M = (Z, Z, E, EV, v, vv, 0) where E is an elliptic curve,
= P and v" ( 1 ) = Q E the conditions (i) and (ii) become

is trivial}, where £n (resp. S£) is the group of n-torsion
points of E (resp. ~" ) .

(ii’) corresponds to one of the following E

is a root of unity 1.
Remark. - The condition (i) is equivalent to the existence of an

antisymmetric homomorphism A 2013~ ~ and of an integer
such that g(x,xV)(P) == for each (P, Q) in The

antisymmetric homomorphisms appear also in the construction of deficient
1-motives by Jacquinot and Ribet (cf. [JR87]). Also using antisymmetric
homomorphisms, Breen interprets the Jacquinot and Ribet’s deficient 1-

motives in terms of alternate biextensions (cf. [Br87]).

3.2. LEMMA. - Let M - Z, A, AV, v, vV, w) be a quasi-isotropic 1-

motive over C. Then M has the same Mumford-Tate group as the 1-motive

= x Gb] where B is an isotropic abelian subvariety of A x AV
containing a sufficiently large multiple b of (v (1), B x Gb is the

extension B’ by Cm parametrized by the point (0, b) of Bv,
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and is the point (b, a) of B x Cm which lifts the point (b, 0) of B. In
particular if M is isotropic, then Ll (1) _ (b, a) with a a root of unity.

Proof. By hypothesis, there exists an isotropic abelian subvariety
B of A x A" containing a sufficiently large multiple b of 
According to [Be94] Lemma 1, there exists an isogeny S : B ----t A whose
restriction to B is the natural inclusion of B in A and such that is

a multiple of the Poincaré biextension of (B, BV), P(B,BV), Let M be the
1-motive associated to M in 1.8. Using the isogeny S : B - A, we see
that M is isogeneous to the following 1-motive 

where B x Gb is the extension of B by Cm parametrized by the point
(0, b) E B~. Since M is quasi-isotropic, admits a canonical splitting
~, and therefore we obtain = (b, a) with a E Gem. If M is isotropic,
we observe that Ll ( 1 ) - (b, a) with cx a root of unity. Finally, since M is
isogeneous to J1~1, we have MT (M) - and so by 1.9 we obtain

MT(M) = 

3.3. Since A is an abelian variety defined over C, we can view it as

a quotient V/A of a C-vector space V by a lattice A. By definition
A" = V~/A~, where Vv = Hom, (V, C) is the C-vector space ofC-antilinear
forms, and A" - ~l 1 E V"! I Im l(A) C According to [LB92] §4, the
duality between A and Av can be expressed in terms of the non degenerate
R-bilinear form

By [LB92] §5, the Poincaré biextension P of (A, A") is defined by the
Hermitian form

and by the semi-character
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The first Chern class of P, cl (P), can be identified with the Hermitian form
H or with the real valued alternate form

By [D75] (10.2.3), in Hodge realization the Poincaré biextension P
defines a pairing (, ) z : x 2013~ which coincides

with the pairing (, ) : V x Vv - R once we extend the scalars to R and
we identify Z(l) with Z by sending 2z7r to 1. From now on, we identify
these two pairings.

3.4. LEMMA. Let M = be a 1-motive over C.

The following conditions are equivalent:

is abelian,

HI (B, Q), where B is the connected component of the identity in the Zariski
closure of v(X) x VV(XV).

Proof. Let P = MT(M). According to the structural lemma, we
have the following inclusions:

and we know that the commutator of two elements g, = (s, ~, and

where (, )Q is the pairing obtained from ( , ) ~ by extension of scalars. The
result now follows from the fact that is abelian if and only if

~gl, 92~ = 0 for each gl, g2 E W- I (P).

3.5. THEOREM. - Let M = (X, Xv, A, AV, v, vV, 1/J) be a 1-motive over C.
The following conditions are equivalent:

(i) M is quasi-isotropic,

(ii) M is quasi-deficient,

(iii) M is trivially quasi-deficient.
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Proof.

(i) ~ (ii): By hypothesis there exists an isotropic abelian subvariety
B of A x AV. But this implies that ci (Pj B) = 0 and therefore by (3.3.2)
and 3.4 we can conclude that is abelian.

(ii) ~ (i): From 3.4 and (3.3.2), we have ElvB XVB == 0.

Moreover, if we consider a special case of 3.4 (it is enough to take the
pairs (i, 0) and (0, XV) of H, (B, Q)), we find that 0 for
each in which implies by (3.3.1) that 1. Since

and 1, we have that the restriction of the Poincaré
biextension to B is trivial.

(i) - (iii) : We have to prove that = U(4) (MT(M)).
Since by definition U(4) (MT(M)) C W_ 1 (MT (M)) , it is enough to show
that W_ 1 (MT (M)) C U(4) (MT(M)). Using the same notations as in 1.6,
by Theorem 1.7 we have that where

There exists the injection

which respects the filtration W, . According to 3.2 we know that for each
i, j there is a 1-motive A4 j such that = MT(A4ij) and

where is an isotropic abelian subvariety of A x A v containing a

sufficiently large multiple bij of (Vij(Xi), Bij x Gb,, is the extension
of Bij x B2~ by parametrized by (0, E Bfj, and is the

point (bij, aij) E Bij x Gm which lifts the point 0) E B... Consider the
two 1-motives

where and is the diagonal
homomorphism of Z, we have

therefore. But since.

we remark that . Using
(3.5.1) we obtain the injection
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Let g be an element of Since

we have that But this implies that

0, and so we can conclude that g E U (4) (MT(M)).
3.6. LEMMA. Let M = be a 1-motive defined over
C. The following conditions are equivalent:

(i) M is isotropic,

(ii) M is deficient.

Proof.

(i) ~ (ii) : This is done in [Be98] Thm 1, but unfortunatly the
converse was proved only for 1-motives defined over a number field.

(ii) ~ (i) : We will prove that if M is not isotropic then it is

not deficient. If M is not quasi-isotropic, by Theorem 3.5 it is not quasi-
deficient, and so in particular it is not deficient. If M is quasi-isotropic,
then according to 3.2 M has the same Mumford-Tate group as the 1-motive

= x Gb~, where B is an isotropic abelian subvariety of A x Av
containing a sufficiently large multiple b of x Gb is the

extension of B = B x Bv by Cm parametrized by (0, b) E Bv and is

the point (b, cx) c B x Gm which lifts the point (b, 0) E B. Consider the two
1-motives

where = a and u2 ( 1 )
homomorphism of Z, we have

is the diagonal

and so But with

and therefore

Since M is not isotropic, a is not a root of unity and so by [B01] 5.4 we
have

which implies by (3.6.1) that M is not deficient.
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3.7. THEOREM. Let M = be a 1-motive defined

over C. The following conditions are equivalent:

(i) M is isotropic,

(ii) M is deficient,

(iii) M is trivially deficient.

Proof. Using the same notations as in 1.6, by Theorem 1.7 we have
_ __ "I--

, There

exists the injection

which respects the filtration W..

(i) ~ (ii): By (3.7.1 ) if all the Mij are deficient then so is M.

Moreover, according to 3.6 the 1-motive Mi3 is deficient if and only if it is
isotropic. Hence we can conclude that: M is deficient if and only if Mij is
deficient for each i, j, if and only if is isotropic for each i, j, if and only
if M is isotropic.

(i) - (iii): According to 3.2 for each i, j there exists a 1-motive A4..
such that = and

where BZ~ is an isotropic abelian subvariety of A x A v containing a

sufficiently large multiple is the extension of

parametrized by

we have

and so using (3.7.1) we obtain the injection

By hypothesis we already know that W-2(MT(M)) = 0. In order to

conclude it is enough to prove that ’

g be an element of W_ 1 (MT (M) ) . Since
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we have and therefore

we can conclude that

Remark. - The direct proof that (ii) implies (i) answers a question
of Y. André (cf. [Be98] Thm 1 Remark (iv)).
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