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TAMELY RAMIFIED HIDA THEORY

by A. GOLDBERGER and E. de SHALIT

Let N be a natural number, and p a prime not dividing N. Let
Xi (N, p) denote the modular curve associated with the group rl (N, p) _
ri (N) n ro(p), and the curve associated with Several
authors (Hida, Mazur, Tilouine, Wiles ...; see [H], [MW1], [W]) studied
the tower obtained from the transition maps between these curves, which

correspond to the inclusions r 1 (Npv+1 ). The Hecke
ring acts as a ring of correspondences on this tower. In particular, the
diamond operators induce an action of 7~~ , and p-adic modules built from
the tower can be studied as modules over the Iwasawa algebra Zp[[Z~]].
In this way the geometry of modular curves is connected with deformation

theory of p-adic Galois representations.

Any module over Zp[[Z§]] breaks up as a direct sum according to
the characters of IFp C Thus the first step of the tower, the covering

X1(N,p), is exploited in a rather mild way, and is not the source
of a true deformation. Around the mid 80’s it was noticed by Mazur and
Tate that various results and conjectures in the p-adic theory of modular
curves (or cyclotomic fields) had finite, "refined" versions, which could
probably be linked - in the situation described here - to a deformation
theory with group F~ [MT]. In [dSl] and [dS2] one of us proposed to use
the kernel of p - 1 on the Jacobian as a source of such "finite deformation

theory". This was applied there to a conjecture of Mazur and Tate [MT]

Keywords: Modular curve - p-adic periods - Hecke operators.
Math. classification: IlF85.
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on the p-adic periods of elliptic curves with split multiplicative reduction,
much in the style of Greenberg and Stevens [GrSt], who used Hida theory to
prove the conjecture of Mazur Tate and Teitelbaum [MTT], which predated
the Mazur-Tate conjecture.

For non-trivial technical reasons, the articles [dSl] and [dS2] dealt
with the case N = 1 (prime conductor). The purpose of this work is to
return to the general set-up, and study the deformation theory which is
obtained from the p - 1 torsion in the Jacobians of X 1 (N, p) and X 1 (Np).
We call this "tame" Hida theory because the bad prime, where most of the
action takes place, is still p. Clearly, what we do below is only a "weight
2" theory. The higher weights, which in Hida’s theory are subsumed by the
weight 2 theory, have to await further developments.

The following is a brief summary. In Section 1 we collect preliminary
results, and introduce notation and conventions to be used throughout.
Section 2 is devoted to a detailed study of 1], as a deformation
of its part fixed by the group of p-diamond operators, isomorphic to F~.
As we may treat the 1-Sylow subgroup separately for each prime l dividing
p -1, we fix l (different from 2) and study J1(Np)[r] where r is the highest
power of l dividing p - 1. We address the structure over the group ring of

Hecke structure, Galois action, and in particular the filtration for the
action of the decomposition group at p. The results obtained in Section
2 are summarized in Theorem 2.8. Section 3 is devoted to questions of

breaking the deformation into components, and in particular distinguishing
the p-new components from the p-old ones or from other new components.
Section 4 finally treats one such p-new component, and shows how the
infinitesimal variation of the Up operator in the deformation is related

to the p-adic period matrix of the abelian variety. Theorem 4.6 may be
considered the main result.

To illustrate the main result, let us consider an elliptic curve A over
Q of conductor Np, with split multiplicative reduction at p. We normalize
A within its Q-isogeny class by requiring that it appears as a factor of the
Jacobian of the modular curve X 1 (N, p) . (This is a slight deviation from
the more traditional point of view, as a factor of the Jacobian of Xo(Np).)
Let qA be the p-adic Tate period of A and write
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Pick an odd prime 1 dividing p - 1, let r be the highest power of l

dividing p - 1, and R = Z/rZ. Let

The ratio UR : vR is the 1-primary part of the refined ,C-invariant of A.
Recall that the (p-adic) ,C-invariant of Mazur-Tate-Teitelbaum is the ratio

log (tt) : v, which is blind to the p - 1 root of unity in qA. The refined
,C-invariant is made precisely to capture that bit of information.

We make two technical assumptions. The first, that A is not l-

Eisenstein (see [M] and Section 1.6 below for the precise meaning of this).
The second, that the degree of the modular parametrization X l (N, p) -~ A
is prime to l. (This guarantees condition (A2) in Section 3.3.) Let us also
assume, for simplicity, that l does not divide N.

Consider the Jacobians Jo of X 1 (N, p) and J1 of Because

of our assumptions, A[r] 2-t~ R 2 is a direct summand, as a Hecke and
Galois module, of ~Jo ~r~ . On the other hand is also a A-module, where
A = and J-lr C F§ act via the p-diamond operators. We show that
there is a unique direct summand (Hecke and Galois stable) [r] ~ A2 of

which is a deformation of A [r] (Proposition 3.4).
We now examine the action of the Hecke operator on both pieces.

On A [r] it acts trivially. On the deformation module eJ1 [r] it acts via

multiplication by 1-f- ~ with A in the augmentation ideal I of A. Identifying
I /I2 with J-lr, we finally arrive at the desired relation

Thus, up to a factor of -1/2, it may be said that the ratio uR : vR is the
derivative of the Up operator in the deformation of A[r] which lives inside
the Jacobian of X 1 (Np).

1. Preliminaries and notation.

1.1. Abstract diamond and Hecke operators.

Let N &#x3E; 4 be an integer, and let p &#x3E; 7 be a prime which does not
divide N. Let 1 be an odd prime dividing p - 1, and r = 11 the maximal
power of 1 dividing p - 1. Write p - 1 == rr’, where (r’, r) = 1, so that
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and

where A = R[pr] is local, and A’ = is 6tale over R. We write a typical
element of A as £ na (a) . Let I (resp. I’, resp. I) be the augmentation ideal
in A (resp. A’, resp. ~) . We have Note that I is nilpotent,
that the maximal ideal of A is (l) + I, and that (-1) - (1) belongs to I’.

Consider the commutative ring ~oC generated over Z by the symbols
Tq (q a prime, q t Np), Uq (q I Np), (t)N for t E and (a~P , for
a E F~. We callH the abstract Hecke ring, and the (a) p the p-diamond
operators. All our Hecke rings will be quotients of x. If M is a module
over x we denote by the image of ~-C in End(M), and we call it the
Hecke ring cut out by M. If M’ is a submodule of M, stable under ?-~, both

H(M’) and are quotients of in a natural way.

We shall write M* for Hom(M, R), and let T E ?-~ act on it via

(T~) (m) _ p (Tm) (m E M, J-l E M* ) .
If M is a module over a ring R, a C R is an ideal, and a E a, we

denote by M[a] = Ker(aIM) the kernel of multiplication by a, and by
M[a] = naEa M[a].

In many cases the H-module M is killed by r. Then becomes

a A-algebra, in which IFP act by the p-diamond operators.

1.2. Modular curves and Jacobians.

Let Si denote the upper half plane, and Sj* - S5 U Pl (Q) (with the
usual topology). If h is a congruence group in SL2 (Z) , we let Xr denote the
corresponding complex modular curve, isomorphic as a Riemann surface
to If h - ho - Fl(N,p) = h1 (N) n ro(p) we shall denote by
Xo - the well-known model of Xr over Q, whose non-cuspidal
points parametrize elliptic curves with a point of order N and a cyclic
subgroup of order p. If h = f 1 - 1,1 (Np) we shall likewise denote by Xi
the model of Xr over Q parametrizing elliptic curves with a point of order
Np. The covering Xo is defined over Q, unramified, and is Galois
with Galois group IF;. Note that our assumption N &#x3E; 4 insures that Fo is
torsion-free, so acts faithfully on and has no elliptic elements. We shall
denote by Yr the open modular curve, and by Cr = Xr - Yr the (reduced,
0-dimensional) subscheme of the cusps. In the two examples mentioned
above, Yo and Co, as well as Y1 and Cl, are defined over Q.
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We shall denote by Jr = Pic°(Xr) the Jacobian variety of Xr, and by
J~ the generalized Jacobian with respect to the modulus Cr. It classifies
isomorphism classes of line bundles C of degree 0 on Xr, together with
a trivialization of Alternatively, it classifies divisors of degree 0 on
Xr supported away from the cusps, modulo principal divisors of functions
which are constant (~ 0, oo) along the cusps. Thus J~ is an extension of
Jr by a (#Cr - 1)-dimensional torus:

where

A semi-abelian variety is, in general, not isogenous to the product of its
toric part with an abelian variety. But in our case the Manin-Drinfel’d

theorem, which asserts that divisors of degree 0 supported on Cr represent
torsion points in Jr, precisely guarantees this. Indeed, applying the functor

Hom(Jr , - ) to the short exact sequence above we get an exact sequence

where we have used the principal polarization Ext 1 ( Jr , Gm) - Jr. The
identity map id E Hom(Jr, Jr) gets mapped here to the divisor class
homomorphism 6 E Jr), which maps an element of Z[Cr]o
to its divisor class in Jr. By the Manin-Drinfel’d theorem 6 is killed by
some integer m, so m times the identity map of Jr lifts to a map Jr - ~B
proving that the extension (1.2) splits up to isogeny.

Following our example, we retain the symbols Jo, Ji and J* for
the models of the corresponding Jr and Jr over Q. We therefore have an
exact sequence of group schemes over Q:

(and similarly for Jt), where as before

and Hom(Z[Co]o, Gm ) is the torus over Q whose character group is Z[Co]o
(with the Galois action arising from the action on the cusps).

As a rule, we regard Jacobians as Picard schemes, so that correspon-
dences on Xr induce endomorphisms of Jr by Picard (contravariant) func-
toriality. In particular we have maps Jo - J1 and J# deduced from
the covering (Xl, Ci) 2013~ (Xo, Co), and these are defined over Q.
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Let JO,,,Id be the p-old subvarietyl of Jo. It is the sum of the images
of Ji (N) in Jo, under the maps induced from the two degeneracy maps

Let

be the p-new quotient of Jo. There is a unique abelian subvariety 
of Jo which is complementary to Jo,old in the sense that their intersection
is finite, and their sum is the whole Jo. We call it the p-new subvariety
of Jo, and Jå1d == we call the p-old quotient. From now on we
omit the prefix p- when referring to these abelian varieties. The new/old
subvarieties/quotients are defined over Q, and the obvious maps Jo,new -
Jöew and Jo,old ---*0 are isogenies.

1.3. The Hecke and diamond action on the modular curves

and their Jacobians.

We denote by Tq (q f Np), Uq (qlNp), (t)N and (a)p (the latter being
trivial in the case of Xo ) the correspondences of Xo and X, described, for
example, in [MW], Chapter 2, Section 5. They induce endomorphisms of
the Jacobians (or generalized Jacobians), defined over Q, which we denote
by the same letter. (Caution: T = T* is the endomorphism defined by
Picard functoriality, while [MW] choose to work with the endomorphisms
defined by Albanese functoriality. One should take care of the Uq s in

particular. Not only are Uq* and Uq different - they do not commute). These
endomorphisms all commute with each other, so we get an embedding

and similarly in other circumstances. Needless to say, the action of the p
-diamond operators on Jo or J* is trivial.

We shall have an occasion to use the following fact. Write N = NlN!
where Nl is the 1-part of N and (L, Nl ) - 1. Let H, (Jo) = H(Jo) (2) Zi, a
finite flat Zl-algebra, so that

1 As the referee pointed out, it is more common to use superscripts for the

subvarieties, and subscripts for the quotient varieties. We hope that the reader will
bear with our convention.
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is its saturation in the Endomorphism ring. The group is a

finite 1-group. To each maximal ideal 001 in the semi-local ring ( Jo ) there
is associated an idempotent em in the ring, projecting onto its completion
at 001. If l divides N we call M ordinary if Ul does not belong to 001.

PROPOSITION 1.12. Let 9R be a maximal ideal If either

(i) Nl = 1 or (ii) Nl = and M is ordinary, then

Proof. We follow [M], Proposition (9.5) on p. 95. The elements of

act on the N6ron model of Jo over R = hence on its identity
component, which is Pico by Raynaud’s theorem ([BLR], 9.5/4), hence

acts on its Lie algebra, which is H1(X, 0) ([BLR], 8.4/ 1 ) . Here by
we mean the proper and flat scheme which is the compactification

of the scheme representing the moduli problem 
over R. Its special fiber is reduced, smooth if NL - 1, and, if Nl - 1,
consists of 2 smooth complete curves intersecting transversally at the

supersingular points. See [KM], Chapter 3, for the terminology and for
the precise structure of this moduli problem. Note that we chose to work
with over R and not with over The moduli

scheme for the second moduli problem has a non-reduced special fiber.

(See the discussion of the fiber at p in Section 2.5 below.) In particular
the special fiber is a local complete intersection, hence Gorenstein and

Cohen-Macaulay. We let Q be the sheaf of regular differentials on XIR. See
[M], Section 3, p. 67, and [DeRap]. Since is Gorenstein, this sheaf is

invertible, and in fact is given by the recipe of [DeRap], Section 2.3. As in
[M], Section 3, one proves that H 1 (3C, (~) and HO(X, Q) are free over R and
dual to each other as R-modules. Their formation commutes with passing
to the special fiber. For these facts it is important to know that the special
fiber of 3C is reduced, because the proof of Lemma 3.3 in [M] uses the fact
that the global functions on the special fiber are just the constants from
the residue field of R.

Let 9N be any maximal ideal of 7~ ( Jo ) , and let em be the correspond-
ing idempotent. We claim that emH1(X, 0) is free of rank 1 over 

2 We would like to thank K. Ribet and A. Agashe for help with the proof of this
proposition.
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By Nakayama’s lemma, it is enough to show that H 1 (3C, 0) is
a 1-dimensional vector space over Dualizing, we deduce
the desired result from the fact that is one-dimensional (see
[W], Lemma 2.2). This "multiplicity one" result is a consequence of the

q-expansion principle, and it is here that we need the assumption that 001
is ordinary, if 11N.

so T = T’, and the proposition is proved. 0

1.4. The Atkin-Lehner "involutions".

There are important automorphisms of the curves Xo and de-

noted by wM - wM, for every M|NP such that (M, Np/M) = 1, which
are defined over Q((M), and which are involutions up to diamond opera-
tors. Their definition depends on a choice of a root of unity. Fix an Np-th
root of unity ( = (Np and let (M = for We shall define wm,(
on Xi . The definition then descends to Xo. The curve Xl is a fine moduli

space over Q for (isomorphism classes of) triples (E, PM, PNp/M ) where E
is an elliptic curve and jP~ (resp. PNp/M) is a point of exact order M (resp.
Np/M) on E. We denote the isomorphism class of a triple (-) by [-]. Let

where E’ - E/ (-P~f), PM - 5mmod (~f) ? with 7~ any point of exact
order M, such that for the Weil eft -pairing on E[M],

and = PNp/Mmod (PM). We denote by WM,( also the correspond-
ing automorphisms of Jo, Jt, J1 and J#, induced by Picard functoriality.

The following relations between the w-operators and the Hecke oper-
ators, and betwen the w-operators and themselves (as endomorphisms of
the Jacobians, or generalized Jacobians) hold. We shall be interested in wN,
wp, and wNP . The corresponding relations in the ring of correspondences
on the curve are obtained by reversing the order of composition. All are
easy to check from the modular interpretation. See also [ALi].
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Note that there is no simple relation between wP and Up. The two do
not commute, not even up to diamond operators.

1.5. The action on the new part.

Over C we may identify 52 (r) with the cotangent space to Jr, and
since we are in characteristic 0, the Hecke ring cut out by Jr is the same
as the one cut out by the space of cuspforms. The decomposition

(1.12) S2(fo) == S2old (]po) E9 

is stable under ?-~. It follows that the same is true about the old/new
subvariety/quotient of Jo, and that

It is known, and easily checked from the modular interpretation, that

Up + wP sends Jo into the old subvariety. It follows that on .Ip,new we
have the relation:

It is also known that is stable under all the Atkin-Lehner

involutions. See [ALe], Theorem 3.

1.6. Eisenstein modules.

The exact sequence

induces a surjection Gm)). Let 3 be its kernel,
i.e. the annihilator of It is called the Eisenstein ideal. Any prime
ideal of H(J/) containing 3 (i.e. in the support of H(J,*)13) is called

an Eisenstein prime, and any prime ideal containing (l, J) is called an l-

Eisenstein prime. If h is any quotient of 7i(J,*) we call h purely Eisenstein
if its support (as an consists of Eisenstein primes, and
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non-Eisenstein if its support is disjoint from the Eisenstein primes. Finally
if Z is a Hecke-stable subquotient of Jt we call Z purely Eisenstein or non-
Eisenstein if x(Z) is. Thus Z is non-Eisenstein precisely when the image
of 3 under the map is the full H(Z).

A Hecke-stable subvariety A of ~J1 is called non 1 -Eisenstein if A[1’] is
non Eisenstein for all n, or, equivalently, if the support contains no

I-Eisenstein primes. Suppose that this is the case, and consider 
which is an Artinian semi-local ring. Let e be the idempotent in this ring
which is the projection onto the non-Eisenstein components. Then e kills

and therefore = On the other hand

ea[ln] = A[1’], and we may view A[l’j as a submodule of even

without having to find a map from A to J# .
Suppose that A (assumed now non l-Eisenstein), has a Hecke-stable

subvariety A1 complementary to it, in the sense that their intersection is
finite, while their sum is the whole Ji. Assume, in addition, that this A1
satisfies

Then for A’, the pre-image of A -.L in Jt=, we have the same thing:
A[ln] n A’[ln] == (0) (apply e to prove it!), and therefore

a direct sum which is of course Hecke and Galois-stable. These remarks will

be used in Chapter 3.

1.7. N6ron models.

Quite generally, if F is a finite extension of Qp and A an abelian
variety over F, we denote by N(A, OF) the N6ron model of A over OF,
by N(A,OF)O its identity component, and 
N(A, the group of connected components, which is a finite 6tale group
over the residue field of F. We shall need the following result.

PROPOSITION 1.2. - For any F, the group 4D(JO, OF) is new. More
precisely, the exact sequence of abelian varieties over F:
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induces by functoriality maps between N6ron models, hence maps between
groups of connected components, and the map

is an embedding.

Proof. Since Zp is absolutely unramified and Jo has semi-stable
reduction, Theorem 7.5/4(ii) of [BLR] gives the exactness of N6ron models
over Zp (we denote here, for brevity JV(JO, Zp) etc.)

and therefore the exactness of

Since for abelian varieties with semi-stable reduction the formation of the

identity component of the N6ron model commutes with finite flat base

change ([BLR], 7.4/4), the sequence

is exact. Consider the diagram

The vertical arrows are injective, hence so is the first arrow in the bottom
row. Since Jo has semi-stable reduction over F, the proof of Theorem

7.5/4(ii) in [BLR] shows that the bottom row is exact too. (Note that
the assumption (*) there about the absolute index of ramification of F was
necessary only to get (i), but not to deduce (ii) from (i)). The lemma now
follows from the snake lemma. D

COROLLARY 1.3. - On 4P(JO, OF) we have the relation Up = -wp.
The generalized Jacobians that we shall meet are all semi-abelian

varieties (extensions of abelian varieties by tori). As such they have Neron
(lft-) models too, which are constructed for example in [BLR], Chapter 10.
We shall denote the N6ron lft-model of a semi-abelian variety A# by the
same notation N(A#, 
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1.8. Two algebraic lemmas.

LEMMA 1.4. - Let W be an abelian group, and a, (3 E End(W) two
endomorphisms such that a + {3 = 1, and a{3 is nilpotent. Then

where Wa is the subgroup of all the elements of W annihilated by some
power of a, and similarly for Wo.

Proof. - Elementary. D

LEMMA 1.5. - Let A be a commutative ring, I a nilpotent ideal, and
R = A/I. Let W be a A-module, and W = W/I W. Let H c EndA(W) be
a commutative subring. Suppose eo E H is such that eo E EndR(W) is an
idempotent. Then there exists a unique idempotent e E H lifting eo, i.e.

e = eo.

Proof. For e, f E EndA (W) write e - fmod 1m if (e - f ) W C
1m W. We shall define inductively a sequence em E H with the property
that

and ~ I

Simply let
yields

A straightforward computation

so the induction is carried on. For large enough m, e = is an idempotent.

To prove the uniqueness, suppose that e and e’ are both idempotents
lifting eo. Writing e’ = e + j, and assuming j - Omod Im+1, we get from

that j(1 - 2e) = j2, hence j = j2(1 - 2e) = 0 modl"2+2, 0

2. The deformation modules.

In this section we introduce the main objects which we wish to study.
They are finite groups built from the p - 1 torsion in the (generalized)
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Jacobians of Xo and Xl. It is clearly sufficient to treat their 1 -primary
part for each 1 separately, and in doing so we shall exclude 1 = 2 . Recall

that r is the highest power of l dividing p - 1, and R = Z/rZ.

2.1. The deformation.

Writes

PROPOSITION 2.1. Consider the map 2013~ as a map

of finite free R -modules. Then

(i) This map is injective.

(ii) It identifies with ~I # ~r, I ‘~ ~I ~ .
(iii) Consider the surjection

where (-) * = Hom(-, R). Then Jt[r]* is identified with 1’]* Q9A A/I.

(iv) As a A-module J/[r, I’]* is isomorphic to a direct sum of a free
A-module with one copy of A/I.

Proof. (i) We have canonical identifications Jo [r] = H6t,, (YOIQ, Ar)
and = H,6’t (Yolo, R). Artin’s comparison theorem allows us to iden-
tify these with the singular cohomology of Yo ((C) (with or without compact
supports, and with coefficients in the same groups) . The latter can be com-
puted as a group cohomology. We thus have

where we have taken into account the fact that ro acts faithfully and freely
on 

Similarly we have

The last equality is a consequence of Shapiro’s lemma in group cohomology.
Here ro acts on A via F~. To fix ideas we choose the isomorphism
sending a matrix q E ro to a,ymod p (we could have chosen d.ymod p too).

It can be checked that the diamond action on is translated to

the diamond action on the coefficients in HI (r 0, A), so
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Next, the map is the map

coming from the augmentation map A 2013~ R. This map is surjective, since

ro is free.

Dualizing, we get (i). Assertions (ii) and (iii) are again dual to each
other. Their proof can be found in [dSl], Proposition 1.3. (The assumption
N = 1 is not used there.)

Assertion (iv) was proved in [dSl], Proposition 2.8, Step 1, under the
assumption that 1 &#x3E; 5. Once again, the assumption N = 1 was not used
there in the proof, and the proof carries over to the case 1 = 3, since ro has
no 3-torsion. D

The injectivity in (i) is one place where it is advantageous to work
with the generalized Jacobians. For the ordinary Jacobians, the map is not
injective. Its kernel consists of the r-torsion in the Shimura subgroup.

Notation. - Write

These are modules over H, equipped with a commuting action of Gal(Q/Q).

2.2. The local filtration on V and V#.

The restriction of V or V~ to the decomposition group at p admits
a 2-step filtration. It is defined geometrically, and its graded pieces are
unramified. These facts are not new. At least in the case of V, and in the
1-adic setting, they are used in [MW] and in papers of Wiles from the same
period. For completeness we review them.

Recall that Xo has a model ~o over Zp, an open subset of which, To,
is the fine moduli space for the moduli problem ([f1(N)], [IFO (p)]). For every
Zp -algebra T, the points of are isomorphism classes [E, PN, H~ of
triples consisting of an elliptic curve E over T, a point PN C E[N](T) "of
exact order N" (see [KM], p. 99), and a cyclic finite flat subgroup scheme
H C E[p] of rank p (loc.cit. p. 100). The cuspidal subscheme Go = ~o 2013 To
is finite 6tale over Zp ([KM], Theorem 10.12.2).

The scheme xo is flat and proper over Zp, and regular as a 2-

dimensional scheme ([KM], Theorem 6.6.2, p. 167). Via the map "forget
the ro (p) structure" , it is finite and flat of rank p + 1 over 
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The special fiber is reduced and consists of 2 irreducible

smooth components Xo and which are the curves ~(ri(7V),(l,0))
and OO1(f1(N), (0,1)) of [KM], Proposition 13.4.4, p. 408. The map Xo -

is an isomorphism. The map is purely in-
separable of degree p. Denoting by and Yo t the intersections of Xo
and X6t with 3)o? for any IFP-algebra T, points of are isomor-

phism classes of triples where E is an elliptic curve over
T, PN E E[N](T) is a point of exact order N, and F is the Frobenius

homomorphism F : E --~ E(P) over T. The curve classifies isomorphism
classes of triples [E, PN, H], where E and PN are as before, and H is a
cyclic finite flat subgroup scheme of rank p such that if 7r : ~ 2013~ E/H is
the canonical isogeny, E -- and Ker(’7r) = KerF. Over a perfect
base we have then H = E~P 1 &#x3E; ), where V is the Verschiebung
homomorphism.

The two components of the special fiber intersect transversally at the
set ,S’ c Xl (N) (IFP) of the super-singular points. The supersingular point
~E, PN, Ker F~ E is glued to [E, PN, Ker V] E xgt(JFp) because for
a supersingular curve Ker F = Ker Y ( ~KM~ , Theorem 13.4.7).

If L is a finite extension of Qp, and x = [E, PN, H] E is a

point with ordinary reduction, then x meets the special fiber in Xo if and
only if the reduction of H is connected, and it meets the special fiber in

Xo6t if and only if the reduction of H is 6tale.
The cusps Co reduce injectively in the special fiber (since the cuspidal

scheme is 6tale) and break up as the union of Co and Cot, the cusps in Xo
and 

The automorphism w~ extends to ÅO and interchanges the two
components of the special fiber. On the set ,S’ it has the same affect as the

absolute Frobenius a E Gal(Fp/Fp). Whenever necessary we shall identify
xgt with Xl (N) using wp, followed by the isomorphism X1 (N)
obtained from the map "forget level p" .

Let M = be the free abelian group on the set ,5’ of super-singular
points in Xl (N) (Fp). Let Mo the kernel of the degree homomorphism from
M to Z. Let denote the (non-split) torus over Fp whose
character group is Mo (with the Galois action coming from its action on ,S’) .3

3 A more canonical description of Mo is as the dual graph of Thus, the

action of on Mo is via s - -o-( s) (s E S), although on S it acts like a, because
wp interchanges the two components of the special fiber. One can check that this action
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The semi-abelian variety J* has a N6ron (lft-)model over Zp (see
[BLR], 10.2/2). Similarly Jo has a N6ron model Jo over Zp. The following
proposition describes the structure of the connected components of the

special fibers of these N6ron models.

PROPOSITION 2.2. - (i) Let T be the (Ift-)N6ron model of the torus
Then the sequence

is an exact sequence of group schemes over Zp.

(ii) There are exact sequences of group schemes over IFp:

where Jo (resp. Jgt) is the Jacobian of Xo (resp. and similarly
.

(resp. is the generalized Jacobian with respect to the cusps
Co (resp. 

Proof. (i) Since Go is an 6tale scheme over Zp, the torus

Hom(Z [Co] o , Gm) is split over Q". It follows that the connected component
of the special fiber of its N6ron (lft-)model is simply 
and to prove the exactness of the sequence in (i) we may pass to an unram-
ified extension, and assume therefore that our torus is split. In this case
the claim follows from the proof of Proposition 7 in [BLR], Section 10.1.

(ii) According to Raynaud’s theorem, and its generalization to the
generalized Jacobian with respect to Co (which is valid since Co extends
to an 6tale subscheme over Zp, see [dS3]), (resp. represents" 0/ p P

(resp. the identity component of the relative Picard functor with
trivialization along Co). Any (trivialized) line bundle whose class belongs
to Pic 00 I]F gives upon restriction to the two components points in the

corresponding (generalized) Jacobians. The kernel of this map consists of
line bundles which are trivial on each of the two components. Choosing
trivializations and comparing them on S we get the homomorphism from
M to Gem. If the trivializations are not given, they can be modified by a

is compatible with the inclusion of Hom(Mo, in the connected component of the
special fiber of the N6ron model of Jo over Zp (see Proposition 2.2 below), and with the
action of wp induced on that connected component from the (Picard) action on Jo.
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scalar factor on each component, and the resulting homomorphism is well-
defined only on Mo. This establishes the exactness of the two rows in (ii),
and the commutativity of the diagram is clear. D

From the proposition we obtain the following exact sequences:

Let us also remark that the two arrows in

are isomorphisms (and similarly for the generalized Jacobians). For the one
on the left this follows from the universal property of Néron models. For
the one on the right note that is an etale group scheme, because r is

relatively prime to p.

DEFINITION 2.1. Let (resp. l denote the subgroup
(resp. consisting of the elements ulhich map to

0 in J/; (resp. Let and similarly for the

generalized Jacobians. Dualizing, we obtain exact sequences

where and similarly for the generalized
Jacobians.

The vertical arrows are all injections. This is because J* maps

surjectively to Jo The cokernels of the vertical maps fit into the exact

sequence

The modules and W # are stable under the local
Galois group at p. We shall now see that they are also stable under H. We
shall check it for the operator Up. Similar (and easier) computations apply
to the other Hecke operators. Let x = [E, PN, H] for some finite

extension L of Qp. Then in Div(To(OL)) we have
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where (enlarging L if necessary) each xz = (Ei, PN,i, Hi) is defined over

OL and there is a cyclic isogeny Ai of degree p defined over OL carrying
(Ei, PN,i, Hi) to (E, PN, H). In particular, the scheme theoretic intersection
of Hi and KerAi is 0, and H = If the reduction x of

x is ordinary, and x belongs to then each Hi must have an etale

reduction, and so xi belongs to On the other hand if x belongs to
S, clearly every xi belongs to S. It follows that if

is a divisor of degree 0 supported away from the cuspidal scheme, whose
reduction is supported on then so is U;8. Any point in is the

class of (the generic fiber of) a divisor of this form, and vice versa. Thus
UP preserves Jo ~r~sub. (Note that if we used the Albanese functoriality

we should have defined Jo[r] sub using Jo instead of Jot.) The proof for the
generalized Jacobian is identical. Compare the arguments here with [MW],
chapter 2, Section 9, in particular Propositions 2 and 3 there.

2.3. The local filtration on V and V#.

At the f 1 level the geometry is a little more complicated, and one
has to go to Qp((p), or at least to its subfield K of degree r over Qp, to
get a good understanding of the picture. It turns out that there is a similar
filtration there, which is again stable under the local Galois group and
Hecke. It is even stable under the full Gal(Qp/Qp), but the graded pieces
are not unramified anymore. One of them inherits a "geometric inertia
action" of Gal(K"/Q") via the pr-diamond operators.

It is well-known that J1 acquires semi-stable reduction over Qp((p).
However, we want to be able to work over a field of absolute index of
ramification strictly less than p - 1. This is possible because J1 [r, I’] is in

fact the r-torsion of an abelian variety which acquires semi-stable reduction
over the field I~ mentioned above. We now explain this point.

Let X2 -~ Xo be the intermediate cover (defined over Q) with
Gal(X2 /Xo ) cyclic of order r. Let J2 be its Jacobian variety. In

the kernel of J2 -~ J1 is a p-type subgroup, of order (p - l)/r. Since r and
(p - l)/r are relatively prime, J2 [r] C J1 [r], and in fact we claim that
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so V = J2[r]*. Indeed, quite generally, if X’ ~ X is an unramified cyclic
covering of curves over an algebraically closed field I~ of characteristic 0, or
at least relatively prime to the order of Gal(X’/X) = r, and J and J’ are
their Jacobians, we have an exact sequence

This is proved using Galois cohomology of cyclic groups.

LEMMA 2.3. - The abelian variety J2 admits semi-stable reduction
over the unique subfield K of degree rover Qp.

Proof. Let q be any prime not dividing p(p - 1)/r (for example,
we could take q = l). Then by the discussion above we have for the rational
Tate modules

Let L = Qp((p) and let IL be the inertia subgroup of Gal(L/L). Then
since J1 acquires semistable reduction over L, V = has a subspace
W = VzL such that IL = acts trivially on W and V/W. Since
L is normal over Qp, W is stable under the full inertia group at p, and it
can be computed that the action of Gal(L/Q;r) on W and on V/W factors
through the diamond operators, i.e. through the canonical isomorphism of

IF; with the group of diamond operators.
It follows that Gal(K / Knr) acts trivially on the subspace W[I’] c =

VqJ2 and on the quotient hence by the criterion for semi-stable
reduction ([BLR], 7.4/6), J2 acquires semi-stable reduction over K. 0

Alternatively, the above lemma follows from the semi-stable, regular
model of X2 over OK which we describe ahead, and Raynaud’s theorem.

Recall that for any finite extension F of Qp and any abelian variety
A over F we denote by N(A, OF) the N6ron model of A over OF. Thus,
for example, Jo = N(Jo,Zp). Like in the case of Xo, the curve has a

regular, flat and proper model X2/OK’ the special fiber of which is reduced
and consists of two smooth irreducible components and (Igusa
curves) which intersect transversally at the supersingular points S. In the
language of [KM], ~2 contains an open set 2)2 which is the fine moduli
space for the moduli problem ([f1(N)], (see [KM],
Theorem 10.12.2, p. 326 and the remark following it) . The scheme of cusps
~2 = ~2 - ~ 2 is finite 6tale over OK.
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The map X2 --~ Xo, which is Galois unramified of degree r, extends
over to a map ~2 -~ which on the special fiber induces maps
X2t --~ X3t and X2 --~ xt;. These two maps are totally ramified over
the super-singular points, but are 6tale over the ordinary locus. They are
interchanged by the "involution" wp.

Let J2t and J2 be the Jacobians of the curves X6t and ThenLet J2 2/F, 2/
by Raynaud’s theorem we have for any field F containing K a diagram of
group schemes over the residue field ~F :

with exact rows. The injectivity of the middle vertical arrow is deduced
from the injectivity of the right vertical arrow, which is a consequence of
the fact that the coverings X2t -~ X3t and X2 -~ Xo inducing the maps
between the Jacobians are totally ramified over S.

A similar analysis applies to the generalized Jacobians (always with
respect to the cusps). Thanks to the fact that G2 is finite 6tale over OK,
the proposition analogous to 2.2 is valid. Note that there are precisely r
cusps in C2 above any given cusp of Co. Thus we have exact sequences

where we have denoted by J2 - N(J2, OK) etc. We can now define the
filtration on V and v~ .

DEFINITION 2.2. Let (resp. denote the subgroup
(resp. ~#° (oK ) ~r~) consisting of the elements which map

to 0 in J2 (resp. in J2 # ) . Let and similarly for
the generalized Jacobians. Dualizing, we obtain exact sequences

where

As in the case of Jo, the vertical maps are injections, and the six
modules are stable under the local Galois group of K, Gal(K/K), and
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under the Hecke algebra ~L. As we shall see later, they are even stable
under 

2.4. Structure of the filtered deformation.

It will be important to analyze the filtered deformation V# - V #
in the way it was done, without the filtration, in Proposition 2.1. We shall
show that this surjective map induces surjective maps on the sub/quotient
modules, and that the structure as A-modules is as "clean" as possible,
given Proposition 2.1 (iv) . These tasks turn out to be somewhat delicate,
and we shall break them to several steps. We shall then recollect all the
information we have gathered in one theorem.

Assume that F is a field containing K, and that Jo [r] and J2 [r] are all
F-rational. If E denotes the Shimura subgroup of Jo, then ~~r~ = Ker(Jo -~
~I2 ) . Consider the diagram

with exact rows.

Let

Then T embeds in N(J2, OF )/KF/N(Jo, (note that r torsion in
the Neron model maps injectively under the specialization to the special
fiber because p does not divide r). On the other hand T is a submodule of

and in particular we have the identity UP = -wp on ~.

Let H be the subgroup of W which maps to J-25t / J’06t x f 0 1. Note that
H is stable under UP because J26tlJo6t x {0} is stable under Up, but H
can not be stable under wp because it interchanges with 

However, we have noticed that Up = -wp on H. This proves that H = 0.

PROPOSITION 2.4. - Inside we have
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Proof. As noted before J1[r,I’] - J2 [r] . Let F be any field

containing K so that J2[r] and Jo[r] are rational over F. Let XF E 
be the image of YF E Jo ~r~ . Extend xF and yF to sections x and y of the
N6ron models over OF. Then x E N(J2, maps to J26t x 101 so by
the last remark before the proposition, the image of y in T lies in H = 0,
hence we can change y by an element of E ~r~ to bring it into the connected
component. We may therefore assume that y E N( Jo , It is now

clear that if the intersection of x with the special fiber projects to J2t, then
so does the intersection of y with the special fiber. D

PROPOSITION 2.5. - In the following diagram:

all the vertical arrows are injective.

Proof (Compare [dSl], Lemma 2.7, p. 85-86). - We only have to
prove that

Let x E n By the previous proposition, and after

modifying x by an element of Jt[r]sub, we may assume that x lies in the
kernel of the map to J1 [r, 1’]SUb, i.e.,

Here we made use of the diagram (over Fp)

and the exact sequence

(2.28)
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Consider now the diagram

(obtained from the snake lemma) with Mo = Ker(Z[C2]o - Z[Co]o). The
image in can be computed explicitly (use the action
of the diamond operators A, on £[r] - But in any case

it is invariant under wp, because E is invariant under it. In particular, it

intersects trivially Hom(M6t, J-lr) C Hom(Mo, where

because wP interchanges the 6t and the p cusps. Similarly we have another

diagram

Now x E pr) n Chasing the diagrams we see that its

image in lies in

and therefore

2.5. The action of the full decomposition group.

We wish to show that Jt [r, and J1 [r, 1’]SUb are stable under
Gal(Qp/Qp), and to compute its action. It will follow that the six modules
in Definition 2.2 are acted upon by the full decomposition group, and not

only by For that purpose consider the model of X2
which is associated with the moduli problem (~rl (N)~, ~1,1 (p)~/~cT~ ). See
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[KM], Theorem 5.5.1 for the representability. 3C’ 2 is proper and flat over

Zp, regular as a 2-dimensional scheme, but unlike the model ~2 over the
ring OK, its special fiber is non-reduced. In fact, by [KM], Theorem 13.5.4
on p. 416, is the union of two irreducible components X 2 /’ and X’6’ 2 ’
intersecting transversally at the set ,S’ of supersingular points. The curve

X2 is non-reduced, and its multiplicity as an abstract curve is r. When

we reduce it, becomes equal to Xl (N). The curve is reduced,
and it is an Igusa curve. In fact it is isomorphic to X6’.

The N6ron model N(J2, Zp) can be computed by Raynaud’s theorem
from this model. As not semi-stable, the connected component of the

special fiber has a unipotent part. In fact N(J2, Zp)o /Fp will
be an extension of J2 ’6t x J’I-t 2 by an affine algebraic group, which is itself the
extension of the torus Hom(Mo, Gm) by a unipotent group. This unipotent
part will contribute nothing to the r-torsion. From the map

(obtained by the universal property of N6ron models) we shall get a map

and the pre-image of under the map

will map isomorphically onto both being extensions of by
Hom(Mo, p,). Since this pre-image is a subgroup which

is stable under the full decomposition group, this proves our claim, and at
the same time shows that J1 [r, is unramified for the full decomposition
group. The same holds for the generalized Jacobian.

To compute the action of a~, the arithmetic Frobenius at p, let us

start with a non-cuspidal point x = [E, PN, Pp] E xtt(JFp) where PN is a
point of exact order N, and Pp a point of exact order p which generates
Ker( V : E ~ as a Cartier divisor. See the discussion in Section 2.2

about the moduli problem represented by x8t. The difference between xtt
and X2t is that in the latter Pp is only taken modulo the action of J-lr’. To
simplify the notation, we shall do the computations at the level of Xi . Now
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where QP,i E E(Fp) is a solution of pqp,i = Pp. There are p2 solutions of
this equation (taken with multiplicities) and modulo (Pp) there are p. If x
was an ordinary point then (Pp) is a reduced subgroup, and all the Qp,i are
equal modulo (Pp). If x was in ,S’ then (Pp) = KerjF = KerV and of course
all the Qp,i are 0. Thus in any case the sum on the right hand side consists
of p equal terms. Applying (J to any of them yields

Since a point of J1 [r, or j* [r, I’]SUb is represented by a divisor of

degree 0 with support on x’s as above, and since the Up action is by Picard
functoriality we arrive at the formula

PROPOSITION 2.6 (Compare [dSl], Proposition 3.2). - The modules
U~ and W# are stable under Gal(Qp/Qp). The action of the decomposition
group on W~ is through the unramified character 0 sending the arithmetic
Frobenius a to 0(o,) = Up (and therefore Up acts invertibly on W#).

Proof. This follows from the above discussion, the observation that

p _ lmod r, and the conventions about Galois and Hecke actions after

dualizing. 0

The next proposition shows that the action of the decomposition
group on U# is ramified.

PROPOSITION 2.7. - Let

the character which associates to T the diamond operator

where x(T) is determined by -r(() = ~X~T&#x3E; for ~ E Then

Gal(Qp/Qp) acts on U# via the character 

Proof. A proof can be modeled on the proof of Proposition 3.7
in [dSl], paying attention to the rl (N) level structure, which was missing
there. Alternatively (for U at least), we can use the twisted Weil pairing
of [MW2], p. 243, defined by

for x, y E J1[r,I’]. (Here wNP - wNp - WNp* because wNp - 1.) This
twisted pairing has two advantages over the original one: (a) The transpose
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of Up (or, for that matter, any T E ~-C) under it, is UP itself (resp. T
itself), and not Up*, which may not be in ?-~. (b) J1 [r, 1’]SUb is maximal

isotropic for it, and therefore set in perfect duality with J1 [r, 1,]quot. Indeed,
by Grothendieck’s "Th6or6me d’orthogonalit6" ([SGA7], expose IX, Thm.
2.4) and by the fact that wNP preserves Jp[r, I’], the restriction of [.,.] to

factors through the projection to x J2" [r], but since WNp
interchanges the two components of the special fiber, if both x and y project
to J26t [r] (i.e. belong to J1 [r, 1’]SUb) then [x, y] = 0.

We can now compute for x E J1 [r, and y E Ji [r, and any
T in the local Galois group

so by non-degeneracy, Dualizing we see that T acts on
U via Observe that implicit in the definition of WNp there is a
choice of an Np-th root of unity (, hence T does not commute with wNp,
but rather satisfies T o wNp = wNp o (X(T))Ñp 0 T. 0

2.6. Structure over A.

Recall the identifications

from Section 2.1, where Cor is the corestriction map, and can the canonical

map induced by the projection A 2013~ R. Let ~o?7i?’"?72~ be a set of

generators of ho as a free group, such that 1’i E f1 for i &#x3E; 1. (The rank of
ho is odd. In fact

and #Co is even.) Then qo projects to a generator of the cyclic group
F~. Using the 1i we write

Similarly, since ro is free,
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and under this isomorphism I x (0) x ... x (0). This

gives a realization of the isomorphism encountered in (2.1) (iv), which
depends on the choice of the Let vo, ... , v2~.,.t denote the elements of

J* [,r, I’] - = H1(fo, A) ri (A/I) E9 A (D E9 A which correspond under the
isomorphism to ( 1, 0, ... , 0) , ... , (o, ... ,1 ) . Let ui denote the images of vi
in 

Note that while the line Rvo depends on the choice of the the

line Ruo does not, because under any change of the vo goes over to

I: Aivi with Ao E R X and Ài E A[I] C I for i &#x3E; 1. This "canonical line"

Ruo C = H1(fo, R) simply consists of homomorphism from ro to
R factoring through ho/h1. Now giving u E is the same as giving
a cyclic covering X - Xo defined over Q, unramified outside the cusps, of

degree dividing r, together with a distinguished generator of Gal(X/Xo).
Such a u comes from Jo ~r~ * C if and only if it is also unramified

at the cusps. Consider in particular the covering X2 -~ Xo which is of the
above type. It corresponds to the line Ruo, and since it is unramified also
at the cusps, we conclude that Ruo C 

We claim that Ruo is mapped injectively into W = (Jo [r] sub)* , hence
also into W # . A fortiori, Rvo will map injectively into W#. This was proved
in the case of prime conductor ([dSl], p. 87), by an argument on Mumford
curves. Here we need a different argument. What we have to show is that

is of order r. By the non-degeneracy of the Weil pairing on

Jo [r] there is a unique £o e Jo [r] such that

for every x E J0 |r|, where (.,.) denotes the Weil er-pairing, followed by a
fixed isomorphism pr ci R. Unwinding the definitions we see the following.
The homomorphism u° corresponds to the cyclic covering X2 -~ Xo and
a generator a of Let ( be the primitive r th root of unity
corresponding to 1 under the fixed isomorphism pr ci R. Kummer the-

ory then establishes the existence of a unique g E such

that Q(X2) = and such that a(g) = (g. Since the cover-
ing is everywhere unramified the divisor div(g) = rD for some divisor of
degree 0 D, and fro = [D] is the class of this D in Jo. It fol-
lows from this interpretation that Uo lies in the Shimura subgroup, and we
have noticed before that the Shimura subgroup intersects the connected
component of the N6ron model trivially, and therefore maps injectively

We now invoke Grothendieck’s "Théorème d’orthogonalité"
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([SGA7], expose IX, Thm. 2.4), which implies that Hom(Mo, J-lr) is or-

thogonal under the Weil pairing to and is therefore dual (by
counting) to In particular, it follows that for a suitable

x E Hom (MO, p’) is of order r, as desired.

Observe that

so that

We choose our generators of ro in such a way so that uo, ul.... , um project
to a basis of W# and u.+ 1, ... , 2G2m form a basis of U#. The same counting
argument as in [dSl], Proposition 2.8, Step 3 (p. 87-88), now shows that

and the sequence 0 - U# - v# ~ w# ~ 0 splits as a sequence of
A-modules. We summarize the discussion of this chapter in the following
theorem.

THEOREM 2.8. - In the commutative diagram

where and

. The rows are exact and the vertical arrows are surjective.

w All six modules are stable under 1t and under Gal(Qp /Qp). The
modules U#, W#, and W ~ (but not U#) are unramified for the
action of the decomposition group. In fact Gal(Qp/Qp) acts on W#
through the character 0, and on U# through wep-1, where = Up
if is the arithmetic Frobenius in and c,~(T) _ 
is the Teichmuller character.

~ As a short exact sequence A-modules, the top row splits, and

The bottom row is identified with (the top row)0AR.
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. The map W~ -~ W# is dual to the inclusion Jt[r]sub ~ J~[r, 
This inclusion fits in the folloiving exact sequence:

In fact Jt[r]sub is the r-torsion in the generalized Jacobian of X3t =
with respect to the reduced modulus C3t U S of the cusps

and supersingular points, and the same can be said for J~ ~r, 1’]SUb
and the Igusa curve The degree r covering X2t --~ X3t is totally
ramified over Sand 6tale elsewhere (including over the cusps).
We complement the theorem with the following fact concerning V (as

opposed to V#).

PROPOSITION 2.9. - As x-modules, W is isomorphic to

Hom(U, R) = U* .

Proof. This has already been noticed in the proof given to Propo-
sition 2.7, using the twisted Weil pairing. 0

Note the difference between Hida’s theory of "ordinary" p-adic de-
formations, and our "tame Hida theory". While Hida had to restrict to
the ordinary part in order to have U~ acting invertibly, in our case this is
automatic (of course, it is acting now on r-torsion!). Another difference is
that in Hida’s situation the p-divisible groups had a 2 -step filtration for the
decomposition group at p, where the quotient was unramified, while in our
case the submodule is the unramified piece, and the source of
the ramification in J# ~r, different, the so-called "geometric inertia
group action". Yet the formal structure of our theorem is very similar to

Hida’s. In particular, the (almost) freeness of the deformation over A, and
the fact that the f 0 structures are the I-coinvariants of their deformations
is an analogue of Hida’s control theorem.

3. The p-old and p-neyv parts of the deformation.

3.1. A study of the new subvariety.

The following results are due to Ribet. Let i and j = i o wp be the two
degeneracy maps Xo -~ X1(N), which correspond, in terms of the moduli
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problem, to the maps

Then

Here we write J1 (N)2 as column vectors of length 2, and i* acts on the first
entry, j* on the second. If i* and j* are the maps Jo - J1(N) induced by
Albanese functoriality, then

LEMMA 3.1. - The endomorphism
is an isogeny, represented by the matrix

End(

and

Proof. - Clearly i * o i *

An easy computation shows that and that

(see also [MW], p. 236). D

Jacobians are self-dual abelian varieties, and ~(~,j~) is the dual of

(i*,j*). Now it is a theorem of Ribet, based on results of Ihara, that

(i*,j*) : Ji(~V)~ -~ Jo is injective (see [Ri], Theorem 4.1 ) . Denoting by
( - ) ~ the dual abelian variety, we get, upon dualizing the isomorphism

that the map t (i * , j* ) factors as

and has a connected kernel (so in (3.3) we may dispose of the (-)0).
We conclude that O,old and likewise, dualizing

we get and the exact sequence
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The two isogenies JO,new and d : Jo,old - J0old are therefore
polarizations, being of the form pv o cp.

The matrix a breaks as the composition of three maps

As ao is an isomorphism,

Let f 1, ... , f9 (g = genus(Xl (N)) be a basis of S’2 (h1 (N)) consisting
of eigenforms of Tp. Let ap,i i be the eigenvalue of Tp on Ii. Then by
the Eichler-Shimura isomorphism we can diagonalize the action of T~
on V¿J1 (N) 0 Ql (l any prime) with on the

diagonal. In the same basis the diagonal matrix representing Tp* will be

lip,1 , ... , aP,1, ... , ap,g (because Tp* and T~ are dual to each other

under the Hermitian Petersson inner product). We conclude that

The Weil estimates  2VfJ give the Archimedean estimate

On the other hand, we will be interested in the 1-part of deg(a). Since
lip - 1 we have deg mod l.

3.2. The Neron models.

Let (resp. be the N6ron model of (resp. over

Zp. From [BLR], Theorem 7.5/4 we deduce the exactness of the sequences

from which we get exact sequences for the identity components
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Recall the exact sequence

for the connected component of the special fiber, which came from Ray-
naud’s theorem. In the next proposition we put the three last exact se-

quences into one diagram.

PROPOSITION 3.2. - Consider the following diagram of group schemes
over Fp :
(3.15)

where we have used the following notation. The map t (resp. 7r) is the inclu-
sion of (resp. projection onto) the old subvariety (resp. the old quotient).
Then a = 7r o t is the isogeny denoted by this name before. The map ’0
is the one obtained from Raynaud’s theorem, restricting a line bundle in

Pic 0 to X3t and Xo . The target of o is Jot x Jo . This is
identified with J1 (N)2 via the isomorphism

which is d eri ved from

Note that 8* sends the first copy of Jl (N) to Jot, and the second to JÖ. The
exists since Ker( 7/J) C (as it is obviously new and connected).

Then

o Hom(
. Let, e be the map i followed by the canonical
isomorphism Q6 : Jå1d - J1 (N)2. o t o ao e End( J1 (N)2).



33

Then as matrices

where F and V are the Frobenius and Verschiebung endomorphisms of
Consequently {3 and are dual to each other, and a 

0 and

Proof. The first assertion is obvious, as is a torus, but

Hom(Mo, Gm ) is the maximal torus in Joo. Let ’1 = as above. Consider

a point

0, cl denotes the divisor class in Pico (N) ), with all the Ei( F- 
- 

X,(N)IP,
ordinary elliptic curves over Fp, and represent x by the corresponding

E J06t(Fp), where and

PN,i = so that the point E2, Piv-,i’ Hn lies on X0t (but is not
in S). Here we denote by FrobE : E --~ E(P) and Ver E : E - &#x3E; the

Frobenius and Verschiebung of an elliptic curve over Fp (to distinguish them
from F and V, which are the corresponding endomorphisms of Jl (N) ) . Now
t(x,O) == P’N,i, Hi’] 1), where now we consider the divisor as
a divisor on which is of degree 0 on each irreducible component, and
therefore represents a point in Thus

It is easily checked that

This gives the first column in the matrix of ~y. Similar computations give
the second column, and the matrix of ,~. But
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Notice that we have re-proved the Eichler-Shimura congruence relations

Finally the degrees of ’1 and 0 are easily computed from the big diagram
and are each equal to y’deg(a), which was computed before. This concludes
the proof. D

3.3. Breaking the deformation into components.

Although the deformation V~ 2013&#x3E; V# can be studied as one piece, for
applications (such as for elliptic curves uniformized by Xo), it is often

necessary to break it into "components". We shall now make certain
assumptions which we keep until the end of this work.

Fix an orthogonal decomposition

(with respect to the Petersonn inner product) where the two subspaces
are rational over Q (with respect to to the Q-structure given by the q-
expansions) and H-stable. It is well-known that Sand are the cotangent
spaces of abelian subvarieties A, A1 c Jo, defined over Q, stable under ?-~,
whose intersection is finite, and whose sum is Jo. We shall assume the

following three conditions:

9 (Al) A is not l-Eisenstein (see Section 1.6).

o (A3) A is isogenous to a subvariety of Jo(Np), and if 11N, then Nl = 1
and A is 1-new.

The second assumption means that
and (A2) together imply that

, and (Al)

where we have denoted by A’ the inverse image of A1 in Jo (see Section
1.6). Proposition 1.1 and Lemma 1.5 will allow us to lift this decomposition
uniquely in Jt [r, I’] .

In the category of abelian varieties up to isogeny (defined over Q) we
have
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which shows that EndH(Jo (2) Q) = Q. Since A is H-stable, the

projector onto A Q9 Q in the category of abelian varieties up to isogeny
commutes with ~l, hence is a (rational) Hecke operator, which is an

idempotent. We call it eA E Q.

Let d be an integer which is divisible by #(A n A1), and satisfies
d - lmod r (its existence follows from (A2)). Note that deA E End(Jo),
because it is the endomorphism which is equal to dA on A and to 0 on 
As some rational multiple of deA is a Hecke operator, deA E We

are in a position to apply Proposition 1.1, because if 11N, condition (A3)
implies that Ul is invertible on A. Let 001 be any maximal ideal of Hl(JO),
which is in the support of 1tl(A). If llN, 001 is ordinary. We conclude from
Proposition 1.1 that

Summing over all the maximal 9A in the support of we see that

deA E Hi (Jo). Its image in Hi (Jo[r]) is an idempotent, projecting to A[r],
because d - lmod r. Since A[r] is not Eisenstein, we arrive at the following
conclusion.

LEMMA 3.3. - There exists a unique idempotent e E ~(J~M)? which
projects onto A[r], and kills A’[r].

By Lemma 1.5, this idempotent lifts uniquely to an idempotent
e EH(Jt[r, I’]). We shall be interested in the deformation

PROPOSITION 3.4. - Under the assumptions and (A2) made
above, eV# - eV and eV~ = eV. As a A-module eV ~ A’g and
eV = eV R’g where 9 is the dimension of A. Each of eU# = eU
and eW~ == eW is isomorphic to Ag, and as H -modules they are dual
to each other. The decomposition group at p acts on eU and eW by the
characters and 0, as described in Theorem 2.8.

Proof. By assumption (Al) the idempotent e is supported at non-
Eisenstein primes. It follows from the uniqueness of the lifting of e to e
that e too is supported at non-Eisenstien primes, hence eV# = eV etc.

Consider the structure of = V# over A as discussed in
Section 2.6. The line A/I C V# is not canonical, but as explained
in Section 2.6 its image Ruo in Jo#[r]* - V# is canonical. Furthermore, it



36

was computed there that uo E ~Jo ~r~ * and is represented, under the Weil
pairing, by a unique Uo E which belongs to the Shimura subgroup.
The line Ruo maps injectively into the group of connected components

Zp). All these identifications respect the Hecke action. However, a
theorem of Ribet and Edixhoven (see [E]) asserts that the Hecke action
on ~(Jo, Zp) is Eisenstein. We conclude that the Hecke action on Ruo is
Eisenstein too, so (1 - e) uo = uo. It follows that in the decomposition
V# = eV# ® ( 1- e) V#, the single copy of A/I survives in ( 1- e) V#, and
eV# is free over A. The rest follows from Theorem 2.8 and Proposition
2.9. In particular the equality of A-ranks of eU and eW follows from the
fact that

and from the fact that both eU and eW are free over A. D

4. The infinitesimal deformation of a p-new component,
and its relationship with the p-adic period matrix.

4.1. The infinitesimal deformation.

Let A = l~/I2 ^_~ R[é] (E2 = 0), the ring of dual numbers over R. To
make the isomorphism concrete fix once and for all a primitive r-th root of
unity p E IFp and identify p- lmod J2 with c, so that ph -1 == kemod I2. For
any A-module M we denote by M the module M/I2M. For any R = A/I
module N we denote by N( 1 ) the module N ®R I /I2 . Since I /I2 = pr rr R
non-canonically, N and N(l) are non-canonically isomorphic, but we can
use our choice of p to identify them if we map E to 1. For future reference
note also that the identification of I /I2 with J-lr is via

where uR is the projection of u to 

The basic diagram
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describing the deformation of eV = A[r]*, yields a diagram with exact rows
and columns

We now twist the local Galois action by the character ~-1, thereby
trivializing the action on the right column of the diagram, and take the
long exact sequences in cohomology. Consider the following portion of what
is obtained:

Since the vertical arrow between the Ho is surjective, and since
= eW, we obtain the following result.

PROPOSITION 4.1. In the situation described above, the map

is 0.

The rest of this work will be devoted to analyzing the relation

4.2. The case of a p-old subvariety.

Suppose that A is p-old. In this case we have nothing interesting,
because the short exact sequence 0 - eV 2013~ eW - 0 is split. Indeed,
the fact that A is p-old implies that A[r] c In addition, Jo,new C A1
so Hom(Mo, par) C A1 ~r~ . Since by our assumption A[r] and intersect

trivially, A[r] - x It is now clear that the filtration on A[r]



38

corresponds to this decomposition and therefore splits, and dualizing, the
filtration on eV splits. It follows that if A is p-old, already bo = 0.

4.3. The case of a p-new subvariety.

Assume from now on that A is p-new. Since is a quotient of

H(JO,new), we get the relation UP = -wp on A, and therefore

By (A3), the Hecke operators (t) N act trivially on A, and therefore
U2 = 1. Furthermore, if A° is the abelian subvariety of Jo (Np) isogenous to
A, the isogeny Ao - A induces an isomorphism A[r], because the
kernel of Jo (Np) ~ Jo is purely Eisenstein (see the proof of Proposition 2.5,
in particular diagram (2.29) and replace p by N in the arguments there. See
also [M], Proposition 11.7), and A satisfies (Al). We may therefore regard
A[r] as a submodule of Jo(Np).

4.4. The p-adic period pairing.

Let Qp(S) be the unramified extension of Qp whose residue field
is the minimal field of definition for all the supersingular points S

of Recall that we denoted by Mo = Z[S]o the augmentation
subgroup of Z[S]. The p-adic uniformization of Jo,new over Qp(S) is

obtained as follows (see [B]). The character group of the torus 
is Mo (see Proposition 3.2). Let Lo be the character group of the torus

and recall that the abelian varieties and are dual to

each other. Then there is a canonical isomorphism of rigid-analytic groups
over Qp (S)

where Lo injects as a discrete cocompact lattice in Hom(Mo, Qp (S) ’). The
pairing

is called the p-adic period pairing of The dual abelian variety is

canonically uniformized as
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The principal polarization of Jo induces the polarization map Jo,nw -
The corresponding isogeny of connected components of special fibers

of N6ron models is

and it therefore induces an inclusion h : Lo ~ Mo. The pairing

is symmetric and if ord denotes the valuation of Qp (S), ord o Qh is positive
definite. Note that h identifies Lo as the subgroup of Mo annihilating
JO,,)Idn To The polarization map JO,new ~ Jöew is now induced from
the map h via the uniformizations of these two abelian varieties. Its degree
is [Mo : h(Lo )]2.

The uniformization of A is obtained as follows. Let MA be the
character group of the connected component of the special fiber of the
N6ron model of A. Then MA is a quotient of Mo. Let LA - Lo n

Then

We denote by

the corresponding pairing.

The Galois group Gal(Qp/Qp) acts on A(Qp). It also acts on MA
and LA via the unramified quotient Gal(Qp(S)//Q), and the p-adic uni-
formization as well as the p-adic period pairing QA are compatible with
this action. The endomorphism wp acts on MA and LA via -a, were a
is the Frobenius automorphism of Gal(Qp(S)/Qp) (see footnote preceeding
Proposition 2.2).

LEMMA 4.2. - The values of the period pairing QA lie in (Q’ .

Proof. This is a consequence of assumption (A3). Apply a and
compute:
(4.14)

... . -

Alternatively, one can "twist" the abelian variety A by the character
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(see Proposition 2.6, and recall that Up is invertible). The twisted abelian
variety has split multiplicative reduction over Qp, because the Galois action
on Mo has been trivialized. However, it has the same period pairing
as A. 0

The principal polarization of Jo induces the polarization

on A, or the inclusion hA : LA ~ MA. By assumption (A2) the degree of
this polarization is prime to l, and therefore

is an isomorphism.

LEMMA 4.3. - The short exact sequence 0 - eV --&#x3E; eW -~ 0

is dual to the short exact sequence

which is obtained from the p-adic uniformization.

Proof. We know that eJo ~r~ = A[r]. It is enough to prove that

Pick e’ projecting onto e in which maps Jo onto A. Let
.4 be the Néron model of A over Zp. Then e’ maps onto so we

have

This proves the lemma. 0

4.5. The map 60.

We shall now analyze the map 60 : eW -~ Since,
by the last lemma,



41

(note that the twist by ~-1 has the affect of trivializing the quadratic,
unramified Galois action on LA), the map 60 is a map from 
to the group or, tensoring with J-lr (which has a
trivial Galois action), it is equivalent to a map

Here we have used Hilbert’s theorem 90, saying that H 1 (Qp, J-lr) = 0 R.

PROPOSITION 4.4. - The map bo ( 1 ) is the map obtained from the
pairing QA 0 R.

Proof - This is an easy application of Kummer theory. See 
Lemma 3.4. 0

4.6. The map 61.

A similar analysis holds for bl ( 1 ) . Its domain is

and its range is the group

where we have used local class field theory to identify pr) with R.

For every a E Gal(Qp/Qp) consider a - 1 acting on eU(0-1). Since
Ø2 = 1 on eU = Hom(LA, R) (or on eU(l) = Hom(LA, induces

a map

and the map a - is a homomorphism. (With respect to suitable
R-bases the matrix of cr is

It therefore factors through 

PROPOSITION 4.5. - The map
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is described as follows. Let t E Q~, and denote by at E Cal(Qa6/Qp) the
Artin symbol of t. Then

Proof (Compare [GS], Theorem 3.11). - Abbreviate G = Gal(Qp/Qp)-
Consider Tate’s local duality pairing
(4.27)

which takes the pair (h, t 0 1) to h(at). (Although R and pr are non-
canonically isomorphic as Galois modules, we distinguish between them
because they play dual roles) . It may be "fattened" to a perfect pairing

andhereLA0Hom(G,R) = and Hom(LA,Q;0R) ==
where we have denoted by (-)~ = Hom(-,J-lr) the

Cartier dual.

Similarly, Tate’s local duality gives the obvious pairing

which may be "fattened" to a perfect pairing

Here

and

With respect to these two pairings the dual bl ( 1 )* of 61 (1) is the

connecting homomorphism

associated to the short exact sequence
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What we have to prove (dualized) is that

This is obvious from the definition of (perhaps up to a sign, de-
pending on how one normalizes connecting homomorphisms in long exact

sequences) . 0

4.7. The meaning of the relation 61 o 60 = 0.

THEOREM 4.6. - Let A be an abelian subvariety of Jo satisfying (Al),
(A2), and (A3) above. Let MA and LA be the lattices defined above, and

the map obtained from the p-adic period pairing of A, taken modulo r. Let

be the map 6(l’ 0 t) = f(WO-2)(Ut) _ 1}(P) where l’ E eU lifts l’ E eU =
Hom(LA, R). Then 6 o Q’A,R = 0.

Proof. As we have seen, the maps qA,R and 6 are none others

but bo ( 1 ) and 61 (1), respectively. The characterization of the second relies
also on our knowledge of the Galois action on eÜ( Ø-1), which is via the
character (;.)Ø-2 (see Proposition 3.4). 0

To write the last theorem in a completely explicit form, decompose
every t E Q~ as

where u(t) is a unit, and v(t) E Z. Recall that ~(o-t) - and
= (p)Nt~ (u(t)-1 ~p. Here we must recall that the p-adic and N-adic

cyclotomic characters satisfy and xN(at) = Note

that even under assumption (A3) we do not know that in the deformation
eU the operators (t) N act trivially, because the deformation is taken within
J1(Np).

Now, if l’ E eU,

where J and
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Let m1,..., mg be a basis of MA, and a basis of LA

(g = dim A). Let ll, ... , l9 be the dual basis in Hom(LA, R). Then

Applying 6 we obtain from the relation 6 o qA,R(mi 0 1) = 0 that

In terms of matrices, if ~Up 2 (p~ N -1~ is the matrix representing 
in a of eU lifting the of Hom(L A, R), we have the
relation

Let us consider the case of an elliptic curve A satisfiying (Al)-(A3).
Then there is only one period q, the Tate period of A. In this case eU = R,
eU = A, and the action of on eU is given by 1 + A, with A E I.
The last formula reads then

Notice that in case (l, vR(q)) - 1, the quantity UR(q)IVR(q) (we write
pr additively!) may be called the refined ,C-invariant of A (similar to

Our main result therefore relates it to the "derivative" of

U¡;2(p)N in the deformation eU of eU.
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