
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Peter MÜLLER

Finiteness results for Hilbert’s irreducibility theorem
Tome 52, no 4 (2002), p. 983-1015.

<http://aif.cedram.org/item?id=AIF_2002__52_4_983_0>

© Association des Annales de l’institut Fourier, 2002, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2002__52_4_983_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


FINITENESS RESULTS FOR

HILBERT’S IRREDUCIBILITY THEOREM

by Peter MÜLLER

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 983-1015

CONTENTS

Keywords: Hilbert’s irreducibility theorem - Hilbert sets - Permutation groups.
Math. classification: 12E25 - 12E30 - 14H25 - 20B15 - 20B25.



984

1. Introduction.

Let k be a finitely generated field extension of Q, and R a finitely
generated subring of k. In a typical situation k is a number field, and
R = Ok is the ring of integers. Let f (t, X ) E 1~(t) ~X~ be an irreducible
polynomial. By the well-known Hilbert irreducibility theorem there are
infinitely many specializations t such that f (t, X ) is irreducible

over k. Furthermore, easy examples show that nevertheless may be

reducible for infinitely many t E R.

Denote by Red f (R) the set of those t E R for which f (t, X) is defined
and reducible over k.

The purpose of this paper is to give several sufficient conditions which

guarantee that Red f (R) is a finite set, and to give non-trivial examples for
infinite Red f (R).

Our sufficient conditions are of various types. Section 4.3 gives criteria
on the ramification of the place t - o0 of k(t) in a root field of f (t, X)
which imply finiteness of Red f (R). For instance, if this place is not ramified
at all and f (t, X) has odd degree in X, then Red f (R) is finite. Some of the
results in this section are related to previous work by Debes, see [Dèb86].

In Section 4.4 these results are applied to polynomials of special forms.
For instance, we extend a result of Langmann on Thue polynomials. An ex-
ample of this sort is the following. Let H(t, X) E k[t, X] be a homogeneous
and separable polynomial of degree &#x3E; 2. Then RedH(t,x)-l (R) is finite. This
was shown by Langmann in [LanOO] under the additional assumptions that
k = Q, R = Z, and that H has odd degree. Our method allows to easily
obtain results about polynomial of the form P(X) - tQ(X), which again
extend previous results by Langmann [Lan90], [Lan94] by removing tech-
nical conditions he had to impose to make his diophantine approximation
techniques work.

Another sufficient condition which yields finite Red f (R) is a transi-

tivity assumption on the Galois group of f (t, X) over k(t). Assume that
this Galois group permutes doubly transitively the roots of f (t, X ) . Then
Red f (R) is finite, unless f (t, X ) is absolutely irreducible, and the curve

f (t, X) = 0 has genus 0. This is shown in Section 4.5, where we base our
proof on a genus estimation of function fields which we consider interesting
in its own right.

This is the only situation where we also consider specialization in k.
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We prove finiteness of Red f (k) under the stronger sufficient (and generally
necessary) condition that the curve f (t, X ) = 0 has genus &#x3E; 1.

While we obtain quite satisfactory results if the Galois group of

f (t, X) is doubly transitive, the situation changes drastically if we impose
the weaker assumption that this Galois group is primitive. If a weak

condition on the composition factors is satisfied, then Red f (R) is finite.

We also prove a converse to this criterion.

A very precise result is possible if f (t, X) has prime degree in X, and
I~ - Q, R = Z. If f (t, X ) - h(X) - t with h(X) E Z[X], then clearly

I = oo. In Section 4.7 we show that this is essentially the only
instance for odd prime degree polynomials f (t, X ) with IRedf(Z)1 = oo. It
is interesting that there are exceptions in degree 2. This section is related
to [MüI99], the precursor to this paper.

Our main tool for all these results is Siegel’s theorem about algebraic
curves with infinitely many integral points in a number field, or the

extension by Lang to points in a finitely generated integral domain of
characteristic 0.

A variation of the classical reduction theorem in the proof of Hilbert’s

irreducibility theorem gives the following: Assume that I = oo.
Then the splitting field of f (t, X ) over k(t) contains an element z, such

that t = g(z) for g(Z) E a rational function which assumes infinitely
many values in R on k. Furthermore, f (t, X) becomes reducible over k(z).
The property I - oo is rather strong, results of Siegel-Lang give
precise and restrictive information about the ramification of the places of

which lie above t - oo.

It is clear in this setting that the Galois group of g(Z) - t over k(t) is
a homomorphic image of the Galois groups of f (t, X). Thus one can expect
further results if one is able to classify these former Galois groups. This has
been carried out in [Mul01]. The proof (as well as the result) is long and
involved. In addition, it makes heavy and frequent use of the classification
of the finite simple groups. The final Section 5 provides two applications.
The first is a sufficient condition on the composition factors of the Galois

group of f (t, X ) if this group is primitive which guarantees that Red f (R)
is finite.

The second result says the following: Let f (t, X ) have a

simple Galois group over Q(t) of order &#x3E; 3 which is not isomorphic to an
alternating group. Then this group is preserved for all but finitely many
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specializations t H Even though this is a smooth result, we doubt
that a proof of that can be achieved without knowing the list of the finite
simple groups.

This work was inspired by M. Fried’s observation of the applicability
of group theoretic methods in the analysis of Hilbert sets, see [Fri74],
[Fri80], [Fri85].

I thank the referee for thoroughly reading the paper and making many
useful suggestions.

2. Consequences from Siegel’s theorem.

2.1. Description of Hilbert sets.

The following proposition gives a convenient description of the set of
specializations which preserve irreducibility. The argument is a variation
of the classical reduction argument in the proof of Hilbert’s irreducibility
theorem (see e.g. [Lan83, Chapter 9~), combined with Lang’s extension of
Siegel’s theorem about integral points on algebraic curves [Lan83, Chapter
8]. An alternative argument for a similar result, which also relies on a
reduction to Siegel’s theorem, has been given by Fried, see [Fri741.

PROPOSITION 2.1. - Let k be a field which is finitely generated
over Q, and R a subring which is finitely generated over an

irreducible polynomial f (t, X ) E of degree &#x3E; 2 set

Redf (R) is defined and reducible.

Let L be a splitting field of f (t, X ) over k(t). Then there are finitely many
zi E L and rational functions gi(Z) E k(Z) with gi(zi) - t, such that the
following holds:

(a) Red f (R) and R) differ by a finite set.

(b) f (t, X) is reducible over k(zi).

Proof. Once we have elements zi and rational functions gi fulfilling
(a) and (b), we may assume that (c) holds as well by removing those for
which (c) does not hold.
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In order to prove the proposition, we may replace R by an extension
which still fulfills the assumption on R. A finitely generated extension of
R allows to assume that k is the quotient field of R. By another finitely
generated extension we may assume that R is integrally closed in k, see
[Lan83, Chapter 2, Prop. 4.1].

Replace X and f (t, X) by multiples with elements in k(t) to assume
that f (t, X ) C R ~t, X ~ is monic in X. Let ~1,~2?...~~ be the roots of

f (t, X ) in an algebraic closure of k(t). For each I C ~ l, 2, ... , n~ with

Let KI be the field generated by k(t) and the coefficients of FI. Let (3 ¡ be
a primitive element of We may assume that (3¡ lies in the ring
generated by R[t] and the coefficients of FI. In particular, (3¡ is integral
over R [t]. Let Y) E R [t, Y] be the minimal polynomial of (3¡ over 

Now take t E Red f (R) such that is separable. (This as-
sumption excludes only finitely many elements t from consideration.)
Write /(T,X) = u (X ) v (X ) with u, v monic polynomials in R[X]. As

x2 , ... , xn~ is integral over k[t], the specialization map t f----7 f from
k[t] to 1~ extends to a k-algebra homomorphism w : xn] -
l~ ~x 1, x2 , ... , where the ti are the roots of f (t, X ) . Label these roots
such that = xi . Let I be the set of those i such that xi is a root of
u. Denote by the polynomial FI with w applied to its coefficients,
thus w(F¡) = u. Clearly Pj (t, c,v (~3I ) ) = 0. But, by the construction above,
(3¡ is a polynomial over k[t] in the coefficients of FI , hence E k, and
then C R because fulfills an integral equation over R and R is

integrally closed in k. Thus each such t gives rise to a point (t, E R2

on PI for some index set I.

Now consider those I which appear infinitely many times. Thus the
curve PI (T, Y) = 0 has infinitely many points with coordinates in R. The
Siegel-Lang Theorem [Lan83, Chapter 8] implies that this curve is rational
over k, so there is zi C L such that 1~ (t, ,~I ) = Thus t = for

a rational function g, E k(Z). From this we obtain (a) and (b), because
E is a proper factor of f (t, X ) over Note that (b) is

equivalent to being reducible over A;(Z). 0
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2.2. Poles of Siegel functions.

Let k be a field which is finitely generated over Q, and R a subring
which is finitely generated over Z. The functions g = gi in Proposition 2.1
assume infinitely many values in R on k. This gives rise to the following
definition.

DEFINITION 2.2. - Let k be a field which is finitely generated
over Q. We say that a non-constant rational function g(Z) E k(Z) is a

Siegel function over k if there is a finitely generated subring R of k with

lg(k) rl l~~ = oo. If this holds, g(Z) is called an R-Siegel function over k.

The condition to be a Siegel function is quite strong, and puts severe
restrictions on the form of g. The basic result is due to Siegel [Sie29] in the
number field case, and has been extended by Lang [Lan83, Theorem 8.5.1]
to the more general fields k.

If g(Z) is a rational function and cx E = k U then we

denote by g-1 (c~) the set of elements 0 E with 9 (f3) = a.

PROPOSITION 2.3. - Let k be a field which is finitely generated
over Q, and g(Z) E k(Z) a Siegel function over k. Then 2.

If k = Q, Ig-1 (00) = 2, and g(Z) is a Z-Siegel function, then the two
elements in are real and algebraically conjugate.

Remark. - Motivated by the necessary conditions on Z-Siegel func-
tion, Debes and Fried [DF99] study so called Siegel families. These are
certain parameterized families of covers of degree n from genus 0 curves to

P (C) , such that the fiber of oo consists of two real conjugate points. The
subject is to describe the nature of the subset of the Z-Siegel functions in
this family.

3. Siegel functions.

3.1. Cycle types of inertia generators.

Let g(Z) E be a non-constant rational function over a field I~ of

characteristic 0, and t a transcendental.
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The following lemma is well-known (and easy to prove using Puiseux
series, for instance).

LEMMA 3.1. - Let ml, m2, ... , mr be the multiplicities of the
elements in the fiber g-1 (a) for a E I~ U f ool. Let L be a splitting
field of g(Z) -t over 1~(t), and I the inertia group of a place of L lying above
the place t f----7 a of k(t). Then I is cyclic, and generated by an element which
has cycle lengths ml, m2, ... , mT in the action on the roots of g(Z) - t.

3.2. Decomposition groups.

It is clear from Proposition 2.1 that in order to understand the depen-
dency of the Hilbert sets R B Red f(R) in terms of A = Gal( f (t, X)jk(t)),
one has to get control over the possibilities for the Galois group of g(Z) - t
over k(t) for a Siegel function g.

Let k be a field of characteristic 0, and g(Z) E k(Z) be a non-constant
rational function with 2. Denote by L a splitting field of g (Z) - t
over k(t). Set A := Gal(L/k(t)), considered as a permutation group on the
roots of g(Z) - t, and let G a A be the normal subgroup 

The following lemma is a variation of the branch cycle argument, see

[Fri77], [MM99, 2.2.3], or [V6196, Lemma 2.8].

LEMMA 3.2. - Let D ~ A and I  D be the decomposition
and inertia group of a place of L lying above the place t - &#x3E; 00 of I~(t),
respectively. Then I is generated by an element a E I, and the following
holds:

(1) a- has at most two cycles, with lengths equal the multiplicities of the
elements in 

(2) A = GD and I  G n D.

Suppose that k _ ~, = 2, and the two elements in 
are real and algebraically conjugate. Then g has even degree 2m, and the

following holds:

(a) ~ is a product of two m-cycles.

(b) ~r is conjugate in D to a for all r prime to m.

(c) D contains an element which switches the two orbits of I = (a).
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(d) D contains an element T of order 1 or 2, such that aT = o7- , and T
fixes the orbits of I setwise.

(e) Q((?~) (with (m a primitive rrL-th root of unity), then
D contains an element ulhich interchanges the two orbits of I and
centralizes I.

Proof - Assertions (1) and (a) follow from Lemma 3.1.

Assertion (2): Let OL be the valuation ring of the given place of L, and
93 the corresponding valuation ideal. Then is naturally
isomorphic to k. Using this identification, OL193 is a Galois extension of k
with group D/I, see [Ser79, Chapter I, §7, Prop. 20]. On the other hand,
Lnk embeds into 0 L 1S,fJ, so D/I surjects naturally to A/G = 
Furthermore, if § E I, then u - u~ E q3 for all u E L n I~, hence 0 is trivial
on so I x DnG.

It remains to prove (b) to (e).

Composing g with linear fractional functions over Q allows to assume
that the two elements in the fiber are +d2, where d &#x3E; 1 is a

squarefree integer. Thus, without loss, assume that g ( Z) = 
where h(Z) C Q[Z] with deg(h)  2m, and 0.

Let g be a transcendental over Q, such that = 1/t. Fix a square
root V~ of d, and let E E ~ -1, 1 ~ . Substituting gZ + for Z in the

equation h(Z) - t. (Z2 - d)m = 0 gives

This latter equation, by Hensel’s Lemma, is solvable in the power series

Thus, for i = 1, 2,..., m and E ~ {-1,1}, we can represent the 2m
roots of g(Z) - t in the form

where ( is a primitive m-th root of unity.

- 

Thus L can be regarded as a subfield of Q((y)) . Each automorphism
of Q((y) ) which fixes y"2 = 1 /t then restricts to an element in D x A, and
if it is the identity on Q, then the restriction to L lies in I.

We will now construct suitable automorphisms of Q((y)) which, when
restricted to L, give the required actions on the roots of g(2) - t.
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with and

Then T- 1UT is the identity on Q, but

To (c). Choose 7 E Gal(Q((y))/Q((y))) such that -d2.

To (d). Choose T E Gal(Q((y))/Q((y))), such that the restriction of
T to Q is the complex conjugation for a fixed embedding of Q into C. Then
r == -1 in the notation of case (b).

To (e). If d2 g Q((), then there is an element 7 E Gal(Q((y))/Q((y)))
such that 7 moves U2, but is the identity on Q((). Set T := 71L. This gives
r = 1 in case (b). D

3.3. Indecomposability versus absolute indecomposability.

The main results of this paper do not depend on this section, the

following is only used in the proof of Theorem 4.25.

In this section k is any field of characteristic 0. We say that a non-
constant rational function g(Z) E k(Z) is functionally indecomposable if

g(Z) cannot be written as a composition of rational functions in of

lower degree. A classical result by M. Fried says that functionally indecom-
posable polynomials g(Z) E are functionally indecomposable over k,
[FM69]. We extend this result to rational functions with 2.

We remark that there are many examples of functionally indecompos-
able rational functions over k which decompose over k. An infinite series
can be constructed as follows: Let p be an odd prime, and E an elliptic
curve over Q whose p-torsion points generate a field with Galois group
GL2 (p) over Q. Denote by [p] the multiplication by p map, and by T the
canonical involution on E. Then [p] induces a map g : E/(T) - E/ (T~ . We
may interpret g as a rational function, because E/ (T~ is a rational curve.

Now g is indecomposable over Q. For if g would be decomposable over Q,
then also [p] would be a composition of two degree p isogenies defined over
Q, so E would have a Gal(Q/Q) invariant subgroup of order p, contrary
to the transitive Galois action of GL2 (p) on the p-torsion points. On the
other hand, let P be a subgroup of of order p. Then [p] factors as
E --+ E/P - E, where the second isogeny is the dual of the first one.

Dividing by the canonical involution gives a decomposition of g ( Z) over Q.
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THEOREM 3.3. - Let k be a fields of characteristic 0, and g(Z) E
k(Z) be functionally indecomposable over k. Suppose that 2.

Then g(Z) is functionally indecomposable over k.

Proof. The proof is by group theory. Let L be a splitting field
of g(Z) - t over k(t), and the algebraic closure of k in L. Set A :=

and G := A. Note that G = 

The assumption and Luroth’’s theorem give that A is primitive on the roots
of g(Z) - t. So it remains to show that G is primitive as well. Let I and D
be the inertia and decomposition group of a place of L lying above t ~ oo.
Lemma 3.2 gives A = GD, and I has at most two orbits. Thus the theorem
follows from the following purely group theoretic result. D

THEOREM 3.4. - Lest 0 be a finite set, and let A  5(0) be a
primitive permutation group on S2. Let 1  G  A be a normal subgroup,
which contains a cyclic subgroup I with the following properties:

(a) I has at most two orbits on Q, and

(b) A = GNA (I ), where NA (I ) denotes the normalizer of I in A.

Then G acts primitively on 0 as well.

Proof. Suppose that G acts imprimitively. Then Q is a disjoint
union of A == ~1, Oz2, ... , Arn, where 1  r = ~  101, and G permutes
the m sets We assume that among these systems we have chosen one
such that 0 ~ is maximal. This implies that G permutes the A.’s primitively.

If a E A, then the sets Da, i = 1,..., m, again constitute a system
of imprimitivity for G, this follows from G a A. We claim that there is an
element a E A such that Da is not contained in an I-orbit. Suppose that
is not the case. Then, for each a, each orbit of I is a union of sets Aq. So
the sets Aa in an orbit of I are the orbits of a subgroup of I. The size of
this subgroup in I depends on but not on a. On the other hand, a

subgroup in a cyclic group is uniquely given by its order. We obtain that
for each a E A the sets Aa are a permutation of the sets Ai, thus the A,
are a system of imprimitivity for A, contrary to the assumption that A is
primitive.

Thus I has two orbits, and we may assume that A intersects them
both non-trivially. So I permutes the A. 71 transitively. Let K  G be the
kernel of the action of G on the Ai, and let the setwise stabilizer of A
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in I. As IK/K permutes the Ai regularly, we obtain that IA fixes each 1Yi
setwise, so K. As A is primitive, and K is intransitive on Q, we get
naEA Ka = 1. From A = GNA(I) and K a G we obtain naENA(¡) Ka = I.
But K and IA for all a E NA (I ), so I° - 1. On the other
hand, IA has two orbits on A, so this implies 0 ~ = 2.

Choose 6 E A, and let Ab and G8 be the stabilizers of 6 in A

and G, respectively. Also, let GA be the setwise stabilizer of A. Clearly
[GA : G5] = 2, so G6 is normal in GA. Furthermore, G6 - is normal

in A5, so G6 is normal in the group U := (A6, GA). But As is a maximal
subgroup of A by primitivity of A, so U or U - A. The former

possibility cannot hold, because is transitive on A, so A8 cannot
hold. Thus U = A, so G6 is normal in A, hence G6 - 1. So G acts regularly
on Q, GA = K, and G is the direct product of GA and I by order reasons.
But then the intransitive group I is normal in A = GNA(I), contrary to
primitivity of A. 0

Remark 3.5. - If I has only one orbit on Q, then we got the claim
without using assumption (b).

However, in general we cannot remove the assumption (b), there are
infinite series of counterexamples. For instance let m &#x3E; 3 be an integer,
and A = (Srn x Srn) x C2, where C2 flips the two components. Let the
action be given on the coset space where Al = C2.
This action is easily be seen to be primitive. Let G = Son x sm, and I be

generated by (a, b), where a is an m-cycle, and b is an (m - I)-cycle. Then
one verifies that I has two orbits. However, G is not primitive anymore,
because X Sm is a group properly between Gi = G n A and G.

3.4. Decomposing Siegel functions.

In general, the composition of Siegel functions is not a Siegel function.

Conversely, if we write a Siegel function as a composition of rational

functions, then not all these rational functions need to be Siegel functions.
The following lemma clarifies this issue.

LEMMA 3.6. - Let k be a finitely generated field over Q, and

g(Z) c k(Z) a Siegel function over k of degree &#x3E; 1. Then there is a

decomposition g(Z) = a(b(Z)) ulith a, b E k(Z), such that the following
holds:
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(a) a(Z) is a functionally indecomposable Siegel function of degree &#x3E; 1.

(b) There is 0 ~ b E k, such that 6b(Z) is a Siegel function, or the
followings holds: There are linear fractional functions À, f.-l E kl(Z)
over a quadratic extension l~l of k, mEN, with b(Z) = In

this case, Gal(b(Z) - is solvable.

The same holds if uTe set k == Q and replace Siegel function by Z-Siegel
function everywhere.

Proof. Let R be a finitely generated subring of k such that

lg(k) n RI - oo. (Or R = Z in the context of Z-Siegel functions.)

Write g(Z) - a(b(Z)) with a, b E k(Z) and a(Z) being indecompos-
able over k of degree &#x3E; 1. As b(k) C I~ U f ool, we have n RI - 00, so
(a) clearly holds.

From 2 we obtain 2.

We first analyze the case la-l(oo)1 = 1. Because acts on

a~~(oo), this single element in this fiber must be rational or oo. By a
linear fractional change we may assume that so a(Z)
is a polynomial. Write a(Z) - arzr + -~ ... -i- al Z + ao with

a2 E k. By assumption, there are infinitely many z such that 0 = b(z)
fulfills = p E R. So (3 is integral over R’ = R[,..., Thus

a, ’’’’I a,,’ a,.,

replace R by a finitely generated ring containing the integral closure of
R’ in k, using [Lan83, Chapter 2, Proposition 4.1]. So b(Z) is a Siegel
function with respect to this ring. Next assume the Z-Siegel function case.
Then ai C Q. Let w be a common multiple of the denominators of ai.
The previous consideration shows that anw(3 G Q is integral over Z, hence
contained in Z. So anwb(Z) assumes infinitely many integral values on Q,
and (b) follows again.

Now assume la-l(oo)1 = 2. Write {~1,~2}. Then the
Ai are either in I~ U {oo}, or they generate a quadratic extension ki of
k. Furthermore, we obtain - with pi E 1~ U (oo) in the
former case, or f.-l2 E l~l in the latter case. At any rate, there are linear
fractional functions A, p E such that, with b(Z) := ~-1 (b(tc-1 (Z))),
the following holds: 6-’(oo) = {oo}, b-1 (o) - fOl, and b(l) = 1. This

implies b(Z) - Z"2. The Galois group of b(Z) - t over is the same

one as the Galois group of b(Z) - t over ki (t). This group is contained

in AGLI(n), hence solvable. The Galois group of b(Z) - t over k(t) is an

extension of the former Galois group by at most the index 2, so is solvable
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as well. This proves (b). 0

COROLLARY 3.7. - Let k be a finitely generated field extension of
Q, and g(Z) E k(Z) a Siegel function over k. Let S be a non-abelian
composition factor of Gal(g(Z) - Then there is a functionally
indecomposable Siegel function g(Z) over k, such that S is a composition
factor of Gal(g(Z) - 

The same holds for k Siegel function replaced by Z-Siegel
function.

Proof. If g(Z) = 91 (g2 (... gr (Z) ...)) with functionally indecom-
posable rational functions gi(Z) E k(Z), then ,S’ is a composition factor of

for some index i. See Glauberman’s argument in [GT90,
Prop. 2.1] for this fact which is less obvious than it might appear at a first
glance.

The assertion now follows from Lemma 3.6. 0

4. Applications to Hilbert’s irreducibility theorem.

4.1. Not absolutely irreducible polynomials.

In this section k may be any field of characteristic 0.

It is a well-known consequence from Bezout’s theorem that if

f (X, Y) E is irreducible, but not absolutely irreducible, then there
are only finitely many (a, b) E k 2 with f (a, b) - 0. We show that under
certain additional assumptions an analogue of this observation holds in the
context of Hilbert sets.

LEMMA 4.1. - Let f(t, X) E be an irreducible polynomial
over k(t), and let A be the Galois group of f (t, X) over k(t). Assume that
f(I, X) is reducible over k for infinitely many t E k, and that one of the
following holds:

(a) A is a simple group; or

(b) A acts primitively on the roots of f (t, X).
Then f (t, X) is absolutely irreducible over k.
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Proof. We may assume that f (t, X ) E k [t, X] is monic in X. Let
1~ be an algebraic closure of k, and G the Galois group of f (t, X) over
k(t). Suppose that /(t,X) is not absolutely irreducible. Then G is an
intransitive normal subgroup of A. Hypothesis (a) implies that G = 1. We
get G = 1 also from hypothesis (b), because the orbits of G are a system of
imprimitivity for A. Thus f (t, X ) decomposes into linear factors X - ai (t)
with monic polynomials ai (t) E k(t). We obtain the claim either from
[Deb96, Lemma 2.8(b)], or from the following argument. By separability of
f (t, X), the elements a2(f) are distinct for all but finitely many t E k. This
proves the claim, because the transitive action of Gal(k/k) on the set of
the a2 (t) is equivariant with respect to the specialization t ~--~ t. D

Remark 4.2. - The assertion of the corollary becomes false if we
relax the assumption on A. For instance, take f (t, X) = X4 + 2(1 -

+ (1 + t) 2 . Then f (t, X ) is irreducible over Q(t), but f (t, X ) -
(X~ + 2iX - 1 - t) (X 2 - 2iX - 1 - t), where i2 = -1. Furthermore, from
f (u2, X ) _ (X~ + 2uX + u2 + 1)(X2 - 2uX + u2 + 1) we see that 
is reducible over Q for each square t C Q.

4.2. Consequences from IRedf(R)1 == 00.

Let k be a field which is finitely generated over Q, and R a finitely
generated subring. The following lemma summarizes how we use the
information that Red f (R) is an infinite set for an irreducible polynomial
f(t, X) E 

LEMMA 4.3. - Let f (t, X ) be irreducible, and assume that

)Redf(R)) = oo. Let L be a splitting field of f (t, X ) over k(t), and x E L a
root of f (t, X). Set A := and let D and I be the decomposition
group and inertia group of a place of L lying above t - oo, respectively.

Then there is a rational field k(t) C C L, such that the following
holds, where Ax and Az are the stabilizers in A of x and z, respectively:

(a) Az acts intransitively on the coset space A/Ax .

(b) I is cyclic, and has at most two orbits on A/Az . and R = Z,
then these orbits have equal lengths.

(c) If k = Q and R = Z, then D is transitive on A/Az .
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Proof. The existence of the field k(z) with (a) follows from

Proposition 2.1. Furthermore, t = g(z) with g(Z) E a Siegel function,
so (b) and (c) follow from Lemma 3.2, (1), (a), and (c). D

4.3. Conditions on ramification.

Throughout this section k is a finitely generated field extension of Q,
and R is a finitely generated subring of k.

We obtain finiteness results under suitable conditions on the ramifi-

cation indices of the places of a root field of f (t, X ) which lie above the
place t ~ oo of k(t).

THEOREM 4.4. - Let f (t, X) E k(t) [X] be irreducible, and assume
that the place t H o0 is unramified in the field x), where x is a
root of f. Then one of the following holds:

(i) f (t, X ) is irreducible over k for all but finitely many t E R, or

(ii) There is an element z E k(t, x), such that t = g(z) with g(Z) E k(Z)
of degree 2.

Remark. - In general one cannot avoid the situation of case (ii).
For instance set g(Z) = d), where d &#x3E; 1 is a squarefree integer.
Let z be a root of g(Z) - t, and let x be algebraic over k(z) such that
the places z H of k(z) are unramified in k(z, x). Then the minimal
polynomial f (t, X ) of z over k (t) fulfills the assumptions of the theorem.

However, there are infinitely many z E Q with t = g(z) E Z, and for each
such t the polynomial f (t, X ) is reducible.

Assume the situation of the previous theorem, and let x be a primitive
element of the normal closure of Apply the theorem to the
minimal polynomial of x over k(t). (Note that t f----7 oo is unramified in this

normal closure too.) Then case (ii) can only appear if the Galois group of
has a subgroup of index 2. Thus we obtain the following

COROLLARY 4.5. - Let f(t,X) E k(t)[X] be irreducible, and
assume that the place t H 00 of k(t) is unramified in the field k(t, x),
where x is a root of f. Suppose that the Galois group A of f (t, X ) over
k(t) has no subgroup of index 2. Then A - Gal(f(f, X)lk) for all but
finitely many t E R.
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In general one cannot relax the assumption about the infinite place
without introducing severe other conditions in the theorem. However, if the
base field Q, then the following holds.

THEOREM 4.6. - Let f (t, X ) E Q(t) [X] be irreducible of odd

degree, and x a root of f. Assume that the greatest common divisor of
the ramification indices of the places of x) which lie above the place
t H 00 of Q(t) is 1. Then f (t, X) is irreducible over Q for all but finitely
many f 6 Z.

A theorem of a similar flavor is

THEOREM 4.7. - Let f(t, X) E Q(t)[X] be irreducible, and x a
root of f(t, X). Assume that has an unramified place above the
place t H 00 of Q(t). If this place has odd degree, or if f(t, X) has odd
degree, then f (t, X) is irreducible over Q for all but finitely many 

Remark. - The condition of an unramified place of Q(t, x) occurs
in previous work, see [Spr83] and [Dèb86], where finiteness results like the
above are obtained, however under stronger additional conditions. The
methods are different and effectively determine the sets Redf (Z). Our
approach, based on Siegel’s theorem for which no effective version is known,
cannot be extended to give effective results. The diophantine approach in

[D6b86] and [D6b96] even allows to give effective versions over fields with
a product formula.

Proof of the theorems. - Let us assume that f(t, X) is reducible
for infinitely many t E R. Let L be a splitting field of f(t, X) over k(t),
and x C L a root of f(t, X). We make frequent use of Lemma 4.3 and the
notation introduced there.

Let a E A be a generator of I.

First assume the situation from Theorem 4.4. This means that the

inertia group I is trivial, so a = 1. On the other hand, cr has at most two
cycles on A/Az . As Az is a proper subgroup of A (because Az is intransitive
on A/Ax), this implies [A : Az] = 2. Furthermore, Az is normal in A, so
AzAx is a proper subgroup of A. This implies Ax C Az, so z E k(t, x), and
the claim follows.

Next assume the assumptions from Theorem 4.6. Then a acts on A/Az
as a product of r cycles of length m, with r = 1 or 2. Let a2,..., a,* be
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the cycle lengths of a on A/A . These lengths are the ramification indices
of the places of Q(t, x) above t H oo, so the greatest common divisor of

Recall that Ax acts intransitively on A/Az. Let u  rm = [A : Az]
be an orbit length of this action. As 1 ~ i  j has a fixed point on

A/Ax , it is conjugate to an element in Ax. On the other hand, has

cycle lengths on A/Az. Therefore m/ gcd(m, ai ) divides u
and hence gcd(u, m) too. Thus m/ gcd(m, u) divides gcd(m, ai) for each ai.
But the ai have the greatest common divisor 1, hence m = gcd(m, u), so
r = 2 and u = m. In particular, Ax has two orbits of equal length m on

A/Az . The orbit lengths of Ax on A/Az are proportional to the sizes of the
double cosets Az aAx , a E A. Therefore Az has two orbits of equal length
on A/Ax, so [A : Ax] = is even, which proves the theorem.

Finally assume the situation from Theorem 4.7. The condition on the
unramified place shows that I fixes a point on so we may assume

that I x Ax. The at most two orbits of I on A/Az are contained in the
at least two orbits of Ax on A/Az, so both these groups have the same
two orbits of equal length on Aj Az. As in the previous paragraph, we
obtain that = [A : Ax] is even. It remains to show that the
unramified place in question has even degree. This is equivalent to show
that the orbit length [AxD : Ax] = [D : Ax n D] of D on through the
coset Ax is even. Let B &#x3E; A~ be the biggest subgroup of A which stabilizes
the two orbits of Ax on A/Az . As D is transitive on A/Az , we obtain that
2 = ~BD : B~ _ [D : B n D]. But [D : B n D] divides [D : Ax n D], and the
theorem follows. D

4.4. Polynomials of special forms.

The following theorem is a generalization of [LanOO, Satz 3.5]. Lang-
mann obtains his result under the following three additional assumptions
none of which we need in our approach:

(a) k = Q and R = Z,

(b) the degree of H is odd, and

(c) t does not divide H (t, X ) .

THEOREM 4.8. - Let H (t, X ) E be a homogeneous poly-
nomial of total degree &#x3E; 2 which is separable with respect to X. Then

H(t, X) - 1 is irreducible for all but finitely many t E R.
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Remark. - The theorem is false for degree 2, even over the ratio-
nals. To see this set H(t, X ) = X 2 - dt2 with d &#x3E; 1 a square-free integer.
This is indeed an exception, because the Pellian equation X 2 - dt2 = 1 has

infinitely many integral solutions.

A different generalization of Langmann’s result is obtained simply by
removing the separability assumption on H(t, X) and replacing it by the
obviously necessary condition that H(t, X) is not a proper power.

THEOREM 4.9. - Let H(t, X) E Q[t, X] be a homogeneous poly-
nomial of odd degree which is not divisible by t. If H(t, X) is not a proper
power in Q[t, X], then ~f(~X) 2013 1 is irreducible for all but -finitely many

Remark. - This theorem is no longer true for number fields. An
example is the following: Let k be a number field with an infinite group of
units, and R the ring of integers. Set H(t, X) X 2 (X - t). From

and the fact that t = ( 1 - z3 ) /z E R for each unit z we obtain reducibility
of H(t, X) - 1 for infinitely many t E R.

CONJECTURE 4.10. - The assumption that H(t, X) has odd de-
gree n in the above theorem can be dropped if yve require the following
necessary conditions:

(a) ~~2,4.

(b) If 4 divides n, then -4H(t, x) is not a 4-th power in Q[t, X]. (For
otherwise H(t, X) - 1 is already reducible.

Remark. - The group theory got quite involved in an attempt to
prove this conjecture. While we feel that we got close to a proof, some
difficulties could not be settled. The conjecture is true up to degree 25, at
least under the slightly stronger condition that H(t, X) is not a power in
Q[t, X]. From above we know already that we have to assume 2. The

following example shows that n 54 4 is also a necessary condition. This is

interesting because the associated curve has genus 1, so the polynomial has
a linear factor for only finitely many integral specializations:

Let d &#x3E; 1 be a squarefree integer, and set
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Note that

There are infinitely many integers u, v with u2 - dV2 = 1. For z = u/v we
obtain f = z2±d = U2 + dv2 E Z, and by the above factorization f(I, X) is
reducible.

The proof of Theorem 4.8 is based on

PROPOSITION 4.11. - Let m be a positive integer, and h(X) E
k[X] a non-constant separable polynomial. Suppose that 1 is

reducible for infinitely many t E R. Then m  2 and deg(h) is even.

Proof. The polynomial 1 is irreducible over k, for

instance by the Eisenstein criterion with respect to a linear factor of h(X ) .
Let x be a root By the separability of h and Hensel’s Lemma,
we can write x as a Laurent series in 1/tm over k. Thus the place t - 00
is unramified in k(t, x), and so is the place t’ ~-* oo of in k(x).
Theorem 4.4 gives z E k(t, x) such that k(z) is a quadratic extension of

k(t), in particular, h(X) has even degree.

Let k(y) be the intersection of k(z) and the normal closure of

k(x)lk(t-). Clearly, 1 is reducible over k(y), so is a proper
extension of 

From now on we consider only the fields between k(z) and To

ease language, we extend the coefficients to k. The place t"2 - oo is totally
ramified in k(t), so there are at most two places of k(y) above tm f----7 oo.
On the other hand, the place tm H oo is unramified in the normal closure
of so it is unramified in k(y) as well.

Thus [k(y) : k(t’)] = 2, there are two places of k(y) above t"2 H oo,
and these two places are the only places which are ramified in k(z), because
there are at most two places of above - oo. Let p be a place of

k(y) lying above tm f----7 0. From what we saw, m places of k(z) lie above

p. Thus at least m places of k(z) lie above t"2 ~--~ 0. On the other hand,
H 0 is totally ramified in k(t), so at most two places of k(z) lie above

0. Thus m  2, and the claim follows. D

Proof of Theorem 4.8. - Let n be the total degree of H (t, X). Then
H(t, X) = t-h(Xlt), where h(X) E k[X] is a polynomial of degree  n.
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Note that X) - 1 is reducible if and only if 1 is reducible, so
the claim follows from Proposition 4.11. D

Proof of Theorem 4.9. - Let n be the total degree of H(t, X).
Write H(t, X) = tnh(Xlt) for a polynomial h. We claim that H(t, X) - I
is irreducible over Q(t). If this is not the case, then (upon replacing t with
1 /T and XT with Z) h(Z) - T n is reducible. Considered as a polynomial
in T, it is well known that h(Z) has to be a proper power of a polynomial
over Q, a contradiction.

Let e the greatest common divisor of the multiplicities of the linear

factors of H(t, X) over Q. Then 7~,X) == cH(t, x)e, where c and
H(t, X) C Q[t, ] J is homogeneous of degree n/e and monic in X. The
greatest common divisor of the multiplicities of the linear factors of H (t, X)
is 1.

Let 1 E Q with 1ec = 1, and let ( be a primitive eth root of unity.
Then H(t, X) - 1 = 1(i). An argument as above shows
that H(t, X) -1 is irreducible over Q. Suppose that H(t, X ) -1 is reducible
for infinitely many t C Z. Then there is a Z-Siegel function g(Z) E Q(Z)
such that H(g(Z), X) - 1 is reducible over Q(Z). Let A(Z, X) be a non-
trivial factor. We claim that H(g(Z), X ) -1 is reducible over Q(Z). Suppose
that is not the case. As H(t, X) - 1 divides H(t, X) - 1, we may assume
that H(g(Z), X) -1 divides A(Z, X). However, the Galois group Gal(U/Q)
fixes A(Z, X), while it permutes transitively the factors H(g(Z), X) -1(i
of H(g(Z), X) - 1 (note that Ue - c is irreducible over Q, for otherwise c
were a proper power, and so were H(t, X)). Thus H(g(Z), X) - 1 divides
A(Z, X), a contradiction.

So H(g(Z), X ) - -y is reducible over Q(Z) with g(Z) a Z-Siegel
function over Q. Set n = nle = deg(H), and write H(t, X ) - -ytnh(X/t)
with h(X) E Q[X]. Upon replacing X by Xg(Z), we get that 
is reducible over Q(Z). Let L be a splitting field of over Q(t),
and z be a root of g(Z)n - t. So th(X) - 1 is reducible over Q(z). Denote
by the intersection of Q(z) with L. Of course, th(X) - 1 is reducible
over Q(y) as well. Write t = g(y) with j(Y) E Q(Y). As g, composed with
another rational function, gives g, we obtain that the fiber g-1 (oo) contains
at most two elements, and that the multiplicities of these elements are the
same.

By construction h(X) is a polynomial where the multiplicities of
the roots have no common divisor &#x3E; 1. These multiplicities are exactly



1003

the ramification indices of the places of Q(t, x) which lie above the place
t H oo of Q(t), where x is a root of th(X) - 1. Thus the assumptions
of Theorem 4.6 are fulfilled except that we are not necessarily over the
rationals. Nevertheless, the proof of that theorem covers our situation,
because we used the assumption that the base field is Q only to guarantee
that, in the present context, the elements in the fiber g-1 (oo) have the
same multiplicities. But we have verified this property above, so the claim
follows. D

Another easy consequence of Theorem 4.4 (and its proof) is

THEOREM 4.12. - Let P(X) E k[X] be a polynomial which is
relatively prime to the separable polynomial Q(X) E k[X] of degree
&#x3E; deg(P) - 1. Then one of the following holds:

(a) P(X ) - is irreducible for all but finitely many t E R, or

(b) max(deg(P), deg(Q)) is even, and there is a rational function g(Z) E
k[Z, of degree 2, such that P(X) - tQ(X) factors over k (Z) in two
factors of equal degree in X.

Remark. - This result generalizes [Lan90, Folgerung 6], where this
is proven under the assumption that deg(Q) = deg(P) -1. Also, the rather
technical result [Lan94, Folgerung 3.4] is a very special case of Theorem 4.4.

A direct application of Theorem 4.7 to polynomials of the form

P(X) - tQ(X) (which are studied in [Lan90] and [LanOO], too) is

THEOREM 4.13. - Let P(X), Q(X) E Q[X] be relatively prime
polynomials, and assume that Q(X) has a simple root a. If one of [Q(a) : Q]
or max(deg(P), deg(Q) is odd, then P(X) - fQ(X) is irreducible for all but
finitely many 

Remark. - Langmann and other authors, in particularly D6bes (see
[Dèb92]) and Fried (see [Fri85]) have studied irreducibility questions when
specializing t in certain subsets of the integers. Examples are the sets of
prime powers, or powers of a fixed integer. A recent result of this kind with
a completely elementary and elegant proof (in particularly not relying on
Siegel’s Theorem) is the following by Cavachi [CavOO] (his version is slightly
more general): Let P(X), Q(X) E Q[X] be relatively prime polynomial with
deg(P)  deg(Q). Then P(X) - pQ(X) is irreducible for all but finitely
many prime numbers p.
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4.5. Doubly transitive Galois groups.

The main result of this section is

THEOREM 4.14. - Let f (t, X ) E k(t)[X] be irreducible, and as-
sume that the Galois group of f (t, X ) over k(t) acts doubly transitively on
the roots of f . If f(I, X) is reducible for infinitely many I 6 R, then the
following holds, where x is a root of f (t, X) :

(a) f (t, X ) is absolutely irreducible, and

(b) has genus 0, and

(c) there are at most two places of k(t, x) above t H oo.

As a preparation we need a bound on the genus of function fields.

4.5.1. Genus comparison. 2013 Let k be a field of characteristic 0,
and be a finite Galois extension. Let k be the algebraic closure of k
in L. Set A := Gal(L/k(t)) and G := A.

The following is well known (see e.g. [Gro71, Exp. XIII, Cor. 2.12]):
Let pi, i = 1, ... , r, be the places of k(t) which ramify in kL. Let li be
the inertia group of a place of kL lying above pi. We identify 
with G via restriction to L. We can choose elements ai E G such that each

~i is conjugate to a generator of Ii, and the following holds:

(a) The ai, i = 1,..., r, generate G.

(b) ... ~T = 1.

The (not uniquely given) tuple ~2, ... , a r) is called a branch cycle
description in G.

If E is a field between k(t) and L with n = [E : k(t)], then A acts as
a permutation group on the n conjugates of a primitive element of 
Let 7rE be the homomorphism from A to the symmetric group Sn.

For a permutation at on n letters let ind(a) be "n minus the number
of cycles" of a. Let E be as above, and assume that I~ n E = k.

The Riemann-Hurwitz genus formula allows to compute the genus

g(E) of E:
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Associated to 7rE is the permutation character xE, where XE (0’) is

the number of fixed points of 7r E ( a ). In the following lemma a character
is understood as a character over the complex numbers. Each character
is a unique linear combination of irreducible characters with non-negative
integral coefficients. See for example [Gor68] or [Isa76] for more basic facts
used in the following.

LEMMA 4.15. - In the setting from above, let F be another field
between k(t) and L, such that k n F - k. Suppose that 7rF - 7rE is a

character (or 0). Then the following holds:

(a) 

(b) For each subgroup U -, A, the number of orbits is not bigger
than the number of orbits of,7rF(U)-

Remark. - To my knowledge part (a) has first been observed by
R. Guralnick some years ago. His proof in [GurOO] does not rely on the
Riemann-Hurwitz formula and the branch cycle description. Instead, he
uses Jacobians of function fields and the action of the Galois group on

the I-torsion points for a suitable I. This approach proves (a) in positive
characteristic as well. Independently I had found this result by using a
linear algebra result of Scott (see below). As Guralnick’s proof is not yet
published, we supply our elementary proof. This proof, however, does not
work in positive characteristic due to the lack of branch cycle descriptions.

The following proposition is an immediate consequence of Scott’s

result [Sco77, Theorem 1] and Maschke’s theorem.

PROPOSITION 4.16. - Let the finite group G act linearly on the
n-dimensional complex vector space V. For M an element or subgroup of
G, let d(M) be the dimension of the subspace of fixed vectors under M. Let
G be generated by cri, ~2 , ... , at, and assume that ala2 ... ar = 1. Then

Proof of Lemma 4.15. - Let VE and VF be the permutation modules

corresponding to 7r E and 7r F. Considering the set which 7r E (G) acts on as
the natural basis of VE, we may consider 7rE as a homomorphism from G to

GL ( VE ) . With respect to this natural basis, we see the following: If 7rE(a)
has a cycle of length m, then the eigenvalues of 7r E (a) on the space spanned
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by these m cyclically moved elements are just the m-th roots of unity. In
particular, the eigenvalue 1 appears exactly once on this subspace. Thus
the number of cycles of equals d(7rE (a)). From that we obtain

and likewise

The assumption that 7rF - is a character implies that VF has a G-
submodule which is G-isomorphic to VE. By Maschke’s theorem, there is
a G-invariant complement W. Let 7r : G - be the associated

homomorphism. As 7rE and 7rF are transitive, they both contain the

principal character 1G with multiplicity 1. Therefore d(Jr(G)) = 0. Note

that dim(W) = [F : k(t)] - [E : k(t)]. The proposition gives

Clearly d(7rp(a))-d(7rE(a)) = d(7r(a)), so (a) follows from (2), (3) and (4).
Claim (b) is obvious, because the number of orbits of is the

multiplicity of the principal character lU in the restriction of 7rE to U. D

Proof of Theorem 4.14. - A doubly transitive permutation group
is primitive, so (a) follows from Lemma 4.1.

Again, choose z E L, where L is a splitting field of f (t, X) over
1~(t), such that t is a Siegel function in z, and Ap is intransitive on A/Az.
Let 7r x and 7r z be the permutation characters of the action of A on A/Ax
and A/Az, respectively. The scalar product (7rx, 7rz) of characters is the
number of orbits of A on A/Ax x A/Az (by [Gor68, 2.7.4~ ), which is the
same as the number of orbits of Ax on A/Az, so 2. Each of

these characters contains the principal character 1A with multiplicity 1.

Furthermore, trx -1 A is irreducible, because A is doubly transitive on A/Ax
(see [Gor68, Chapter 4, Theorem 3.4]). Thus, as the irreducible characters
are an orthonormal basis of the class functions on A, we obtain that the
nonprincipal part of 7r x occurs in so 7r x is a character. Thus (b)
follows from Lemma 4.15(a), and (c) follows from applying Lemma 4.15(b)
to an inertia generator of a place of L above t H oo. D

Remark 4.17. - A weakening of doubly transitivity is primitivity.
It is easy to see that an analog does not hold for primitive Galois groups.
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For instance let 5  m and integers with 21~ ~ m.
Set g(Z) - zm - Z. Then A := Gal(g(Z) - Son. Let L be a

splitting field of g(Z) - t over Q(t), and Sk x be a setwise

stabilizer of a k-set in {I, 2,..., ml. Let f (t, X) be a minimal polynomial
of a primitive element of the fixed field of A~ over Q(t). From this setting
we obtain that f (g(Z), X ) is reducible in Q[Z, X]. Therefore Redf (Z) is

an infinite set. Furthermore, the genus of the curve f (T, X ) - 0 goes to
infinity with increasing m. For instance if m is prime, then this genus is

_ I -

Remark 4.18. - It does not seem to be obvious that we can replace
the conclusion (b) in Theorem 4.14, namely that has genus 0, by
the stronger conclusion that k(t, x) is rational. An attempt to prove this

stronger property leads to an interesting arithmetic question: Suppose that
the assumptions of Theorem 4.14 hold, but that k(t, x) is not rational. We
use the notation from the proof of Theorem 4.14. There we have seen that
1rz - 7rx is a character, so in particular [k(z) : 1~(t)~ &#x3E; [k(t, x) : k(t)]. Let
Poo be the rational place t H oo, and a an inertia generator of a place
of L above p,,. If is totally ramified in k(z), then so is this place in

by Lemma 4.15(b), so the field has a rational place, hence is
rational. Thus there are two places of k(z) above Let r and s be their

ramification indices. By the argument above, there are two places of k(t, x)
above As they are not rational, they are algebraically conjugate, so
they have the same ramification index u. The least common multiple of r
and s is the order of a in the action on A/Az, while u is the order of a on

where this latter action is faithful. Thus r and s divide u. The field

degree estimation from above however gives r + ~ ~ 2u. Thus r = s = u.
We obtain 1rx == 1rz. Fields with this equality of permutation characters are
said to be arithmetically equivalent, see [Kli98] for a book devoted to this
subject. Thus we are led to the following

QUESTION 4.19. - Let k be a field, and a finite Galois

extension of the rational field k(t). Let L be a rational

field, and I~(t)  E  L be a field which is arithmetically equivalent to
k(z) over k(t). Does this imply that E is a rational field as well?

4.6. Rational specializations.

An essential tool in our investigation of integral Hilbert sets is
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Siegel’s theorem about algebraic curves with infinitely many integral points,
combined with the ramification behavior above infinity of Siegel functions.
If we look at rational specializations, then an analog of Proposition 2.1
holds, where Siegel’s theorem is replaced by Falting’s theorem that a curve
with infinitely many k-rational points has genus at most 1. The proof of the
following proposition is similar to the proof of Proposition 2.1, but simpler
because we need not worry about integrality.

PROPOSITION 4.20. - Let k be a field which is finitely generated
over Q. Let f (t, X ) E k(t) [X] be irreducible. Suppose that f (t, X) is

reducible for infinitely many t E k. Then the splitting field L of f (t, X)
over k(t) contains a field E D k(t) such that

(a) f (t, X ) is reducible over E.

(b) E is either a rational field, or the function field of an elliptic curve
with positive Mord ell- Weil rank.

An application, whose proof is completely analogously to the proof of
Theorem 4.14, is the following finiteness statement.

THEOREM 4.21. - Let k be a field which is finitely generated over
Q. Let f (t, X ) E k(t) [X] be irreducible, with Galois group acting doubly
transitively on the roots of f (t, X). If f (t, X) is reducible for infinitely
many t E k, then the following holds, where x is a root of f (t, X) :

(a) f (t, X ) is absolutely irreducible, and

(b) has genus  1.

4.7. The prime degree case over the rationals.

Here we look at the case that the degree of the irreducible polynomial
f (t, X) in X is a prime number p. Let A be the Galois group of f (t, X). By
a classical result of Burnside (see e.g. [HB82, Theorem XII. 10.8], [DM96,
Theorem 3.5B]), either Cp ~ A  AGLI (p) (where Cp is the cyclic group
of order p, and AGL 1 (p) the affine general linear group on p points), a
case immediately dealt with, or A is doubly transitive. Though we treated
the doubly transitive Galois groups in the previous section, there are a few
more things we can do in the prime degree case.

The theorem below is an extension of [Mf199, Theorem 1.2], the
method is different though.
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Note that h(X’) - t with h(X’) E has a root in Q for each
t E h(Z). If x’ is a root of h(X’) - t, and x E Q(x’) with ~(t, x) _ Q(x’),
then the minimal polynomial f (t, X) of x over Q(t) has a root for the same
(up to finitely many exceptions) specializations t E h(Z). The following
result shows that the converse holds in the odd prime degree case.

THEOREM 4.22. - Let f (t, X ) E Q(t)[X] be irreducible of prime
degree p &#x3E; 3 in X. Suppose that f (t, X ) is reducible for infinitely many

Let x be a root of f (t, X ) . Then there is x’ E Q(t, x), such that
~(t, x) _ Q(x’) and t = h(x’) with h(X’) E Q[X’].

Proof. We use Lemma 4.3. An element in A of order p is a

transitive p-cycle on A/Ax . But Az is intransitive on so the order of

Az is not divisible by p. But p = [A : so p must divide [A : As] . Let
be a generator of the inertia group I. So a has m cycles of equal length

on A/Az, with m = 1 or 2. As p is odd, p divides these cycle lengths, so
in particular a has order divisible by p on A/Az . Thus (7 acts as a p-cycle
on AjAx. This means that the rational place t f----7 oo is totally ramified in

~(t, x). If A is doubly transitive, then in addition has genus 0 by
Lemma 4.15, and is a rational field because the unique place above t H o0
must be rational, the claim follows in this case.

Thus suppose that A is not doubly transitive. Then Cp # ~4 ~
AGLl (p) in its action on A/Az. An intransitive subgroup of such a group
fixes a point, therefore A~ is contained in a conjugate of Az. So the fixed
field Q(t, x) of A~ has again genus 0, and we complete the argument as
above. D

Remark. - The above proof fails for p = 2, because we cannot
conclude that p divides the cycles lengths of a on A/Az . Indeed, the theorem
does not hold for p = 2. A counterexample is f (t, X) = X2+X-dt2 for
a squarefree integer d &#x3E; 1.

4.8. Primitive Galois groups.

While we got a reasonably smooth result about Hilbert sets of

polynomials with a doubly transitive Galois group, the results are less

pleasant if we weaken the assumption on the Galois group to be merely
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primitive. This section contains those results which we achieved without
using the classification of the finite simple groups.

DEFINITION 4.23. - Let k be a finitely generated field of character-
istic 0. Denote by CF(k) the set of those non-abelian simple groups which
appear as composition factors of Gal(g(Z) - for Siegel functions
g(Z) over k.

Similarly, let CFZ be the non-abelian composition factors of

Gal(g(Z) - t/Q(t)) for Z-Siegel functions g(Z) over Q.

In a bigger project [Miil0l], the simple groups classification has been
used to determine the sets In particular, we obtained that, except for
the alternating groups, is finite. We come back to this in Section 5.

THEOREM 4.24. - Let k be a finitely generated field extension 
and R a finitely generated subring of k. Let f (t, X ) E k(t) [X] be irreducible,
and assume that the Galois group A of f (t, X) over k(t) acts primitively
on the roots of f (t, X ) . Suppose furthermore that A has a non-abelian
composition factor which is not contained in CF(k). Then Red f (R) is finite.

The following result is, in terms of composition factors, a converse to
the previous theorem.

THEOREM 4.25. - Let k be a finitely generated field extension of
Q. Let S E and a E N be arbitrary. Then there exist an irreducible
polynomial f (t, X) E k (t) [X] and a finitely generated subring R of k, such
that the following holds:

(a) 

(b) Gal( f (t, acts primitively on the roots of f (t, X).

(c) S is a composition factor 

(d) The genus of the curve f (T, X) = 0 is &#x3E; a.

Proof of Theorem 4.24. - We use Lemma 4.3. We first show that

A acts faithfully on A/Az . Suppose the action is not faithful. Then there
is a non-trivial normal subgroup N  A with N _ Az. By primitive and
faithful action of A on A /Ax we get A = NA.,. However, Lemma 4.3(a) says
that is a proper subset of A. But AzAx = Az (NAx ) = Az A = A, a
contradiction.
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Thus A acts faithfully on A/Az, so each composition factor of A is a
composition factor of Gal(g(Z) - tjk(t)), so contained in CF(k). D

In order to prove Theorem 4.25 we need an easy group theoretic

observation.

LEMMA 4.26. - Let G be a primitive non-regular permutation
group on a set A. Let p be a prime, and Cp x H  AGLI(p). Let
W = GP x H be the wreath product, in the natural imprimitive action
on the disjoint union of p copies of 0. Let W be a group acting on the
same points, and suppose that W is a normal subgroup of W. Then W acts
imprimitively, respecting the given system of imprimitivity of W . Therefore
W acts naturally and transitively on the cartesian product This action

of W is primitive.

Proof. K = GP is the kernel of the action of W on the system
of imprimitivity. Suppose there is a E W with K # Ka. We distinguish
two cases. First suppose K n Ka =I 1. Then, by primitivity of G, K n Ka
is transitive on at least one and hence on each block A. In particular, the
orbits of Ka are unions of K-orbits. On the other hand, K and Ka have
the same number of orbits, so the blocks A are exactly the Ka orbits. Thus
K = Ka, a contradiction.

Next assume that K n Ka = 1. Then Ka acts faithfully and transi-
tively as a normal subgroup of AGL1 (p) on the system of imprimitivity. So
p divides the order of K a ~--- GP, but p2 does not. This contradiction shows
that K is normal in W.

As the blocks A are the K-orbits, we obtain that W respects that
system. By [DM96, Lemma 2.7A]), the action of W on AP is primitive, so
this is even more true for W. 0

Proof of Theorem 4.25. - Let S E CF(k), so ,S’ is a non-abelian

composition factor of Gal(g(Z) - for a Siegel function g(Z) over k.
By Corollary 3.7 we may assume that g is functionally indecomposable. The
Galois group G of g(Z) -t over k(t) acts primitively on the roots of g(Z) -t,
because g ( Z) is functionally indecomposable over k by Theorem 3.3. Let
R be a finitely generated ring in k with lg(k) f1 RI = oo.

If h(Z) E k(Z) is a non-constant rational function of degree n, then
we call the elements A E with I  n the branch points of

h(Z).



1012

Let p be a prime. Choose cx E R such that the following holds: 0 and o0
are not branch points of g(Z) - a, and the p-th powers of the branch points

are all distinct. These general position assumptions will be used
in a genus computation below. (g ( Z) - c~)P . Let ( be a primitive
p-th root of unity. By our choices, the sets of branch points of the splitting
fields of the p functions g(Z) - a - (itl/p, i = 1, 2, ... , p over are

pairwise disjoint. As does not possess unramified finite extensions,
each of these splitting fields is linearly disjoint to the compositum of the
remaining p - 1 ones. This implies that the Galois group W of g(Z) - t
over k(t) is the wreath product GP x Cp.

Let L be a splitting field of 9 (Z) - t over k(t), and k, the algebraic
closure of 1~ in L. Again W = Set W - Gal(L/k(t)). By
Lemma 4.26, W has a maximal subgroup V, such that V is intransitive on
the roots of g(Z) - t. Indeed, one orbit of V has length p.

We have lj(k) rl RI = 00. Let f (t, X ) E k(t) [X] be a minimal

polynomial of a primitive element of the fixed field of V in L over k(t).
We have verified (a), (b), and (c) of our theorem.

It remains to compute the genus of f (t, X) = 0. Recall that f (t, X)
is absolutely irreducible by Lemma 4.1. We work over Let Gl be the
stabilizer of a point in the given action of G on the roots of g(Z) - t. Let
x be a root of f (t, X ) . The stabilizer V n W in W of x can be identified
with Wl := Gp x Cp. Note that if n is the degree of g(Z), then f (t, X) has
degree nP.

We take advantage of the general position assumptions of the branch-

ing locus of g(Z) - t in order to get an easy genus computation using the
Riemann-Hurwitz genus formula. Let ~1 and ~2 be inertia generators be-

longing to t - 0 and t H oo, and let Tl , ... , Tr be inertia generators coming
from the branch points of g(Z). Let ind refer to the action on W/Wi . Then
o-i has precisely n fixed points, and moves the remaining nP - n points in

p-cycles. Thus ind(a~i ) = (nP - n) ( 1 - 1 /p) . If the inertia generator belong-
ing to Ti has orbit lengths vl, v2, ... , vs on the roots of g(Z) - t, then Ti
has the same orbit lengths on W/Wl , but each one occurs np-1 times. As

is an extension of genus 0 fields, we obtain

If 9 f is the genus of x), then
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so

and clearly ~. --~ oo for p - oo.

5. Applying the simple groups classification.

So far we have used only easy arithmetic and geometric properties
of the ramification structure of Siegel functions. In particular, the results
are not based on the classification of the finite simple groups. In order
to obtain more results, it is indispensable to obtain good information on
the Galois groups of g(Z) - t for Siegel functions g. This has been carried
out in [Mf101]. There we classify the possible Galois groups, and study
which cases live over the rationals. We quote three corollaries from this
classification.

THEOREM 5.1. - Let k be a field of characteristic 0, and g(Z) E
k(Z) a Siegel function. Then each non-abelian composition factor of

Gal(g(Z) - is isomorphic to one of the following groups: Aj (j &#x3E;,
5), PSL2(7), PSL2(8), PSL2 ( 11 ), PSL2 ( 13), PSL3 (3), PSL3 (4), PSL4(3),
PSL5(2), PSL6 (2), MIl, M12, M22, M23 ~ M24-

THEOREM 5.2. - Let g(Z) E Q(Z) be a Z-Siegel function over Q.
Then each non-abelian composition factor of Gal(g(Z) - t/Q(t)) is isomor-
phic to one of the following groups: Aj (j &#x3E; 5~, PSL2(7), PSL2 (8).

THEOREM 5.3. - Let g(Z) E Q(Z) be a Z-Siegel function over Q.
Assume that A - Gal(g(Z) - t/Q(t)) is a simple group. Then A is

isomorphic to an alternating group or C2.

An immediate application of the latter theorem and Lemma 4.3 is

COROLLARY 5.4. - Let f (t, X ) E Q(t) [X] be irreducible with Ga-
lois group A, where A is a simple group not isomorphic to an alternating
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group or C2. Then G for all but finitely many special-
izations 

Remark. - This corollary becomes completely wrong if we allow
rational specializations t E Q. Indeed, many interesting simple groups are
Galois groups of polynomials A(X) - tB(X) with A, B E Q[X], see [MM99,
Appendix, Table 10]. So for each specialization t = A(z) /B (z) with z E Q
we obtain a smaller Galois group, because becomes reducible.

Similarly, Theorems 4.24 and 5.2 give

COROLLARY 5.5. - Let f (t, X ) E Q(t) [X] be irreducible, and
assume that the Galois group of f(t, X) over Q(t) acts primitively on the
roots of f (t, X) and has a non-abelian composition factor which is not
alternating and not isomorphic to PSL2(7) or PSL2(8). Then Redf (Z) is
finite.
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