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ON THE IMAGE OF A-ADIC GALOIS
REPRESENTATIONS

by Ami FISCHMAN

1. Introduction.

F. Momose has proved that the image of a restricted l-adic Galois
representation attached to an appropriately generic (normalized, ordinary,
no CM) modular form is full in the sense that it contains the special linear
group (SLy) for all but finitely many ! [Mom81]. In this paper, we generalize
that result to the A-adic setting developed by Hida in [Hid86a], [Hid86b],
and [Hid86c]. We show that the image of the subgroup determined by the
twists of the form is full (Theorem 4.8) and further determine the exact
image of the Galois group of Q under the A-adic representation.

We then show that in some sense, of all generic A-adic Galois rep-
resentations, all but a density 0 subset have full image as in Theorem 4.8
(Theorem 5.5).

In order to obtain analogs of the classical results in the A-adic situa-
tion, we determine the exact structure of the A-adic Hecke algebra and
coefficient ring. We then lift the classical results of Momose to the
A-adic setting using a proposition of N. Boston from the appendix to
[MW86].

Keywords: Modular form — p-adic family — Galois representation — p-adic modular form.
Math. classification: 11F80 — 11F11 — 11F85 — 11R23.



352 AMI FISCHMAN

1.1. Layout.

In Section 2, we discuss the case of weight 2, and the results already
known for it. In particular, we quote the result of Momose which guarantees
that the restricted l-adic representation attached to a generic weight 2
modular form is full for all but a finite set of primes [. Then in Section 3,
we lift the weight 2 modular form to a A-adic modular form and prove that
in fact the A-adic Hecke algebra is of the form of a power series ring over
the classical Hecke algebra. This allows us to compute the coefficient ring
of the lifted form, A, explicitly, and subsequently to set up the proposition
of N. Boston. In Section 4, we prove that the restricted A-adic Galois
representation is full, and in Section 5 we show that for all but a density 0
subset of generic modular forms, the attached representations are full.

1.2. Notation.

Throughout, A,, will denote the completion of A at m and A(,,) will
denote the localization of A at m, for a ring A and a prime ideal m.

We recall the following standard definitions and notation for an odd
prime [. Let p, := {C €EQ|I¢ = 1} be the set of nt* roots of unity. Define
the Teichmiiller character at [, w;, to be the first component of the canonical
isomorphism

r
—N—
2y %5 ey x (1 +12,)
and define () : Z — 1412, via (z) := wi(z)"'z. Then z — (wi(x), (z)) is
the canonical isomorphism above.

The cyclotomic character at [ is defined by letting n approach oo in
the following canonical sequence:

Gal(Q/Q) = Gal(Q(un)/Q) >(Z/1"Z)*
to get the character

v : Gal(Q/Q) ™ Gal(Qui=)/Q) S L7

We define ¢ : Gal(Q/Q)= Gal(Q(u~)/Q) > Gal(Qu/Q) =1 +
1Z; << A% := 7,[[X]]* to be the canonical character (so ¢ is onto 14-1Z;, and
k maps (1+1) — (1 + X)). We note that ¢(c) = k((v(0))) by definition.
In particular, for a prime g # [, «(Froby) = &({(q)).

ANNALES DE L’INSTITUT FOURIER
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Most of these facts are summarized in the following diagram:

Gal(@/Q) —~ Gal(@ (u=)/Q) Gal(@o/Q)

x oy x (1+12) =2 1 12,5 A = Z[[X)*

Acknowledgement. — This work was done under the supervision of
Professor Hida as part of my Ph.D. thesis at UCLA. I am very grateful
to Dr. Hida for all the time, patience, and energy he has devoted to my
research and learning, and for the knowledge he so unsparingly shared with
me. I am also grateful to the math department at UCLA for its support.

2. Weight 2 situation.

2.1. Notation.

Throughout ! will denote a (variable) prime number greater than 3.
Let f = > o2, a(n, f)g" € S2(To(N),e) be a weight 2 newform without
complex multiplication. Fix an embedding Q@ C C once and for all. Let
E; = Q(a(n, f)ln € N) be the subfield of Q C C generated by the
coefficients of f, and note that Ey is finite dimensional over Q (since it
is generated by eigenvalues of a finite dimensional algebra). Let Oy := Og,
be the integer ring of Ef, and Oy, := Oy ®z Z; be the completion at | (for
each [). Similarly for each [, complete E¢ to Ef; := Ef ®g Q-

Let ps; : G = Gg = Gal(Q/Q) — GL2(0y5,1) C GL2(Ey,) be the
continuous, unramified outside [N Galois representation attached to f such
that Tr(pg,i(Frob,)) = a(p, f) and det(ps,(Frob,)) = (p)p for all p { IN,
where Frob, is a Frobenius element at p. Note that this determines p¢;
uniquely up to isomorphism as an Ej;-representation, but not necessarily
as an Oy -representation. This representation comes from the action of
G on Il-power division points of an abelian variety over Q. For more
information on the construction and properties of ps; the reader should
consult [Shi71].

TOME 52 (2002), FASCICULE 2



354 AMI FISCHMAN

For an automorphism -y € Aut(Ey), a Dirichlet character x may exist
such that

v(a(p, f)) = x(p)a(p, f)

for all but finitely many p. If it exists, call this character x.,. Let I'y be the
set of v € Aut(Ey) for which there exists a x,.

2.2. Known results.

Work of Momose and Ribet allows us to make the following definitions
with implicit claims:

(1) Set Hy := Nyer, ker x4;

(2) I'y is an abelian subgroup of Aut(Ey);

(3) Set Fy := Ef"* to be the fixed subfield;

(4) The index [Ey : Fy]| is finite. Set n := [Ey : Fyl;

(5) Set Ry := OF, to be the integer ring of the fixed subfield;

(6)

6) Set Ry := Rf ®z Z; to be the completion at I, for each prime [;
and

(7) Set Af’l = {IE S GLg(Rf,l)Idet(x) S le }

These definitions come from [Rib85] and allow us to state [Re85,
Th. 3.1]:

THEOREM 2.1 (Momose).— For all but finitely many primes I,
psi(Hys) = Ay, and in particular, pg (Hs) D SLa(Ryy).

2.3. l-ordinarity.

We will be dealing with two similar, but not equivalent, notions of
“ordinarity.” The first notion is for rational primes (say [ € Z) where we
say that f is l-ordinary if I { a(l, f). The second notion is for primes lying
over [, say [. Then we say that f is [-ordinary if [} a(l, f).

When do the two notions clash? Clearly if [ | a(l, f) then [Ja(l, f) for
any prime [ | [, so l-ordinarity implies [-ordinarity. However, it is possible
that [ | a(l, f) (i.e. f is not [-ordinary) and that I { a(l, f) (ie. f is I-
ordinary). We will see shortly that this will not be a problem for us.
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We recall the bound on the size of the coefficients of an eigenform of
weight k: |a(l, )| < 21=1/2 which in weight 2 gives: |a(l, )| < 2V/1. This
implies that f is l-ordinary if and only if a(l, f) # 0 for [ > 3 (since if it is
non-zero, it is between 0 and 2+/1 < | in absolute value and not [-divisible).

Serre shows that for a real number z, the number of primes [ less
than z not dividing the level N such that a(l,f) = 0 is Pso(z) =

O(z/(log(z)3/27?)) for any § > 0 [Ser81, Theorem 15, p.174]. Using the

prime number theorem, one sees that the density of non-ordinary (rational)
primes is df := lim;_, 1—7% = 0, since é§ can be taken to be less than

a half. Thus the density of ordinary primes must be 1. We summarize this
as:

ProPoOSITION 2.2 (Serre). — Any form f as above of weight 2 is I-
ordinary for a set of primes {l} of density 1.

For any form f as above, let X be the set of primes ! for which f is
l-ordinary and which avoid the union of the following finite sets of primes:

(1) the finitely many primes excluded by Theorem 2.1;

(2) the primes dividing the discriminant of the reduced Hecke algebra

ha(To(N), e, Z)™d
where

hao(To(N),e,Z) :=Z[T(n) | n=1...] C End(S2(To(N),¢)).

(3) the primes dividing 30N.

Note that the last set of primes excludes all [ such that I < 2v/1+ 1,
so in particular excludes the possibility that |(a(l, f)% — (1)).

Then Serre’s result (Proposition 2.2) shows that X is a density 1 set
of primes.

The reason we exclude the primes dividing the discriminant of the
Hecke algebra is that those might ramify in Oy. Now, for a prime [ € ¥,
we are guaranteed that there is an [ lying over [ such that f is l[-ordinary.
This follows since if all of the primes lying over [ divided a(l, f), then so
would [, because it is unramified. The notion of [-ordinarity will be the key
to lifting f to a A-adic eigenform F' later on.

Lemma 2.3.— For a prime [, | { disc(hi*d(T'o(N),¢,Z)) implies that
[ doesn’t ramify in Oy.

TOME 52 (2002), FASCICULE 2
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Proof.— We have the map A : ha(T'o(N),e,Z) — Of mapping a
Hecke operator T'(n) to the eigenvalue of f at n. A prime !/ ramifying in Oy
must divide the discriminant of Im()), since disc(Im())) = disc(O¢)(Oy :
Im()))? by [FT93, (2.3), p.121]. Let I be such a prime. Then the pre-image
of the different of Im(\) must contain ! and thus ! divides the discriminant
of ha(T'o(N),€,Z) which shows the lemma. O

Note that by excluding the primes dividing 30N, we exclude the
primes dividing the conductors of the x, by [Mom81, Rmk. 1.6].

3. Machinery.

3.1. Lifting the eigenform.

Throughout this section, fix fo as in the previous section, a prime
l € ¥¢,, and an [ | [ for which f; is l-ordinary. Then there is a unique
l-ordinary eigenform f € S2(T'o(N) NT'1(l),€,Z) such that f and fa have
the same eigenvalues for all T'(p), p t NI. We note that Oy; has Oy (the
completion of Oy at [) as a direct summand and we will be mostly concerned
with Oy, in the sequel. Similarly, we let R¢ be the corresponding direct
summand of the fixed subring. We use here (and elsewhere) the convention
that a comma-seperated list of subscripts is associative, so for instance
Oy, = (Oy): is the completion at [ of Oy.

Let A := Z;[[X]], L be its quotient field, and let L be an algebraic
closure of L. From [Hid89, Thms. 4.5 and 4.6] we have that there is a
finite extension of L, call it K C L, with integral closure I of A in K such
that there is an I-adic normalized Hecke eigenform F' € S°™4(NI>, x) that
specializes to f at weight 2 of character x, where x := ew?. We use here the
notation S*4(NI*,x) to denote the space of (ordinary) A-adic modular
cusp forms of outside level N with character x (see [Hid93, Sec. 7.6] for
definitions and examples). For the proof of the existence of a A-adic lift
the reader should refer to the proof of [Hid86¢c, Cor. 3.7].

Let F =37, a(n, F)(X)q™ be the g-expansion of F.
We adapt here an argument of F. Gouvéa’s from [Gou92] to the weight

2 situation to show that

TueEOREM 3.1. — The coefficient ring 1 is a power series ring in one
variable. Specifically, I = Oy, &z, Zi[[X]] = Oy,[[X]]-

ANNALES DE L’INSTITUT FOURIER
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To prove this theorem, we set up some notation. Because f and F are
eigenforms for their respective Hecke algebras, we can define maps

A thi= ha(To(N) ﬂFl(l),E,Z) — Of
and
A thi=ho(NI®, x) - T

mapping a Hecke operator to its eigenvalue on f and F', respectively. Let
my = )\;1([) be the inverse image of I.

LeEMMA 3.2. — my is a maximal ideal of ha(To(N) NT'1(1),¢,Z).

Proof. — Since ([) C Oy is a maximal ideal and O/([) is a finite
field, we have that hao(To(N) NT1(l),e,Z)/my is a finite ring. But my is
prime because zy € my implies A¢(zy) = Ag(x)Af(y) € (I) and (1) is prime,
so Af(z) € (I) or As(y) € (I). This means that ho(To(N) NT1(1),e,Z)/my
is a finite integral domain and this a finite field, so my is maximal. a

Then my is a maximal ideal of h and contains ker(Ay). We will see
shortly that there is a unique maximal ideal containing ker(Ag), and we
will call it mp. Since the m’s contain the kernels, Ay factors through h,,
and Ap factors through h,,,.. When no confusion can arise, we will write
hm for Ay, and hy, for hy,.

LeMMA 3.3.— Extend the scalars of h to Z; by b’ := h®zZ;. Then
m' := ms®zZ; is the unique maximal ideal of h’ which contains ker(\y).

Proof.— Since b’ is an algebra of finite rank over the local ring 7, it
is semi-local, and in particular has only finitely many prime ideals. Write
B’ = T1.cn hi, where the product ranges over the maximal ideals of h'.
Then note that in general, Spec(A @& B) = Spec(A) Ll Spec(B) (see, for
instance, [Sha94, p. 12, Example 1]), so a prime ideal in the product must
only actually show up in one of the components, proving the lemma. O

Since h is already semi-local, the same proof yields:

COROLLARY 3.4. — There is a unique maximal ideal mg containing
ker(Ap).
Cram 3.5.— my does not contain primes dividing the discriminant

of
ha(To(N), €, Z)™d.

TOME 52 (2002), FASCICULE 2
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Proof.— Note that m¢ N Z is a maximal ideal of Z, so my NZ = (q)
for some rational prime g. This shows that m can contain only one rational
prime. But by definition [ € my, so the claim follows. O

LEMMA 3.6. — Forl{ N,k > 2,andm C ha(To(N),e,Z) the maximal
ideal associated to the primitive form fa, the completion hy(T'o(N), &, 7).,
of the Hecke algebra is an unramified discrete valuation ring if m doesn’t
contain a prime dividing the discriminant of the reduced part of the Hecke
algebra.

Proof. — For simplicity of notation, let h := ha(T'o(N),¢,Z) and
let K be its total fraction ring, and regard K as a finite dimensional
algebra over Q. Then let U C K™ be the integral closure of Z in K™ and
hed = Z[T(n) | n = 1,-- -] C U. Note that Q(T'(n)) = K, so h™ is a
lattice in U and (U : A™) is finite. Further, if ¢ { (U : h*%) then U, = Q;ed.
Now K™ is a commutative semi-simple finite-dimensional algebra over Q,
so we can write K™ = K; x --- x K, for some r, with each K; a number
field, and U = U; X - - - x U,., with each U; an order in a number field. Then
we have that Q;ed & Upq X - x Up,q, and each component is a discrete
valuation ring.

Since the discriminant of A™? is disc(h™?) = disc(U)(U : h*9)?
([FT93, (2.3) on p.121]), the assumption on m implies that it contains
no primes dividing (U : h™?). Specifically, let g be a rational prime in m
and obtain h79 = (fod)m is a completion at one of the components of
Upq X -+ X Upq, and so a discrete valuation ring. Since the g we chose
is in fact outside disc(h™®?), it does not divide disc(U) and so each U;,
is unramified, so E,eld is unramified. Since f is primitive, h,, is reduced
([Hid0O, p. 106]) and the lemma is shown. a

LEmMA 3.7. — Ifa(l, f) # ++/e(l) mod m (which is always the case if
U} N and f; is of level N ) then ha(Lo(N)NT'1(1),€,Z) 1 =2 ha(To(N), €, Z)m,
and the former is an unramified discrete valuation ring.

Proof. — For the proof of this lemma we refer the reader to [Hid00,
p. 106]. o

PROPOSITION 3.8.— hy, & h,,,®7,Z,[[X]]. In particular, we have
Autp (hy,) = Autg, (hu,).
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Proof. — From [Hid86c, CXor. 3.2], we have that h,,/Ph,, & h,,.
Since h,, is an unramified discrete valuation ring over Z;, h,, is a regular
local ring of dimension 2 with a regular sequence (Pz,!). Now, h,,/mp &
(hy/P)/(l) = hp/(l) =2 F, and h, is unramified over Z;, so we get
hm = W(F) — h,, (by the universal properties of Witt vectors). Then
together with the map given by the diamond action Z;[[X]] — h,, we
get a map h,,®z,Z[[X]] — h,, which induces an isomorphism on residue
fields and maps the regular sequence (P, 1) for h,®z,Z[[X]] into a regular
sequence for h,, and is thus an isomorphism.

In order to finish the proof of Theorem 3.1, it suffices to show that
the local Hecke algebras are isomorphic to the coefficient rings:

LEMMA 3.9. — We can identify the local Hecke algebras with coeffi-
cient rings as: hy, = Oy¢ and h,, = 1.

Proof. — By the definition of my, for any b € h \ m, A\s(b) # I and
more generally, A\¢(b) € O}"[. This allows us to define a map h(,) — Oy
by mapping

a  As(a)
b ()
which is now well-defined and a homomorphism. By the proof of Lemma 3.6
we know that this map is surjective because Ay maps onto Z[a(n, f)] and !
(the prime at which we are localizing and then completing) is outside the
index of (Oy : Z[a(n, f)]). Taking the completion of the left-hand-side gives
us a surjection A:hp — O ¢, of discrete valuation rings. Furthermore h,, is
of dimension 1 because h is a finite rank Z-module, h and Z have the same
dimension, and localizing and completing doesn’t affect the dimension. Oy
is also of dimension 1, so we have a surjection of discrete valuation rings of
equal dimension, hence an isomorphism.

Similarly, the map h,, — I is surjective, and both are finite rank
A-modules, so they have the same dimension (2). But both are integral

domains, so there must be no kernel and the rings are isomorphic. O

Proof of Theorem 3.1.— Given the results above, the theorem follows
trivially by noting that I = h,, ¥ h,®zZ[[X]] & Of,&z,Z[[X]] =
O allX]). O

For each k > 2 set Py, := ((1+ X) — (1 +1)*) to be the prime ideal of
“weight k£” in L.

TOME 52 (2002), FASCICULE 2
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3.2. Setting up notation.

We now define I' » and Hr, similarly to the weight 2 analogues I'y, H.
Let

Fp:={y € Aut(K) | 7(l) = [ and 3 a Dirichlet character x., such that
v(a(p, F)) = x(p)a(p, F) for all but finitely many p}

Ip={yel;|v() =10

Rp:=1'"

Hp = Nyer, ker(x,).

Further, as we will see shortly, more important than I'y for us will be

We will show that in fact as far as the fixed rings Rr and Ry, go,
there is no new information in the A-adic setting over the weight 2 setting:
Rp mod P, = R . To prove this we record the following lemmas:

LEMMA 3.10. — Recall that we defined h' = h®77Z;. Then let h°™d be
the l-ordinary part of b/, i.e. the product of local rings of h' in which the
image of T(l) is a unit. Then the set of local rings of h°*d is in bijection
with the set of local rings of h.

Proof.— For brevity in the proof we use h to denote h°'d. Write
the decompositions as h = [];_; h,, and h = []}_, hm,. Clearly the map
h — h modulo the prime ideal of weight 2 is surjective, and each local
component of h gets mapped onto a local component of h, so the only
thing to show is that no two local components of h get mapped to the
same component of h. Let € : h — hy,, be the canonical projections, and
note that the {€;} form a complete set of orthogonal idempotents. Then
by Hensel’s lemma (for instance [Eis95, Cor. 7.5 on p.187]), we can lift
this set of idempotents to {e;} : h — h, and h = [],_, ¢;h. Then the
lemma will follow if each e;h is local. Suppose n; # ny C e;h are both
maximal ideals. Then we may decompose e;h = R; x Ry, and both R;’s
are A-algebras. Since e;h is semi-local, Pye;h is contained in the Jacobson
radical of e;h, and so by Nakayama’s lemma neither of the factors in
g;h = e;h/Pre;h = Ry /PoRy X Ro/PoR; is trivial, contradicting the fact
that &;h = h,y, is local. ]
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Recall that Auta(h,) = Autg, (hm) from Proposition 3.8. If v €
Autg, (hy,) then we will denote by ¥ € Autp(hy,) the isomorphic image
of ~.

LemMA 3.11.— Let v € I'y C Autg, (hy) and let 5 € Auty(hy,) be
the isomorphic automorphism. Then the following diagram commutes for
P = P2.‘

OnllX)| 212h,, 2% 0; =h,
|5 B
Ol X)) 212h,, 2% 0 =h,.

Proof. — Note that for P = (X) the diagram obviously commutes.
Now consider t := 1+ X — (1+1)? € Oy,[[X]]. Clearly Oy [[X]] = Oy, [[t]],
and substituting Oy ([[t]] for Of,[[X]] = h,, in the diagram shows that it
does indeed commute for P = (t) = P4, since the difference between X and
tis 1 — (1 +1)% € Z; and thus fixed by both vy and 7. O

Now we make precise the notion that there are no twists in the
A-adic setting that were not present in weight 2:

ProprosiTiON 3.12. — The A-adic twists are those weight 2 twists
that fix [. More precisely,

I'p = lf C Ff.
Proof.— We know that

I'r C Autp(I) = Autz, (Of,) D Flf

so the proposition follows if we can show that the (fixed) isomorphism
between the automorphism groups maps each I' into the other.

Let v € T, and let 4 € Auts(I) be its isomorphic image. Then to
show that 4 € I'r it suffices to show that there is a Dirichlet character
that is compatible with it. By Lemma 3.11, ¥F mod P> = f®x.,, where
the = symbol signifies that all but finitely many of the prime-index Fourier
coefficients on both sides agree. But F®yx, mod P> = f®)., as well. Since
eigenforms that agree on all but finitely many prime-index coefficients
are equal, FQ®x, mod P, = #F mod P,. But then the uniqueness of the
A-adic lift yields that FQx, = 7F', so x5 = X~, and ¥ € I'r. So F’f —I'p.

TOME 52 (2002), FASCICULE 2
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Conversely, let ¥ € I'r, and v € Autg, (Oy,) be its isomorphic image.
Then

f®x5 = F®x5 mod P» = YF mod P, = y(F mod P) = «f
and v € ', so T'p — T} O

The last proposition gives us an injection ¢ : I'r — I'f, so we expect
the corresponding Galois groups to have the opposite relationship:

ProposiTION 3.13. — Under the above assumptions, Hy C Hp.

Proof. — Let g € Hy = ﬂwerf ker(x,). Then to prove the proposi-
tion, it suffices to show that for any 7' € I'r, ¥/, is trivial on g. This is
equivalent to saying that v'(a(p, F)) = a(p, F) for almost all p. g € Hy
means that v/ {a(p, F)) mod P> = ¢(v')(a(p, f)) = a(p, f) for almost all p.
So Llee:F) 4 ¢ P, for almost all p. But x4/ (p) is a finite order character,

a(p,F)
so TP L)) ((Z‘(’;p l;};)) is an element of finite order in 1+ P,, and thus must be 1 for
almost all p. O

Now we are ready to prove:

THEOREM 3.14.— Rp mod P, = Ry .

Proof. — Given the previous results, this follows immediately:

(Rp mod Py) = (IFF mod PQ)
F/
2 (07 [[X]I"" mod P,) 2 0, = Off = Ry,

Note that we are abusing notation slightly here, where I'y doesn’t act on
Oy, (an element of I'y might permute the components of Oy ;). Instead we
take Ojlzf[ to mean that subset of Oy which is fixed by I'y when embedded
in O £ O

3.3. A proposition of N. Boston.

In the appendix to [MW86], N. Boston gives a criterion for lifting the
property of being full from a residual representation to the original one.
We suspend for this section our notation from above and use Boston’s.

If I is an ideal of a ring A, define I'(I) := ker(SL,(A) — SL,(A/I))
(n will be clear from the context). Also, for any group D, let Z(D) denote
the center of D.
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Call an element T' € GL,(W) a transvection if Td = d for all d € D
for some hyperplane D, and for all z € V = W", T'(z) = z + d, for some
dy € D.

Let R be a complete, Noetherian, local ring, with maximal ideal m,
and residue characteristic p > 5. We further assume that R/m is finite,
that R is regular and of Krull dimension 2, and that m = (p,t). Suppose
p{n.Let I,...,I; be minimal ideals of R/m? that generate m/m?, where
d := dimpg ,,(m/m?).

We use the following proposition:

ProposiTioN 3.15 [MW86, Cor. in appendix]. — Let D be a closed
subgroup of SL,(R) projecting onto SL,(R/m), such that for 1 < i < d,
there exists x; € T'(I;) \ Z(SL,(R/m?)) normalizing the image of D in
SL,(R/m?). Then D = SL,(R).

Then a slightly modified form of Boston’s result is:

ProrosiTION 3.16 (Boston). — Let p : G — GL2(R) be a continuous
representation, inducing p : G — GLy(R/m). Let L C G be a subgroup.
Suppose p is full. Then if

@ o0 c{(s I)};

(2) there exists a matrix of the form ((1) a +p)_*1(1 +t)) in p(L); and

(3) for each b € F,; C (R/m)*, there exists a matrix of the form

1 —
(5 ;) enlm),
then p is full.

Proof. — The proof here basically follows the one given in the ap-
pendix to [MW86], with the exception that we make it more explicit here,
and use the condition 2 above instead of Boston’s condition that there
exists a matrix of the form ((1) (1_”; t)) in p(L). Also, we use the more
general setting of the groups L C G instead of Boston’s specific use of the
inertia group at p: I, C Gal(Q/Q). Let F := F,r = R/m be the residue
field of R. Let D := p(G) N SLy(R) and Dy := D mod m? C SLa(R/m?)
be its projection. Then we take as the ideals for Proposition 3.15 above
Ji := (p,m?)/m? C R/m? and J; := (t,m?)/m? C R/m?. These obviously
generate m/m? and are minimal in R/m?.
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If we can find elements z; € I'(J;) \ Z(SL2(R/m?)) for i := 1,2 that
normalize Dy, we will be done by Proposition 3.15.

Cram 3.17.— I'(J1) C Ds.

Proof. — Let 1 + u € Dy be a lift of a non-scalar transvection
to Dy C SLy(R/m?) from SL2(R/m) (possible since p > 5 and D
surjects onto SLa(R/m)). Let z; := (1 4+ u)? = 1 + pu € D,. Note that
zymod J; = 1, so that 1 € Dy NI'(J1). But I'(J;) is minimal as an
SLy(R/m)-module (since J; is) so Do NT'(Jy) =T'(Jy), i.e. I'(J1) C Da. So
the claim is done. O

This gives us the z; we were looking for (being in Dy guarantees
normalizing it). So we only need to find an z now:

By the second hypothesis, there exists at least one matrix of the form
1 T . I
(0 (1+p)-101 +t)) in p(L). Two cases arise:

(1) one of these r’s satisfies € m. Then choose a,b € R so that r = pa+tb
and consider the matrix

e} o 50,) (6 )

_ 12 (1 tb(1+p)\ _ ((Q+t)"V2 (1 +p)
=(1+9 /<o 1+t )_( 0 (1+t)1/2)‘

Note that A’ has determinant 1 and mod ¢ is the identity matrix
(so A’ € I'(J2)), and non-scalar (so non-central in SLz(R/m?)). But
A’ is just a product of a matrix in p(L) mod m? and a matrix in
I'(J1) C D4 with a scalar, so it certainly normalizes D2, and we have
our desired z, := A’, so the proof of the proposition is done in this
case.

(2) None of the 7’s that arise in this manner are inside m. Thus we get a

. 1 a
matrix ( 0 1

p > 5, so we can choose n € {2,...,p—2} such that when viewed as an
element of F,, C R/m, nisaunitandn™! # —1. Let c:=n"1'+1%#0
(¢ € Fp). Then by the third assumption of the proposition, there
exists s € R/m such that ((1) ) € p(L). Then (letting L’ denote the

S
Cc

) € p(L) such that a # 0 (r = a mod m). By assumption,
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commutator of L):

()66 )
=(1/c)((1J s+cnac) ((c) —sIna>
___((1) S—S+(10—1)na):((1) c11> _B

Now we consider what B might lift to: det(p(L’')) = {1}, so by the first

hypothesis, B must be the reduction of some B = ((1) rll) € p(L)

such that ' = a mod m. In particular, we get that

<(1] (1+;_—1(T;+t)):<(1) (1+p_7‘1(1+t)>((1) TII)EP(L)

and r — 7’ € m. This is a contradiction to the assumption of this case,
so the proof of the proposition is done. O

Having set up this machinery, we are ready to lift the weight 2 results
to the A-adic setting.

4. A-adic situation.

4.1. Lifting the representation fullness.

Let p := pr : Gg — GL2(I) be the Galois representation attached
to F' from Section 3. Let pr be the reduction p mod m. Then we set
pr := pr mod Py for each weight k£ to be the weight k specialization of
p. Note that this py coincides with the ps; from Section 2.

ProposiTiON 4.1. — Up to conjugation p(Hp) C GL2(RF).

Outline of Proof. — By the Cebotarev density theorem, it is in fact
enough to show that for any Frob, € Hp, p(Frob,) € GL2(RF). From
the properties of p, we see that tr(p(Frob,y)) = a(g, F') and Frob, € Hp
implies that x(¢g) = 1 for all v € I'r so tr(p(Frob,)) € Rr. Using Wiles’
theory of pseudo-representations (for instance, [Hid00, Prop. 2.16]), there
exists a representation m : Hp — GLo(Rp) whose trace agrees with that
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of p|a,. But (p mod m)|g, is irreducible, so using a result of Carayol and
Serre ([Hid00, Prop. 2.13]) we see that p|g, and 7 are conjugate, and the
proposition follows. O

Hereafter we restrict our attention to the image of H,. Thus we let
Pt = pslu, and p = pr|u,. In this section we let p := pf to simplify
notation where no confusion can arise. Note also that because we have
shown that Hy C Hp, the image of p mod P, will contain the image of p’f.

In order to apply Boston’s proposition to our situation we record the

following observations:

LeEmMMA 4.2. — Specializing to the weight 2 representation and then
reducing mod (1) is equivalent to reducing the I-adic representation mod m.

Note that the former is what Corollary 2.1 gives us, and the latter is
what Proposition 3.16 requires.

Proof. — This is trivial by noting that the following diagram com-
mutes:

A+ X)—(1+1)2
Hp —2—> GLy(Re) =X G Ly (Ry,)
mod m[
mod ()

Combining Lemma 4.2 with Corollary 2.1 we get:

LeEmMA 4.3. — 7 is full: Im(p) D SLy(Fyr).

Thus, to apply Proposition 3.16, we only need to verify the three tech-
nical conditions of Proposition 3.16. We make the following substitutions
for the proposition (where I is the inertia at [ in Gal(Q/Q)): L = I, N Hp,
p=L, R=I, m=(,X), and R/m =F;-. We will let J:= I, N Hp.

LEMMA 4.4.— The first condition of Proposition 3.16 is satisfied:
1 %
e{(o 1)}
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Proof. — The definition of pr being l-ordinary is that pp |p,=
(8 ;) where ¢ is unramified at | (i.e., 6 |,= 1). So pp |, = ((1) ;})
for some character ¢. An I-adic representation is always ordinary-at the

prime over which I is defined, so we are done. O

In order to verify the other two criteria for Proposition 3.16, we make
the following observation:

LEmMMA 4.5.— J C Gal(Q/Q) maps onto

Gal(Q/Q)/Gal(Q/Q(u=)) = Gal(Q(m==)/Q).
Call this latter Galois group L.

Proof. — As noted in Section 2.3, [ { cond(x,), so in particular,
lford(xy), and thus

Gal(Q/Q)/ ker(x,)

is prime-to-l (contains no non-trivial homomorphic image of Z/IZ). Fix for
the moment . Let K := ker(x,). Then K' := K/Gal(Q/Q(u=)) C L
must be pro-I because L is, so L/K’ is pro-l. But L/K’ = Gal(Q/Q)/K
which is prime-to-l as shown above, so L/K’ must be trivial, i.e. K’ = L.
Varying v now, we see that Hr/Gal(Q/Q(u)) must also be equal to L.

Thus the lemma follows since I; surjects onto L. O
. . 1 *
LEMMA 4.6. — There exists a matrix of the form (0 1+0-1(1+ X))
in p(J).

Proof.— The defining properties of p as an I-adic representation
are laid out in [Hid86a, Thm. 2.1 and following remarks]. In particular,
det(p) |r,= xv; 't. As shown above, J surjects onto L, so ¢ (which factors
through L) must have a surjective image on J C Gal(Q/Q), so that
t(J) =1+ 1Z; — A. For the same reason, v(J) = Z;.

Let 0 € J C Gal(Q/Q). Let a, = wi(v(o)) € (Z/12)*, b, =
(vi(0)) € 14+ 1Z;, and s € Z; such that b, = (1 +1)°. Then

det(pr (o)) = x(0)1(0) " (o) = x(o)ni(0) " k({11(0))) = x(0)bs " ag " K(bs)
=x(@) 1+ 1) "a; (14 X)* = e(0)wi (o)1 +1)~"ag (1 + X)°
=e(o)(1+1)"%ar (1 4+ X)°.

By the surjectivity of v; and ¢ on J it follows that we can choose an

element o € J to hit any given a, and any s € Z; (independently). Let
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M := cond(¢), and notice that by [Mom81, Rmk. 1.6], M|N. Note that
since [ { N, Q(u1 ) and Q(upz) are linearly disjoint inside Q(p, uar) C Q,
we can choose a 0 € Gal(Q/Q) to yield any given s € Z;,a, € (Z/IZ)* and
keeping ¢(o) = 1. So we can choose o € J so that s =1 and e(0) = a, = 1,
yielding the desired element of J. O

LEMMA 4.7.— For each b € F)* C (R/m)*, there exists a matrix of
the form ((1) Z) in p(J).

Proof. — Using the proof of the previous lemma, one notes that the
choice of a, is independent of the choice of s, so one may choose o € J so
that s = 0 and x(0)a, hits any desired b € 5(J). The lemma follows. O

Putting Lemmas 4.3, 4.4, 4.6, and 4.7 all together with Proposition
3.16, we obtain:

THEOREM 4.8. — The restricted Galois representation attached to F
is flIH, ie. pF(HF) i) SLQ(RF)

4.2, The exact image of Hp.

We now know that SLs(Rp) C pr(Hp) C GL2(RFp), and are
interested in finding out just where between the two matrix groups the
image of Hp under pp lies.

We record here a simple lemma for use later:
LeEmMmA 4.9. — If
SLy(R) C B C GLy(R)
is an inclusion of groups and
det(B) = A
for some ring A, then

B ={X € GLy(R) | det(X) € A*}.

As shown in the proof of Lemma, 4.6,
det(pr(0)) = x(a)ni(0) "'e(0) = e(0)(1 + 1) "*ar (1 + X)°
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and the 0 € J = I; N Hr C Gal(Q/Q) can be chosen to produce any
(independently) chosen e(o) € Of,1,a, € (Z/IZ)*, and s € Z;.

Let

D= {ca(l+ 1)1+ X)* € Op([[X]] | M =o' = 1,5 € Zu}.
Then we get

PropPOSITION 4.10. — Recalling that M is the conductor of the weight
2 nebentype and | € Xy for the weight 2 specialization of F', we have

det(pp(HF)) = D = pupr x g X T’
where
I":={(1+0)"°(1+X)° | s€ Z} =T C Zy[[X]).
Imitating the weight 2 situation, we let
Afp :={z € GL2(RF) | det(z) € D}
and putting the previous two lemmas together we get

CoROLLARY 4.11.— The image of pp(HF) is as large as it can be
given the determinant condition on it, i.e., pp(Hfp) = Ap.

This is the analogous result to (Momose’s) Theorem 2.1 in weight 2.

Recalling that we made arbitrary choices for f, and for I € Xj,, we

reformulate Theorem 4.8:

CoOROLLARY 4.12. — Let f € S5*¥(I'o(N),€) be a normalized eigen-
form without complex multiplication. Let E’f be the set of ordinary primes
for f (which is of density 1 by Proposition 2.2). Let

Bj := {Fl € SU(NI®, ew?) | Fi specializes to f at weight 2 and [ € Z}}

Then the restricted Galois representations (in the sense of Theorem 4.8)
attached to all but finitely many of the elements of By are full.

4.3. The exact image of G(Q).

The computation of the exact image of G(Q) under pr follows almost
word for word the argument of E. Papier as presented in [Rib85, Sec. 4].
We include the proof here for the reader’s convenience.
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The basic result of this section is that the difference between pr(G)
and pp(Hp) is similar to the difference between G and Hp.

LeMMA 4.13.— Given v € I'r, vpr and pr®X-, are irreducible.

Proof.— Suppose 0 # V ¢ K? is a non-trivial stable subspace under

70r(G). Note that yor(g) (7 ) = (pr(grr* (7)), soi (vor(G)V =V
then v(pr(G)y~1(V)) = V,and pr(G)y~1 (V) = v~ 1(V), contradicting the
irreducibility of pr. The second assertion follows from the fact that tensor-
ing two irreducible representations yields a third irreducible representation.
O

By the definition of X, it is clear that 7pr and pr®x, have the
same trace on Frob, for any p t I[N, so they have equal traces everywhere
(by the Cebotarev density theorem). The two representations must then
be equivalent (being semi-simple and of equal trace). So there is a matrix
X € GL3(K) such that XyprX ! = y®x.. Considering the restriction to
Hp, we see that X commutes with pp(Hp) D SLa(RF), so X is a scalar
matrix and in fact vpr(9) = pr(9)x,(9) for any g € G.

Fix for the moment v € I'r and g € G. From the structure of I and
Rp which we have already computed, it follows that I/my and Rr/mg,
are finite. Call these fields E and F respectively. Then we note that
I'r = Gal(E/F) and we can view 7 as acting on elements of E. Notice that
being a root of unity, x-(g) has the same order when projected into E, so
we view it as being both an element of I* and E*. Using Hilbert’s theorem

90 we can find an element a(g) € E such that v (a(g)) Ja(g) = x4(9)- Lis

unramified, so we can lift a(g) to W(E) — I and call this lift a(g) € I. Since
E is finite, a(g) has finite order, so a(g) has finite order, and a(g) € I*.
Note that the choice of g modulo Hp is irrelevant, since X, is trivial on

Hp, so there are only finitely many a(g)’s.
LemMA 4.14. — When x is the nebentype of F', we have

7(x(9)) = x+(9)x(9)*.

Proof. — It suffices to prove the lemma for g = Frob, for all p{IN.
Let p be a prime outside [IN. We consider the difference of Hecke operators:
T(p)? — T(p?). Specifically, we apply the two operators to F' and take the
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p’th Fourier coefficient in the g-expansion of the resulting eigenform:

a(p, FIT(p)) = a(p*, F) + s((p))x(p)p~
a(p®, FIT(p)) = a(p®, F) + ((p))x(p)p~ 'a(p, F)
a(p, F|T(p)*) = a(p, (F|T(p))IT(p)) = (P fIT(p)) + &((p))x(P)p~"
= a(p®, F) + x((0))x(p)p~a(p, F) + x((p))x(p)p~"
a(p, FIT(p*)) = a(p®, F) + ((p))x(p)p~ 'a(p, F).

So
a(p, F|T(p)*) — a(p, FIT(p%)) = s({(p))x(p)p~"

but F is a normalized eigenform so a(p, F)? = a(p, F|T(p)?) and a(p?, F) =
a(p, F|T(p?)) yielding

a(p, F)? - a(p®, F) = s((p))x(p)p~"

Applying v to both sides and using the fundamental relationship between
v and x, we get:

X+(p)%a(p, F)? — x4(p)?a(p®, F) = v(x((p))x(p)p~ 1)
X+ (p)*(a(p, F)* — a(p?, F)) = v(x(p))x((p))p~
X+ (0)*K((P)x(@)p~" = 7(x ())& ((p))p~
X+(0)*x(p) = 7(x(P))

and the lemma is proven. O
The preceding lemma tells us that ( O;C((gg); ) = ’g:f(gg);;;((gg); = ‘;((gg)) , SO
(9)?
xtoy € Br-

Re-write pr(g) as

0= (" ot ) {6 awinia) €@ or 0}

Then the product in curly brackets is in GLy(Rr) and has determi-
nant in D, so is in Ar. This allows us to give a full characterization of the
image of pp:

THEOREM 4.15. — The image of pr is the subgroup of GL2(I) gener-
0
ated by Ar and the finite set of matrices: (a Og) x(9) ) where g € G/HF.

a(g)
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5. Density analysis.

Now that we have the general machinery for lifting the fullness
of a weight-2 Galois representation, we wish to consider how often this
machinery succeeds in telling us that an I-adic representation is full.

To avoid repetition, call an ordinary, normalized eigenform which has
no complex multiplication a generic form.

A naive approach to the analysis problem might be to decompose the
set of all generic I-adic forms into a disjoint union of lift families indexed
over f € S3(N, x), which is a finite set, and in each family only finitely many
elements are non-full, so we would get that only finitely many I-adic forms
are not full. This reasoning is not correct, since some generic I-adic forms
don’t come from a weight-2 form of level N, but rather of level NI, for
some prime [.

Instead, we note that an arbitrary generic I-adic form with level N
outside its structure prime (call it [) will be a lift of some generic form
in S3(NI, xwi). To put this observation into a usable form, we make the
following definitions:

DEFINITION 5.1.— Fix an integer N > 1, a prime | { N, and a
primitive character x mod N. Then define

C(N,1,x) == |_] B,.
a€{0...l—1}
9652(N1,Xw;1)
g is generic

Further, varying l, define

B(N,x) = Jcv,1,x).
UN

In this setup, each of the By’s is an infinite set (indexed by a density
1 set of primes), and the Galois representations attached to all but finitely
many of the elements of each By are full. Moreover, the disjoint union is
taken over a finite set. Thus we obtain:

CoROLLARY 5.2.— The Galois representations attached to all but
finitely many of the elements of C(N, 1, x) is full.
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Now, to get a density theorem on the totality of B(N, x), we need to
define partial subsets of B and C as follows: for a positive integer M let

BéM) :={F € By | the structure prime of F' < M}
and notice that this set is finite. Similarly, define

C(N,1,x)™) .= | B{™) and

a€{0...1-1}
g € So(Nl, xwp)
g is generic

B(N, )™M= | ] C(N,1,x)™

ItN
<M

and note that both of the above sets are finite.

For any of the preceding sets of modular forms (B, C, etc.), let the
superscript + on the letter denote the subset with full attached Galois
representations. Then define

on . ICTOLL)0]
M TGN, L x) )]
Then Corollary 5.2 implies:

COROLLARY 5.3. — d%?x — 1 as M — oo.

Similarly, we may define

oy _ [BHV, ) MM
x| BN, x) MO

Then the previous corollary gives us:

COROLLARY 5.4.— For any M' > 1

bgf;f;Ml) = lim

(MM _
Jim M) =1,

But the density of BY(N,x) in B(N,x) can be thought of precisely
as bg\?o)zm), and by the preceding corollary, we get:

THEOREM 5.5. — Keeping the outside level and character fixed, the
set of generic I-adic forms that have full attached Galois representations
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has density 1 in the set of all generic I-adic modular forms. Since this is
true for any level and character, the same density statement holds for all
generic I-adic modular forms.

(X,X)
by

Note that calculating “along the diagonal”, i.e. —las X — o

works just as well by the above reasoning. Note also that this reasoning

does not work if one attempts to calculate b%‘ﬁw) (since we do not have a

good understanding of how d%?x behaves as | — oo and M is fixed).

It should also be noted that the density results here are optimal
in the sense that it is not the case that only a finite number of generic
I-adic modular forms have non-full representations. Each irregular prime
gives rise to a A-adic form whose representation is reducible modulo the
maximal ideal of the coefficient ring, so clearly it cannot be full. Then
the infinitude of irregular primes guarantees the infinitude of non-full
representations attached to generic I-adic modular forms.

Appendix A. Complex multiplication.

A.1. Specialization and CM.

In this section we consider the relationship between a A-adic modular
form F' and its specializations fx to weight k£ > 2 with respect to complex
multiplication. In particular, we show (Proposition A.1) that in our setting,
if F' has no CM then neither do the f.

We say of a modular form f =3 ja,q" (classical or A-adic) that
it has complex multiplication (CM) if there exists a non-trivial Dirichlet
character ¢ such that ¢(p)a, = a, for a density 1 set of primes p. If ¢ is
defined mod D then ¢(p)a, = a, holds for all pt DN when f is a classical
modular form of level N. Further, ¢ has to be a quadratic character. If the
kernel of ¢ in G = Gal(Q/Q) is a quadratic field then we say f has CM by
this quadratic field.

In this section, F' € Sird(N [, x) will denote a normalized Hecke
eigenform with no CM, and f; € Sk(Nl,e) will denote the specialization
modulo the prime Py of F (so x = ewf). Then f is a normalized Hecke
eigenform (though not a newform for level NI if k > 2).

ProrosiTioN A.1.— If F' has no complex multiplication, then nei-
ther does fy for any k > 2.
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Proof.— The key point is that the weight k is integral and greater
than 1. Denote by the subscript - the primitive part of a Hecke algebra.
Then we have h®/P,h° =~ hg’md and so the completions obey

hY, /Pchd, = by @Q = Uy x -+ x U,
for some fields U;. But this means that
h(}),c XU X XUy

where the U’s and the U’s are in bijection (by the proof of Lemma 3.10).
Each of the U’s is an irreducible component of the completed Hecke algebra.

Now suppose fr has CM for integral k£ > 2. As proven by Hida in
[Hid93, Sec. 7.6], a classical eigenform with CM gives rise to a A-adic CM
eigenform, so there is a A-adic eigenform F’ that specializes to fy mod P.
But by the bijection between the A-adic and classical local decompositions
in the previous paragraph, this means that F’ and F must belong to the
same U;. But since F’ has CM and F does not, they can’t be conjugate
and thus can’t belong to the same irreducible component of the completed
Hecke algebra. O

Note that further, in the “worst” possible case, F' can only specialize
to finitely many CM classical forms:

LEMMA A.2.— fi does not have CM for all but finitely many values
of k (none of which are natural numbers greater than 1).

Proof.— Fix a character 6 and let ap be the ideal generated by
a(l, F) — 0(D)a(l, F) for all primes [ { DN (where D is the conductor of
0). Then for fi to have CM by 6 is equivalent to Py D ag. This implies
that P is in V := Spec(A/ag)(Q,), which is a proper closed subset of
Spec(A)(Qp). But the latter is 1-dimensional, so V must be 0-dimensional,
i.e. only contain finitely many points. Thus only finitely many Py € V, and
only finitely many fi have CM by 6.

On the other hand, the level of f®6 is the product of the level of
f and the square of the conductor of 8. So if f is to have CM by 6, 0’s
conductor must be bounded, so only finitely many such 0’s exist and the
lemma is shown. O
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A.2. Galois representations.

In this section we consider the effect CM has on the Galois represen-
tations attached to a modular form. For f classical or A-adic, let p; be
the attached l-adic or A-adic Galois representation.

ProposiTioN A.3.— f has CM by a character 0 if and only if
there is a non-trivial quadratic character 0 such that py = p;®0. Writing
F = Q(v/—D) for the kernel of 8, f having CM by 0 and F is equivalent

to ps = IndGa](Q; %; 1 for some character .
Proof. — Note that in the first assertion, the (<) direction is trivial
(since the traces of ps on Frobenius elements are the a(p, f)).

The second assertion follows from the first by [DHI98, Lemma 3.2].

Notice that in [DHI98, Lemma 3.2] there is an apparent requirement
that 57 be absolutely irreducible. This is not necessary. The only place
this is used is in determining that C” is a scalar matrix. But this can be
obtained separately in the cases we deal with. In the classical case, Ribet
has shown that py is irreducible, which is enough to give that C” is scalar
(see for instance [Hid00, p. 111]). In the A-adic case, the situation is only
slightly more complicated, and comes from the classical case.

Letting A(p) be the localization at a prime P, consider the diagram:

Gal(@/Q) 2 GLy(A) — GLy(Ap))

\ l mod P l mod P
PP

GLy(Z,) — GLy(Q,)

Then pp is irreducible from the classical case. Viewing Z(p) C
My(A(py), we get a short exact sequence: A(py——Z2 (p)-"ﬂi—f;(@;. Ten-
soring with Q, over A(p) yields A(py®a»,Qp = Qp — Z(p)®Ap, Qp = Qp
so by Nakayama’s lemma Z(p) = A(p), and we get that the centralizer of
p is trivial again.

All that remains is to prove the direct direction of the first assertion.
From the definition of CM, tr(py)(Frobg) = tr(py®0)(Frob,) for ¢ t DN
and Frob, the Frobenius element at q. Thus by Cebotarev’s density
theorem, it follows that the traces of the two representations must be equal.
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But then we can use the Brauer-Nesbitt theorem ([Hid00, Cor. 2.8]) to see

that py = ps®6 (equivalence is over the field of fractions). a

There is a simple corollary to Proposition A.3 which explicitly de-
scribes the shape of the image. We include it here for completeness.

CoROLLARY A.4.— If f has CM by § and F (F = Q(v/—D) for D > 0

square-free), then Im(py| 5/ ) € {(3 2)} Further, p(Gal(Q/Q)) C

{G2)C 0

Proof. — Consider the Galois tower:

By Proposition A.3 pf = IndGal(Q/ Q)d) for some character ¢ of H.
Gal(Q/F) [G .
U=

Writing the coset decomposition of G/H as G = Ho,; we get a matrix

Gal(Q/Q) _ |
Ind G I(Q/F)d](g) = ( (ngaj ))[G:H]

(where 9 takes the value 0 on any argument not in H). Concretely, we
have that [G : H] = 2 and we take 01 =id, 02 € G\ H.

representation of ps as: ps(g) =

Consider now the image of Frobenius elements: let Frob, be a Frobe-

)
nius element at g. Then ps(Frob,) = (0‘(9(5‘;7)9) 0?{552’;‘272_)1)). If Frob, € H,

then 6(g) and 0(02go2~1) are non-zero, and 6(go2~1) = 0(o2g9) = 0. If
Frob, € G \ H then 6(go>™!) and 6(o2g) are non-zero, and 6(g) and
0(02g0271) are zero. Since Frobenius elements generate the Galois group,
this shows the proposition. O
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