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A FIXED POINT FORMULA OF LEFSCHETZ TYPE

IN ARAKELOV GEOMETRY II: A RESIDUE FORMULA

by K. KÖHLER and D. ROESSLER
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1. Introduction.

This is the second of a series of four papers on equivariant Arakelov

theory and a fixed point formula therein. We give here an application of
the main result [KR1] Th. 4.4 of the first paper.

We prove a residue formula "à la Bott" (Theorem 2.11) for the

arithmetic Chern numbers of arithmetic varieties endowed with the action

of a diagonalisable torus. More precisely, this formula computes arithmetic
Chern numbers of equivariant Hermitian vector bundles (in particular,
the height relatively to some equivariant projective embedding) as a

contribution of arithmetic Chern numbers of bundles living of the fixed
scheme and an anomaly term, which depends on the complex points of the

Keywords: Arakelov - Analytic torsion - Bott - Fixed point formula - Height - Hermitian
bundle.
Math. classification: 14G40 - 58J52 - 14C40 - 14L30 - 58J20 - 14K15.
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variety only. Our determination of the anomaly term relies heavily on recent
results by Bismut-Goette ([BGo]). The formula in 2.11 is formally similar
to Bott’s residue formula [AS III, Prop. 8.13, p. 598] for the characteristic
numbers of vector bundles, up to the anomaly term. Our method of proof is
similar to Atiyah-Singer’s and is described in more detail in the introduction
to Section 2. The effective computability of the anomaly term is also

discussed there.

Apart from the residue formula itself, this article has the following
two side results, which are of independent interest and which we choose
to highlight here, lest they remain unnoticed in the body of the proof
of Theorem 2.11. The first one is a corollary of the residue formula,
which shows that the height relatively to equivariant line bundles on

torus-equivariant arithmetic varieties depends on less data than on general
varieties (see Corollary 2.9):

PROPOSITION. - Let Y be an arithmetic variety endowed with a
torus action. Write YT for the fixed point scheme of Y. Suppose that
L, L’ are torus-equivariant hermitian line bundles. If there is an equivariant
isometry Ty, -- L’YT over YT and an equivariant (holomorphic) isometry
Lc ~ LIC over Yc then the height of Y relatively to L is equal to the
height of Y relatively to L’ .

The second one is a conjecture which naturally arises in the course of
the proof of the residue formula (see Lemma 2.3):

CONJECTURE. - Let M be a S1-equivariant projective complex
manifold, equipped with an S1-invariant Kähler metric. Let E be a Sl-
equivariant complex vector bundle on M, equipped with a S1-invariant
hermitian metric. Let Tgt ( .) (resp. Rgt (.) of E) be the equivariant analytic
torsion of E (resp. the equivariant R-genus), with respect to the automor-
phism e2i1rt. There is a rational function Q with complex coefficients and a

0

pointed neighborhood U of 0 in R such that

(here M9t is the fixed point set of the automorphism e2i1rt, , chgt is the

equivariant Chern character and Tdgt is the equivariant Todd genus - see
Section 4 of [KRI] for more details).

Lemma 2.3 shows that this conjecture is verified, when the geometric
objects appearing in it have certain models over the integers but it seems
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unlikely that the truth of the conjecture should be dependent on the
existence of such models.

The appendix is logically independent of the rest of the article. We
formulate a conjectural generalisation of the main result of 

The notations and conventions of Section 4 of [KR1] (describing the
main result) and 6.2 (containing a translation of the fixed point formula
into arithmetic Chow theory) will be used without comment. This article
is a part of the habilitation thesis of the first author.

Acknowledgments. It is a pleasure to thank Jean-Michel Bismut, Se-
bastian Goette, Christophe Soul6 and Harry Tamvakis for stimulating dis-
cussions and interesting hints. We are grateful to the referees for valuable
comments. We thank the SFB 256, "Nonlinear Partial Differential Equa-
tions", at the University of Bonn for its support. The second author is

grateful to the IHES (Bures-sur-Yvette) and its very able staff for its sup-
port.

2. An "arithmetic" residue formula.

In this section, we consider arithmetic varieties endowed with an
action of a diagonalisable torus. We shall use the fixed point formula [KR1,
Th. 4.4] to obtain a formula computing arithmetic characteristic numbers
(like the height relatively to a Hermitian line bundle) in terms of arithmetic
characteristic numbers of the fixed point scheme (a "residual" term) and an
anomaly term derived from the equivariant and non-equivariant analytic
torsion. One can express this term using characteristic currents only,
without involving the analytic torsion (see Section 2). See equation (12) for
a first version of the residue formula (where the anomaly term is expressed
via the analytic torsion) and 2.11 for the final formula (where the anomaly
term is expressed using a characteristic current). One can use the residue
formula to compute the height of some flag varieties; there the anomaly
term can be computed using the explicit values for the torsion given in

[K2]. We shall nevertheless not carry out the details of this application, as
the next paper [KK] gives a general formula for the height of flag varieties.

The strategy of proof we follow here is parallel to Atiyah-Singer’s
in [AS, Section 8]. Notice however that our proof, which involves the y-
operations, works in the algebraic case as well. The fundamental step of
the proof is a passage to the limit on both sides of the arithmetic fixed point
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formula, where the limit is taken on finite group schemes of increasing order
inside a given torus. Both sides of the fixed point formula can be seen as
rational functions of a circle element near 1 and one can thus identify their
constant coefficients. The constant coefficient of the arithmetic Lefschetz

trace is the arithmetic Euler characteristic, which can in turn be related
with arithmetic characteristic numbers via the (arithmetic) Riemann-Roch
formula.

Furthermore, following a remark of J.-M. Bismut, we would like to
point out that a direct proof of the formula 2.11 seems tractable. One
could proceed as in the proof of the fixed point formula [KR1, Th. 4.4]
(by deformation to the normal cone) and replace at each step the anomaly
formulae for the equivariant analytic torsion by the anomaly formulae for
the integral appearing in 2.11, the latter formulae having much easier proofs
(as they do not involve the spectrum of Laplace operators). One would thus
avoid mentioning the analytic torsion altogether. If [KR1, Th. 4.4] and the
work of Bismut-Goette was not available, this would probably be the most
natural way to approach the residue formula.

Let T := Spec Z[X, be the one-dimensional torus over Z. Let

f : Y - Spec Z be a regular scheme, flat over Z, endowed with a T-

projective action and such that the fixed scheme YT is flat over Z (this
requirement is only necessary because we choose to work with arithmetic
Chow theory). Let d+ 1 be the absolute dimension of Y. This action induces
a holomorphic group action of the multiplicative group C* on the manifold

Y((C) =: M and thus an action of the circle C C*. Y(C) once and
for all with an S1-invariant Kdhler metric (such a metric
can be obtained explicitly via an embedding into some projective space).
Now let m &#x3E; 0 be a strictly positive integer coprime to n. Consider the
homomorphism 7~ ~ Z/n, given by the formula a ~ mod n).
This homomorphism induces an immersion : pn - T of group
schemes. Let now E be a T-equivariant bundle on Y. Recall that the
equivariant structure of E induces a Z-grading on the restriction 
of E to the fixed point scheme of the action of T on Y; the term

(l~ E Z) of this grading is then denoted by E~.

LEMMA 2.1. - Write for E viewed as a pn-equivariant bundle
via There exists an c &#x3E; 0 such that for all k the natural injection

is an isomorphism if I/n  E.’

Proof. This natural injection is an isomorphism iff the equality
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sm,n(k’) (k, k’ E Z) implies that k = Now notice that the

kernel of sm,n is generated by n. Thus the implication is realized if we

choose E such that 1/6 &#x3E; 2. E Z, 01 and we are done. 0

COROLLARY 2.2. - Let P be a projective space over Z endowed
with a global action of the torus T. Write for P viewed as a J-ln-

equivariant scheme via Then there exists E &#x3E; 0, such that if 1/n  E,

then the closed immersion PT - PT ’n is an isomorphism.

Proof. Let M be a free Z-module endowed with a E-action,
such that there is an equivariant isomorphism P ~ P(M). Let us write

for M viewed as a pn-comodule via im,n. By the description of the
fixed scheme given in [KR1, Prop. 2.9], we have PT - and

PT ’n - llkEz/n Furthermore, by construction the immersion

P(Mk ) - P factors through the immersion induced

by the injection Mk - By the last lemma, there exists an
E &#x3E; 0 such that for all k the natural injection is

an isomorphism if 1/n  E. From this, we can conclude. 
"~"~ 

D

Let again E be a T-equivariant bundle on Y, such that the cohomol-
ogy of E vanishes in positive degrees. We equip E(~ with an 51-invariant
metric (such a metric can be obtained from an arbitrary metric by integra-
tion). Consider E and Y as /in-equivariant via im,n. We shall apply [KR1,
Th. 7.14] to E. For this application, we fix the primitive root of unity
e2i1rm/n of J-ln(C). If a E C*, we shall write g(a) for the corresponding
automorphism of Y(C) and we let gm,n := g(e2i1rm/n). Set M := Y(C). By
[KRI, Th. 6.14], we get

Furthermore, using the last lemma and its corollary, we see that there is an
E &#x3E; 0 and a formal Laurent power series Q(. ) with coefficients in 
(of the form PI (z) /P2 (z), where P, (z) is a polynomial with coefficients in
11(YT)c and P2 (z) is a polynomial with rational coefficients), such that



86

for all n, m coprime with 1 /n  E, the term

equals Similarly, there is an E &#x3E; 0 and a rational function Q(.)
with complex coefficients, such that for all n, m coprime with 1 /n  E, the

term

equals Q( e2i1rm/n). Since the elements of the type e2i"t, where t E Q, form
a dense subset of ,S’1, we see that the function Q(z) is uniquely determined.
Let us call AT (E) the constant term in the Laurent development of

Q(z) around 1. By construction, there is a polynomial P(z) with complex
coefficients, such that deg, equals By density again,
this polynomial is uniquely determined. The constant term of its Laurent
development around 1 (i.e., its value at 1) is the quantity deg(R° f*E).
Using (1), we thus see that there is a uniquely determined rational function
Q’(z) with complex coefficients and an E &#x3E; 0, such that the quantity

equals if 1/n  E.

Now notice the following. Let I C R be an interval such that the fixed
point set M9t does not vary for t E I. Let gt g (e2~zt ) . Then R9t varies
continuously on I (e.g. using [K2, Remark p. 108]).

0

LEMMA 2.3. - There is a pointed neighborhood U of 0 in R such
that

0

if t E U. Furthermore this equality holds for all up to finitely many values
of E 81.

Proof. It remains to prove that the analytic torsion T9t (M, E)
0

is continuous in t on U (see also [BGo]). Let I . :=]0,6[ be an interval
on which the fixed point set M9t does not vary. Let Ul, Mi, be
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the decomposition of the fixed point set into connected components of
dimension dim M, =: 

Let P~ denote the projection of on the orthogonal
complement of the kernel of the Kodaira-Laplace operator Dq for 0  q  d.
As shown in Donnelly [Do, Th. 5.1], Donnelly and Patodi [Do, Th. 3.1] (see
also [BeGeV, Th. 6.11]) the trace of the equivariant heat kernel of 0 for
u --4 0 has an asymptotic expansion providing the formula

where the are rational functions in t which are non-singular on I.
Thus the analytic torsion is given by

The integrand of the first term is uniformly bounded (in t) by the non-
equivariant heat kernel. Hence we see in particular that T9t (M, E) is

continuous in t E I. As the equation in the lemma holds on a dense subset
of I, it holds in I and by symmetry for a pointed neighborhood of 0. D

Recall that d+1 is the (absolute) dimension of Y. Consider the vector
field K E r(TM) such that etK = gt on M. In [Kl] the function Rrot on
R B 27rZ has been defined as

(according to Abel’s Lemma the series in this definition converges for
Res&#x3E;0).

COROLLARY 2.4. - Let D~ C Z denote the set of all non-zero
eigenvalues of the action of on TMIMJ1- at the fixed point component
M~. There are rational functions for k E D~, 0  1 ~ d, such
that for all but finiteley many values of 
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The functions depend only on the holomorphic structure of E and
the complex structure on M.

Proof. - For ( = E ~S’1, ~ ~ 1, let L(~, s) denote the zeta function
defined in [KR1, Section 3.3] with L((, s) = E’ 1 k-s(k for Re s &#x3E; 0. In

[K2, Equation (77)] it is shown that L((, -l) is a rational function in ( for
1 E No. Also by [K2, Equation (80)],

The corollary follows by the definition of the Bismut Rg-class (see [KR1,
Def. 3.6~ ) and Lemma 2.3. 0

Remark. - One might reasonably conjecture that Lemma 2.3 is

valid on any compact Kdhler manifold endowed with a holomorphic action
of Sl.

Let us call LT (E) the constant term in the Laurent development of
Q’ (z) around z = 1. By Lemma 2.3 we obtain

Since for any T-equivariant bundle, one can find a resolution by acyclic (i.e.,
whose cohomology vanishes in positive degrees) T-equivariant bundles, one
can drop the acyclicity statement in the last equation. More explicitly, one
obtains

Notice that Q’(z) and thus depends on the Kahler form w TM and
Ec only and can thus be computed without reference to the finite part of
Y.

In the next subsection, we shall apply the last equation to a specific
virtual vector bundle, which has the property that its Chern character has

only a top degree term and compute ~4r(’) in this case. We then obtain a
first version of the residue formula, which arises from the fact that the left
hand-side of the last equation is also computed by the (non-equivariant)
arithmetic Riemann-Roch. The following subsection then shows how L-r(-)
can be computed using the results of Bismut-Goette [BGo]; combining the
results of that subsection with the first version of the residue formula gives
our final version 2.11.
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2.1. Determination of the residual term.

Let F be an T-equivariant Hermitian vector bundle on Y.

DEFINITION 2.5. - The polynomial equivariant arithmetic total
Chern class E CHC(YT)[t] is defined by the formula

where i is the imaginary constant.

We can accordingly define the k-th polynomial (equivariant, arith-
metic) Chern class êk t(F) of F as the part of Ft(F) lying in 
where are the homogeneous polynomials of weighted de-
gree k (with respect to the grading of i5-H(YT)C). Define now At(F) as
the formal power series be the q-th coefficient
in the formal power series this is a Z-linear combination of

equivariant Hermitian bundles. We denote by cllt(F) the polynomial equiv-
ariant Chern character and by chq (F) the component of cht (F) lying in

We recall its definition. Let be the j-th
Newton polynomial , (x i + ... + xt) in the variables x 1, ... , xr . 0,J. 1 r

let l (x 1, ... , be the 1-th symmetric function in the variables x 1, ... Xr.
By the fundamental theorem on symmetric functions, there is a polyno-
mial in r variables such that Nj(1(x1, ... xr), ... ,r(xl, ... xT)) -
Nj(X1’... xr). We let Nj(êr,t(F), ê2,t(F),... êrkF,t(F)).

LEMMA 2.6. - The element cht (1q(F - rk F) ) is equal to êq,t(F) if
p = q and vanishes if p  q.

Proof. It is proved in [GS3, II, Th. 7.3.4] that ch, as a map from
the arithmetic Grothendieck group Ko (Y) to the arithmetic Chow theory
CH(Y) is a map of A-rings, where the second ring is endowed with the A-ring
structure arising from its grading. Thus chp (1q (F - rk F) ) is a polynomial
in the Chern classes ê1 (F), c2 (F), ... and the variable t. By construction, its
coefficients only depend on the equivariant structure of F restricted to YT.
We can thus suppose for the time of this proof that the action of T on Y is
trivial. To identify these coefficients, we consider the analogous expression
chf(1q(F - rkF)) with values in the polynomial ring CH(Y)[t], where
CH(Y) is the algebraic Chow ring. By the same token this is a polynomial



90

in the classical Chern classes c1 (F), c2 (F), ... and the variable t. As the

forgetful map CH(Y) -~ CH(Y) is a map of A-rings, the coefficients of these
polynomials are the same. Thus we can apply the algebraic equivariant
splitting principle [Thom, Th. 3.1] and suppose that F = where

the Li are equivariant line bundles. We compute rkF)) ==
chf(aq(L1-l,...,Lj -1)) == As the

term of lowest degree in cht (Li - 1) is cl,t (Li), which is of (total!) degree
1, the term of lowest degree in the expression after the last equality is

aq(c1,t(L1),..., which is of degree q and is equal to cq,t (F) and so
we are done. 0

Remark. - An equivariant holomorphic vector bundle E splits at
every component Aft of the fixed point set into a sum of vector bundles
EÐ Eo such that K acts on Eo as The Eo are those E,,,(c which do
not vanish on M~ . Equip E with an invariant Hermitian metric. Then the
polynomial equivariant total Chern form is given by the formula

where OE denotes the action of K on E restricted to M,~. Let N be the
normal bundle to the fixed point set. Set

where O is the action of K on N. Furthermore, let r denote the additive
characteristic class which is given by

for L a line bundle acted upon by K with an angle 0,, E R at M~ (i.e., the
Lie derivative by K acts as multiplication by ~~ ) .

In the next proposition, if E is a Hermitian equivariant bundle, we
write Tdg (T f)cltgt (E) for the formal Laurent power series development
in t of the function Q(e27rit), where Q(.) is the function defined in (2).
Set := for any equivariant Hermitian vector bundle
E. Note that this class is invertible in the ring of Laurent polynomials

EYT has no invariant subbundle (for an explicit expres-
sion see equation (8)).
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PROPOSITION 2.7. - Let q1, ... , qk be natural numbers such that

Lj qj = d -f- 1. Let E1, ... , E~ be T -equivariant Hermitian bundles. Set
The expression

has a formal Taylor series expansion in t. Its constant term is given by the
term of maximal degree in

which is independent of t. Also for t - 0

Note that the first statement implies that

Proof. - To prove that the first statement holds, we consider that
by construction, both the expression (7) and the constant term of (6) (as a
formal Laurent power series) are universal polynomials in the Chern classes
of the terms of the grading of T f and the terms of the grading of x. By
using Grassmannians (more precisely, products of Grassmannians) as in
the proof of 2.6, we can reduce the problem of the determination of these
coefficients to the algebraic case and then suppose that all the relevant

bundles split. Thus, without loss of generality, we consider a vector bundle
E := ®v L, which splits into a direct sum of line bundles E, on which T
acts with multiplicity mv. Assume now 0 for all v. Set xv = ê1 (Lv)·
Then

Now



92

as t -~ 0. By definition,

Thus, fdgt (E) has a Laurent expansion of the form

with classes dj of degree j which have a Taylor expansion in t = 0.

As = 1-f- (terms of higher degree), we get in particular for the
relative tangent bundle (assumed w.l.o.g. to be not only a virtual bundle,
but a vector bundle)

with classes p~ of degree j which have a Taylor expansion in t and fij (0) = 0.
Let degy a denote the degree of a Chow class a and define :- 1~ for

k E Z. Then any component at of the power series Tdgt (T/) satisfies

and equality is achieved precisely for the summand Further-

more, by Lemma 2.6

with classes Sj(t) of degree larger than qj which have a Taylor expansion
in t and s~ (o) - 0. Hence, any component at of the power series 
satisfies

and equality holds iff at is in the Cq,,t(P3)-part. Hence any component
at of Tdgt (T f)cligt (x) satisfies

(11) 
In particular the product has no singular terms in t, as degy 0  d-rk 

for any Chow class 0 on the fixed point scheme. In other words, by
multiplying formulae (9) and (10) one obtains
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and the first summand on the right hand side has -f-1, thus
its maximal degree term is constant in t. Hence we get formula (7). Now
choose c &#x3E; 0 such that the fixed point set of gt does not vary on t E]O, c[.
To prove the second formula, we proceed similarly and we formally split
TM as a topological vector bundle into line bundles with first Chern class
xv, acted upon by K with an angle 0,. The formulae for the Lerch zeta
function in [K2, p. 108] or in [B2, Th. 7.10] show that the R-class is given
by

for t ~ 0. Note that the singular term is of the form log It -i- a2(t)
with

for ~=1,2 (in fact, equality holds). As

by definition, one obtains

because the first term on the right hand side is again independent of t E R

(except the log (t2 ) ) . 0

Note that the arithmetic Euler characteristic has a Taylor expansion
in t. Thus we get using Proposition 2.7 and Lemma 2.3.

COROLLARY 2.8. - The equivariant analytic torsion of x on the
d-dimensional Kiihler manifold M has an asymptotic expansion for t - 0,
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A more general version of this corollary is a consequence of [BGo] (see
the next section). We now combine our results with the (non-equivariant)
arithmetic Riemann-Roch theorem. We compute

The first equality is justified by the fact that the 0-degree part of the Todd
class is 1; the second one is 2.6; the third one is justified by the arithmetic
Riemann-Roch theorem ([GS8, eq. (1)]); the fourth one is justified by (4)
and the last one by the last proposition. Finally, we get the following residue
formula:

In particular, if L is a T-equivariant line bundle on Y, one obtains the
following formula for the height of Y relatively to L:

In our final residue formula, we shall use results of Bismut-Goette to give
a formula for the term L7(.) - -IT(Y(C), -). Notice however that the last
identity already implies the following corollary:
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COROLLARY 2.9. - Let Y be an arithmetic variety endowed with
a T-action. Suppose that L, L’ are T-equivariant hermitian line bundles. If
there is an equivariant isometry L’yT over YT and an equivariant
(holomorphic) isometry Ec -- over Yc then h-E (Y) = hv (Y) .

2.2. The limit of the equivariant torsion.

Let .K’ denote any nonzero multiple of K. The vector field K’ is

Hamiltonian with respect to the Kahler form as the action on M factors

through a projective space. Let MK, = MK denote the fixed point set with
respect to the action of K’. For any equivariant holomorphic Hermitian
vector bundle F we denote by J-lF(K’) E r(M, End(F)) the section given by
the action of the difference of the Lie derivative and the covariant derivative

LK, - on F. Set as in [BeGeV, ch. 7]

and

The Chern class cq,K,(F) for 0  q  rk F is defined as the part of total
degree degy + degt = q of

at t = 1, thus cq,K,(F) = Cq(-OF /27ri + J-lF(K’)). Let K’* E TiM denote
the 1-form dual to K’ via the metric on hence = is

the norm square in TRM. Set dK,K’* := (d - and define

For a smooth differential form q it is shown in [BGo] (see also [B l , section
C,D]) that the following integrals are well-defined:

for Re s &#x3E; 1 and
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for Re s  1. Also it is shown in [BGo] (compare [B l , Proof of Theorem 7
that.9 ~ AK, (1]) (s) has a meromorphic extension to C which is holomorph
at s = 0 and that

for the derivatives AK’(1J)’, BK’(1J)’ of AK’(1J), BK’(1J) with respect to
also 

A

Define the Bismut S-current SK, (M, w TM) by the relation

In particular, one notices

By Lemma 2.3 and Proposition 2.7, we already know that

exists and
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Now we shall compute this limit.

THEOREM 2.10. - The limit of the equivariant analytic torsion of

(pi - associated to the action of gt for t - 0 is given by

Proof. - Let IK, denote the additive equivariant characteristic class
which is given for a line bundle L as follows: If K’ acts at the fixed point
p by an angle 0 E R on L, then

The main result of [BGo] implies that for t C R B 101, t sufficiently small,
there is a power series Tt in t with To = T(M, x) such that

For t -~ 0, both 0 and Tdgt (TM) ~ 0 (by eq. ( 11 ) ),
thus the last summand vanishes.

As in equation (10) Ilj with a form ií such

that (degy + &#x3E; d+1. Thus TdtK
1J(t) with (degy + degt)1J(t) &#x3E; d + 1. Also (degy + 
hence we observe that

Let denote the form obtained from q(t) by multiplying the degree
degy = j part with t-j-1 for 0  j  d. By making the change of variable
from U to t2u we get



98

Thus we find

which implies the statement of the theorem. D

2.3. The residue formula.

By combining equation (12) and Theorem 2.10, we obtain the follow-
ing formula. Recall that T is the one-dimensional diagonalisable torus over
Spec Z, that f : Y - Spec Z is a flat, T-projective morphism and that the
fixed scheme YT - Spec Z is assumed to be flat over Spec Z. We let
d + 1 be the absolute dimension of Y. We choose T-equivariant Hermitian
bundles V on Y and positive integers qj such that Lj qj = d + 1. We
deduce by combining equations (12), (13) and Theorem 2.10.

THEOREM 2.11.

Example. - Assume that the fixed point scheme is flat of Krull

dimension 1. The normal bundle to Y?- splits as N = EÐnEZ Nn. Thus

by equation (8). Also, at a given point p E MK the tangent space
decomposes as where K acts with angle 0, on T Mov .
Then 

,
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where the 0 are counted with their multiplicity. Furthermore, in this case

Now consider a line bundle ,C, splitting as ,Ck on the fixed point scheme

(where the Lk are locally free of rank  1). We find

thus

Now notice that at a given fixed point p over C all but one vanish and

set := 27rA;. We compute

and
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Hence we finally get

3. Appendix: a conjectural relative fixed point
formula in Arakelov theory.

Since the first part of this series of articles was written, Xiaonan
Ma defined in [Ma] higher analogs of the equivariant analytic torsion and
proved curvature and anomaly formulae for it (in the case of fibrations
by tori, this had already been done in [K4]). Once such formulae for

torsion forms are available, one can formulate a conjectural fixed point
formula, which fully generalizes [KR1, Th. 4.4] to the relative setting. Let
G be a compact Lie group and let M and M’ be complex manifolds on
which G acts by holomorphic automorphisms. Let f : M --+ M’ be a
smooth G-equivariant morphism of complex manifolds. Let cvT M be a G-
invariant Kahler metric on M (a Kahler fibration structure would in fact be
sufficient). Let E be a G-equivariant Hermitian holomorphic vector bundle
on M and suppose for simplicity that 0 for k &#x3E; 0. Now let g be
the automorphism corresponding to some element of G. The equivariant
higher analytic torsion T9 ( f , E) is a certain element of which

satisfies the curvature formula

where T f is endowed with the metric induced by The term in degree
zero of Tg (f , E) is the equivariant analytic torsion of

the restriction of E to the fiber of f over x 
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Now let Y, B be ,un-equivariant arithmetic varieties over some fixed
arithmetic ring D and let f : Y -&#x3E; B be a map over D, which is flat, pn-
projective and smooth over the complex numbers. Fix an pn(C)-invariant
Kdhler metric on Y(C). If E is an f-acyclic (meaning that = 0

if k &#x3E; 0) pn-equivariant Hermitian bundle on Y, let f * E be the direct
image sheaf (which is locally free), endowed with its natural equivariant
structure and L2-metric. Consider the rule which associates the element

of to every f-acyclic equivariant Hermitian bundle
E and the element f . B to every 7y e E and the Tdg (Tf )77 E 2t(BP,n) to every q E 2t(Yp,n).
The proof of the following proposition is then similar to the proof of [KR1,
Prop. 4.3].

PROPOSITION 3.1. - The above rule induces a group homomor-

phism f* : Ko ~ (Y) ~ K/;n (B).
Let R be the ring appearing in the statement of [KRI, Th. 4.4]. We

are ready to formulate the following conjecture.

CONJECTURE 3.2. - Let

The diagram

commutes.

About this conjecture, we make the following comments:

(a) One can carry over the principle of the proof of [KR1, Th. 4.4] to
prove this conjecture, provided a generalization of the immersion formula

[B3, Th. 0.1~ is available (which is not the case at the moment). We shall
however not go into the details of this argument.

(b) Without formal proof again, we notice that the conjecture holds,
if BJLn (C) has dimension 0. In that case the torsion forms are not necessary
to define the direct image and the proof of [KRI, Th. 4.4] pulls through
altogether.

The conjecture described in this appendix can be used to obtain
explicit formulae for arithmetic (Arakelov-) characteristic classes of bundles
of modular forms on Shimura varieties; see [K5] and [MR].
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