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ON CERTAIN HOMOTOPY ACTIONS OF

GENERAL LINEAR GROUPS ON ITERATED PRODUCTS

by R. LEVI and S. PRIDDY

1. Introduction.

In this paper we consider splitting iterated products of H-spaces
after one suspension. Several important advances in homotopy theory [3],
[6], [5] have used wedge decompositions or splittings to construct spaces
with desirable properties. For example one often seeks spaces whose mod-p
cohomology is free over a subalgebra of the Steenrod algebra. Previous
work [9], [7], [8] along these lines has considered iterated products of the
abelian H-spaces X = and B(Zp) . Here we show that the same
sort of splitting occurs when X satisfies much weaker requirements. As
applications we give decompositions for iterated products of SO(4),
and G2. We note the latter two are not even homotopy commutative.

Throughout this note by an H-space we mean a homotopy associative
H-space with homotopy inverses and a two-sided homotopy unit. Let IF be
a commutative ring with a unit and let E* be a homology theory taking
values in the category of cocommutative coalgebras over F. Then, restricted
to the category of H-spaces, the theory E* takes values in the category HA
of cocommutative Hopf algebras over F. Let R denote an associative ring
with a unit. An H-space X is said to be an E*-R-module H-space if the

following conditions are satisfied:

a) E* (X ) is a commutative Hopf algebra with respect to the

Pontryagin product and

Keywords : Splittings - H-spaces.
Math. classification : 55P45 - 55R35 - 20C20.
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b) there exists a function a : R ---+ Map(X, X), which induces a ring
homomorphism 

Since E* (X) is assumed to be a commutative and cocommutative Hopf
algebra, the set of all Hopf algebra endomorphisms is an

associative ring with a unit, where multiplication is given by composition of
maps and addition of two endomorphisms f and g is given by the composite

On a more intuitive level, an E*-R-module H-space is an H-space
whose E* homology admits a natural structure of an R-module as detailed
above.

As we observe below examples of E*-R-module H-spaces exist in

abundance. In particular, if X is an H-space and E* a homology theory
such that E* (X ) is a commutative Hopf algebra then X is an module

H-space. An analogue of this observation for more general rings will be

pointed out later in the paper.

If X is an E*-R-module H-space, then one can use the structure

map a to define a pairing
given by

with k-th component

where M n (R) is the ring of all n x n matrices over R with the usual
addition and multiplication. In the definition of 0, the symbol * denotes
multiplication in the H-structure of X and

This pairing may sometimes be regarded as turning X n up to homotopy
into an Mn (R)-module, but generally of course this is not the case. The
main observation in this paper is that the pairing 0, for an E*-R-module
H-space X, induces an action of Mn (R) on E*(xn), thus turning X n into
an H-space. This idea is then applied to obtain new
functorial splittings of iterated products of E*-R-module H-spaces after a

single suspension and localization with respect to the homology theory E*.

Before we state our results, one more definition is needed. As we

observe below, if X is a homotopy commutative H-space then the subset



1721

of all homotopy classes of self H-maps of X forms a subgroup
of the abelian group [X, X]. Furthermore, composition of maps induces
a multiplicative structure on this set, which satisfies the appropriate
distributivity laws and thus endows with the structure of an

associative ring with a unit. If X is an H-space, which is not necessarily
homotopy commutative, then one can still define an associative ring
with a unit (X, X ) H, which is the analogue of ~X, X ~ H but does not
require homotopy commutativity. If X is homotopy commutative then

(X, X) H = [X, X ~ H . The construction of (X, X) H is given in Section 2.

DEFINITION 1.1. - Let R be an associative ring with a unit and let
X be an H-space. We say that X is an R-module H-space if there exists a

ring homomorphism

In particular, we observe below that every H-space is a Z-module
H-space. The main result of this paper may be interpreted as saying
that whenever X is an R-module H-space, the question whether for a

given homology theory E*, the iterated product X n is an E*-Mn (R)
module H-space depends only on whether or not E* (X ) is a commutative
Hopf algebra.

A statement of our main results comes next. The main result of the

paper is the following

THEOREM 1.2. - Let X be an R-module H-space and let E* be a

homology theory such that E* (X ) is a commutative Hopf algebra. Then
the pairing

with k-th component given by

makes X n into an E* -Mn (R)-mod ule H-space.
If X satisfies the conditions of the theorem and E* is a homology

theory such that E* (X) is a commutative Hopf algebra, which as a module
is a free module in each degree over the ring IF = Z/rZ for some r &#x3E; 0,
then becomes a module over the semigroup algebra F[Mn(R)].
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Here Mn(R) is considered as a semigroup (a unital associative monoid)
with respect to matrix multiplication. Then a decomposition of the identity
element as a sum of orthogonal idempotents in this algebra gives rise to a
corresponding splitting of a suitable localization of X~. More precisely, we
have

THEOREM 1.3. - Let IF denote Z/rZ for some r &#x3E; 0. Let X be an

E*-R-module H-space and assume that E* (X ) is a free F-module in each
degree. Then any decomposition of the identity element in by
orthogonal idempotents, 1 F- 71 k *= 1 ei gives rise to a splitting

where LE denotes the Bousfield localization functor with respect to the

homology theory E*. Moreover, this splitting is natural with respect to
H-maps defined on X.

Finally we consider a specific example, namely when E* is given by
ordinary singular homology with coefficients in Fp. Restrict to 
For the class of spaces under consideration, homology localization coincides
with Bousfield-Kan p-completion and we obtain the following

THEOREM 1.4. - Let H* denote ordinary mod-p homology theory and
let X be an H-space such that for some r &#x3E; 0 the pr power
map induces the zero map on H*(xn). Then any decomposition of the
identity element in by orthogonal idempotents, 1 = ei,

gives rise to a splitting

Moreover, this splitting is natural with respect to H-maps defined on X.

The paper is organized as follows. Section 2 is devoted to a general
discussion of E*-R-module H-spaces. We show that if X is an R module H-
space and E* is a homology theory such that E,,(X) is a commutative

Hopf algebra, then X is an E*-R-module H-space. In Section 3 we

prove Theorem 1.2. In Section 4 we apply these observations to prove
Theorems 1.4 and 1.3. In Section 5 we describe examples which arise from
considering an orthogonal idempotent decomposition of the identity in the
group algebra 
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2. E*-R-module H-space.

If X is an H-space then the set [X, X] of pointed homotopy classes of
self maps of X is a group, which is generally non-commutative. Furthermore,
in this group the product (induced by the H-structure) of two H-maps
is not generally an H-map. However, if X is homotopy commutative then
the product of two H-maps is again an H-map. Let ~X, X ~ H C [X, X]
denote the subset of all classes of self maps of X, which are H-maps up
to homotopy. The following proposition shows that, in the case where X
is homotopy commutative, this subset is in fact a subgroup of [X, X] and
furthermore, that composition of maps induces a multiplicative structure,
turning it into an associative ring with a unit.

PROPOSITION 2.1. - Let X be a homotopy commutative H-space.
Then the set has the structure of an associative ring with a unit,
where multiplication is given by composition and addition is induced by
the H-space structure on X.

Proof. Since composition of H-maps is an H-map, one has a unital

multiplication operation on ~X, X ~ H, induced by composition. Let f and g
be self H-maps of X and consider the composite

which we denote by f + g. The claim that f + g is an H-map amounts to

showing that the external rectangle in the diagram

where p denotes the H-space multiplication map, A is the diagonal map and
T denotes the twist map, commutes up to homotopy. But, the left and top
center squares in this diagram commute strictly for obvious reasons. The
bottom center square commutes up to homotopy because both f and g are
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assumed to be H-maps up to homotopy. Finally the right square commutes
since the assumption that X is homotopy commutative can be rephrased
as saying that the multiplication Inap p is itself an H-map up to homotopy,
which is equivalent to saying that this square homotopy commutes. This
shows that [X, X]H is closed under addition and multiplication.

To prove that it is in fact a ring, we must prove the two distributivity
laws hold. That is, if f, g, h are self H-maps of X, then we must show that
the diagram

commutes up to homotopy, which is obvious. In particular the right square
homotopy commutes because h is assumed an H-map. 0

The above proposition motivates the following definition. A more
general version of it will appear later.

DEFINITION 2.2. - Let X be a connected homotopy commutative
H-space. Let R be an associative ring with a unit. We say that X is an
R-module H-space if there exists a ring homomorphism

Notice that X is an R-module H-space if an only if there exists a
function from R to the subset of all self H-maps of X, such that the obvious

requirements with respect to addition, multiplication and distributivity
hold up to homotopy.

To motivate the discussion, we consider some obvious examples.
Restrict attention first to R == Z and assume that X is a homotopy
commutative H-space. Then X is an Z-module H-space, since [X,X] in
that case has the structure of an abelian group and so is an

associative ring with a unit by Proposition 2.1. The map a is given by
sending n E Z to the class of the n-th power map on X.

Similarly, assume R = Zp, the p-adic integers. Then it is well-known
that under appropriate conditions Zp acts on p-complete H-spaces up to
homotopy. The following version of this is due to A. Bousfield [2].
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PROPOSITION 2.3. - Let X be a connected homotopy commutative

H-space. Let W be a pointed connected, CW-complex. If X is p-complete
then the abelian group [W,X] is Ext-p-complete and hence has a canonical
Zp-module structure.

Proof. The proof is analogous to that of [2], Proposition 7.2, and
uses induction on the skeleta of W together with a liml argument. It uses
the fact that Ext-p-complete abelian groups are closed under extensions,
cokernels, and arbitrary inverse limits. An Ext-p-complete abelian group
has a canonical Zp-module structure by [2], Proposition 4.3. D

As before, if X satisfies the assumptions of the proposition then it is
a Zp module H-space.

If X is a homotopy commutative H-space and E* is an a homology
theory such that E* (X ) is a commutative and cocommutative Hopf algebra,
then there is an obvious ring homomorphism

Hence if X is in addition an R-module H-space, then the composite

gives X the structure of an E*-R-module H-space.

Our next observation is that X may qualify as an E*-R-module H-
space without being homotopy commutative. Thus assume X is an H-space
and E* is a homology theory such that E* (X ) is a commutative Hopf
algebra over a ground ring IF. To avoid complications, which may arise
if E* (X) contains F-torsion, we assume throughout that E* (X) is a free

F-module in each dimension. There is a map of sets

which

1) sends composites to composites and

2) sends products of maps to the sum of the induced maps.
Let [X, denote the abelianization of the group [X, X], where the

group structure in the later is induced by the H-structure on X. Consider
the composite
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and let denote the subgroup of [X, generated by the image
of [X, X] H under this composite. Then is an abelian group by
construction, where addition is induced by the H-space structure on X and
an associative monoid with a unit, where the product operation is induced
by composition of maps. This set fails to be a ring only because one of the
distributivity laws is not satisfied. Specifically, if f, g and represent classes
of elements in [X, then since may be a sum of H maps rather than

an H-map itself the rule

may not hold. Thus let (X, X) H denote the quotient group of by
the subgroup generated by all elements of the form

Then (X, X ) H is an associative ring with a unit. Notice that if X is

homotopy commutative then the discussion above implies that (X, X ) H =

~X, X ~ H . This motivates the following

DEFINITION 2.4. - Let X be an H-space and let R be an associative
ring with a unit. We say that X is an R-mod ule H-space if there is a ring
homomorphism

From the discussion above the following proposition is straight
forward.

PROPOSITION 2.5. - Let X be an R-module H-space and let E* be a
homology theory such that E* (X) is a commutative Hopf algebra. Then X
is an E* -R-mod ule H-space.

As a particular case we consider the case where E* is given by ordinary
homology with coefficients in a ring.

PROPOSITION 2.6. - Let R be an associative ring with a unit and let
X be an R-module H-space. Let F be a commutative ring with a unit such
that H* (X ,F) is a commutative Hopf algebra. Then X is an E*-R-module
H-space, urllere E* (X ) = 
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3. Xn as an hMn(R) module H-space.

This section is devoted to the proof of Theorem 1.2. Namely, we show
that if X is an R-module H-space and E* is a homology theory such
that E* (X) is a commutative Hopf algebra, then the map 0 defined in
the Introduction turns X" into an E*-Mn (R)-module H-space. For the
convenience of the reader we restate the theorem as

THEOREM 3.1. Let X be an R module H-space and let E* be a

homology theory such that E,,(X) is a commutative Hopf algebra. Then
the pairing

with k-th component given by

makes X n into an E,,-M,,(R) -module H-space.
Let a : R - (X, X) H be the ring homomorphism defining X as an

R-module H-space. If r E R is any element, denote a (r) by r to simplify the
notation. Let Mn (R) be the ring of n x n matrices over R, where product
is given by matrix multiplication.

As before, we start by considering the homotopy commutative case.
If X is homotopy commutative, then the same holds for X’~ for every integer
n &#x3E; 0. Hence to prove the theorem in this case it suffices show that X n

is an Hn (R)-module H-space, i. e. to produce a ring homomorphism

The map Øn defined above certainly induces a map of sets

Thus we must show that Øn in fact takes values in and that it

preserves the ring structure on Mn (R) .
First notice that [xn, Xn] is canonically isomorphic as an abelian

group to and that a self map of X n is an H-map if and only
if its projection to each factor is an H-map. In the group there

are the homotopy classes of the projections pj : the j-th
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coordinate, which we shall denote by It is then easy to observe that

for A = Mn (R) , the class the self map of X n given by Øn (A) is

represented on the k-th coordinate by

where the sum is induced by the H-space structure on X. Since X is

homotopy commutative, a sum of H-maps is again an H-map. This shows
that Øn takes values in 

To see that Øn preserves the product structure, let A, B E Mn (R) be
given by (ail ) and respectively and let C = AB. Then the entries 
of C satisfy the equation

Thus

On the other hand, one easily verifies that

Since X is homotopy commutative, the maps r can be represented
by genuine H-maps. Since composition with H-maps is distributive

over addition in the H-space structure up to homotopy, and any two
permutations on the order of addition give homotopic maps, the two maps
above are homotopic, proving that Øn preserves the product structure
in Mn (R) .

The argument that ad 4J* preserves the additive structure is analogous
and will be omitted. This completes the proof of the theorem in the

homotopy commutative case.

Now assume that Y an H-space, which is not necessarily homotopy
commutative. Let E* be a homology theory such that E* (Y) is a
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commutative Hopf algebra. Then the obvious multiplicative map [Y, Y] H -
factors uniquely through a ring homomorphism

Thus in order to prove the theorem in this case, we only need to observe
that if X is an R-module H-space then X n is an Mn (R)-module H-space,
namely, that there is a ring homomorphism from Mn (R) to (X, X ) H .

Again, the structure map a : R - (X, X ) H can be lifted to

Map(X, X). For each r E R we fix some self map of X representing a(r).
These maps can be used to define a pairing

This pairing in turn defines a function

and we must show that it induces the required ring homomorphism.

First consider the elementary matrices Ei,3 (r), with r E R in the
(i, j)-th entry and 0 everywhere else. By construction, for each r E R the
map pr can be thought of as a sum of self H-maps of X. Thus for each
r E R, the class can be represented by the composite

where p~ denotes the projection to the j-th coordinate and inci inclusion to
the i-th coordinate. Since each map in this composite is either an H-map
or a sum of H-maps, §n (E,,j (r) ) is an element in the subgroup [xn, 
Since every A E Mn (R) is a sum of such matrices, one has that Øn (A) is an
element in This shows that

is well defined as a map of sets.

Finally, notice that the ring operations are clearly preserved by øn.
This is obvious for composition and follows at once from the definitions for
addition. This completes the proof of the theorem in the general case.
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4. Splitting X’2 after one suspension.

Let X be an E*-R-module H-space. Then for every n, the Hopf
algebra is a module over the ring Mn (R). If F is commutative ring
with a unit and E* (X ) is a free F module in each degree ( e.g. if F is a field),
then the Mn (R) action can be extended to an action of the semigroup
ring on E* (Xn), now considered as an F module rather than a
Hopf algebra. Furthermore, if F = Z/rZ, r &#x3E; 0, and a single suspension is
allowed, then the action of F [Mn (R) on E* (X n ) can be realized by maps of
spaces, where the suspension coordinate is used to add maps. The following
is a restatement of Theorem 1.3.

THEOREM 4.1. - Let X be an E*-R-module H-space and assume
that E* (X ) is a free IF = Z/rZ in each degree for some r &#x3E; 0. Then

any decomposition of the identity element in F[Mn(R)] by orthogonal
idempotents, 1 = ez gives rise to a splitting

where LE denotes the Bousfield localization functor with respect to the

homology theory E*. Moreover, this splitting is natural with respect to

maps of H-spaces.

Proof. The technique of the proof is completely standard and has
been used in the literature. Let 1 = i= k c- be an orthogonal idempotent
decomposition of 1 in Each element ei induces a self map Ei

using the suspension coordinate for addition. Define to

be the mapping telescope of Ei. Then one has

Since the idempotents ei are orthogonal, the map

induces an isomorphism

and hence a homotopy equivalence after localization with respect to E*.
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Let X and Y be R-module H-spaces. If f : X - Y is a map of
R-module H-spaces and A E Mn (R), then showing that f n o 

CPn(A) o f n involves a simple diagram chasing using only the assumption
that f is an H-map. Here f n : Yn means the n-fold product of f.
Thus it follows at once that the splitting described in the theorem is natural
with respect to maps of R-module H-spaces. 0

4.1. Example : The splitting in corresponding to idem-
potents. - Fix a prime p and restrict attention to GLn(Fp) C Mn(Fp).
Recall that the kernel of the reduction is a p-

group and hence the kernel of the induced (surjective) map of group rings
is a nilpotent ideal [4]. Thus one can lift

an orthogonal idempotent decomposition

to a corresponding orthogonal decomposition

Let H* (-) denote ordinary mod-p homology theory. Let X be an H*-
Zp module H-space. Then is a module. In particular
if for some r &#x3E; 0 the p’ power map on X induces the zero map on

mod-p homology then the action of on factors through
an action of GLn(Z/prz). Hence is a module over the group

ring 

Now, let 1 in be an orthogonal idempotent
decomposition of the identity. By the discussion above, this decomposition
lifts to a decomposition of the identity in by orthogonal
idempotents 1 - ~ ei . Each idempotent ei can be thought of as an

endomorphism of H,,(X’). Then for each i, choosing an arbitrary lift of

each ei to Z[GLn (Zp)] defines an element of the group EX’] which
induces the same map on as ei . Proceeding as in Theorem 4.1, we
obtain Theorem 1.4, which we restate here as

THEOREM 4.2. - Let X be an H,,-Zp module H-space such that for
some r &#x3E; 0 the p’ power map induces the zero map on Then

any decomposition of the identity element in by orthogonal
idempotents, 1 ei, gives rise to a splitting

Moreover this splitting is natural with respect to maps of H-spaces.
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5. Examples.

This section is dedicated to a few examples arising from the general
linear group We do not attempt to analyze the resulting spaces in
any depth, but rather to demonstrate some of their homological properties.
An important and unusual feature of this example is that the group

epimorphism GL2(Z) -~ GL2(F2) induced by the natural pro j ection Z - IF2
admits a section. Thus the corresponding splittings which arise exist for
any E*-R-module H-space.

One of our aims in this section will be to compute Poincare series for
the homology of the factors obtained in our splittings. We start by an easy
generalization of a well known theorem, due to Molien, on invariants of
finite groups on symmetric algebras. This will be useful in the calculations
we present later. The examples we look at arise by taking X = 02 s3 ,
SO(4) and the Lie group G2. One feature of all these examples is that the
Hopf algebras under consideration are primitively generated, which makes
calculations much easier than in the general case.

5.1. Molien’s theorem. Let G be a finite group. Let V be a graded
where is a field of characteristic 0. The G-action is of course

required to preserve degrees. Let S[V] denote the symmetric algebra of V.
Thus S[V] is a tensor product of a polynomial algebra on even dimensional
generators and an exterior algebra on odd dimensional generators. Then

S[V] inherits a natural G-action. The classical Molien theorem gives the
Poincare series for the ring of invariants in the case V is concentrated

in a single even degree. A more general version of the theorem appears in

[1]. The case discussed there is where V = W (D dW, with W in a single
even degree and dW in degree deg(W) - 1. Here we observe that Benson’s
generalization in fact applies to the case of a general symmetric algebra
S[V] on a G-module V. The proof is included for the convenience of the
reader but we make no claim for originality here.

THEOREM 5.1. - Let G be a finite group and let k be a field of

characteristic 0. Let Vi, i = 1 ... n be with Vi concentrated in

degree di. Let V denote the direct sum of the Vi. Then
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Proof. Let 7r = L9ECg. Then 7r projects onto 

Thus the dimension of equal to the trace of the matrix

representing 7r on S[V]j. As the trace is an additive function we have

The rest of the proof consists of evaluation the sum on the right hand side
of this equation. Notice that

For an element g E G, the trace of the matrix of g on the tensor product is
the product of the traces on the factors. Thus

and we have

The theorem now follows from Lemma 5.2 below. D

The proof of the following lemma is contained in [1] in sufficient detail
and we omit it.

LEMMA 5.2. - Suppose V is concentrated in degree d. Then

d even,

d odd.

5.2. Orthogonal idempotent splitting - We proceed
by considering examples arising from an orthogonal idempotent decomposi-
tion of the identity in Such a decomposition is easy to obtain
in this case, and we start by recording it.
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Consider the elements

elements
and u = ~ o i ~ . Then the

are easily verified to be primitive orthogonal idempotents in F2[GL2(F2)].
If X is an H-space and E* a homology theory such that E* (X )

is a commutative Hopf algebra, then X is an E*-Z module H space.
Hence X 2 is an H-space, and so E* (X 2 ) is a module

over the group ring Z[GL2(Z)]. Using the right inverse of the projection
GL2(Z) - GL2(IF2) one has that E* (X 2 ) is in fact a module over the

group ring Z[GL2 (F2)] . Now if E,,(X) takes values in mod-2 vector spaces
then E* (X 2 ) is a module over F2[GL2(F2)], and the above decomposition of
the identity in F2 [GL2 (F2 )] gives rise to a decomposition of LE (~ (X x X))
into three wedge summands, which we shall denote ei (X) and

respectively.

Notice that up to the obvious dimension shift is given
precisely by the invariants of the action of the unique cyclic subgroup of
order 3 in GL2(IF2) on E* (X x X). Notice also that conjugation by 
carries el to e~. Thus the eigenspaces of el and e~ in E* (X x X) are
isomorphic as vector spaces.

In the calculations below E* will always be taken to be mod-2
homology. Thus let H* ( - ) denote H* ( -, IF2 ) .

5.3. Example 1 : X = 02~3 X. - A large class of examples propagates
from looking at products of spaces of the form for any space X (not
necessarily connected). Fix p = 2. Then H* ((SZ2~3X)2) is a primitively
generated Hopf algebra, which as an algebra is a polynomial algebra on
infinitely many pairs of generators corresponding to Dyer-Lashof operations
on classes coming from the homology of X. The simplest example of this
kind arises by considering X = ,S’° . Thus

where degrees are given by subscripts is of course the element
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Let An = 1, 2, ... , n~ . Then A is the colimit of

the An’s. In order to be able to use the generalized Molien formula to
compute the Poincare series of the splitting, we need to lift a to an integral
(or 2-adic) matrix. Indeed, observe that 6 = ( l - i ) reduces to a and is an
element of order 3. Let Pn (t) denote the Poincare series for the invariants
in An under the action of â. By Theorem 5.1

Notice that if x is in the submodule of A given by the homology of
V then x is not an invariant. Thus the submodule of invariants

is in fact a submodule of H* (SZ2 S’3 A 02S3). Obviously the Poincaré series
for eo ( (SZ2 S3 ) 2 ) is the limit of the functions Pn as n goes to infinity.
The Poincare series for the remaining pieces can now easily be computed
from the formula above and the known Poincare series for the homology
of x and V SZ2 S’3 . The expression is rather complicated
and we omit it.

5.4. Example 2: X = SO(4), the special orthogonal group. - Slightly
more delicate is the following example.

Let X = SO (4) . Then X is not a homotopy commutative H-space,
however its mod-2 homology is a commutative Hopf algebra. Thus by the
discussion above H* (X 2 ) has the structure of an F2[GL2(F2)] module and
the corresponding splitting is obtained after a single suspension.

We recall that

where and for i &#x3E; 0. Notice

that working with cohomology rather than homology here does not make
a difference, since the action on homology can be obtained by taking the
Hom dual.

The action of a E GL2 (IF 2) is given by s - u - s + u. Similarly
t - v - t -f- v since B is primitively generated. Now by direct calculation

(checked with Magma) we find the invariants eoB = 81°1 , the invariants
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are generated by

where the subscripts on generators correspond to the dimensions. Algebra
relations are determined by those of B and are straightforward. A vector
space basis for B (7) with Steenrod operations is given by Diagram (1)
below. All higher Steenrod operations are zero. Similarly e 1 R is given by
Diagram (2), where

5.5. Example 3: X = G2, the exceptional Lie group. - This example
is algebraically similar to that of SO (4) . Topologically however, they are
quite different. With mod-2 coefficients we have

where and

Since H* (X) is primitively generated, Theorem 4.1 again applies. We
have chosen the same symbols for generators as in Example 2. As ungraded
rings the B and C are isomorphic and the Z/3 action is identical. Thus we
find generators for eo C = C1°1 given by

A basis for eo C has the same form as that in Example 2 with the elements
in different degrees; it is given by Diagram (3) below. We do not list

the Steenrod operations as they are much more elaborate than those in
Example 2.

Similarly, e1 C has exactly the same form as that of Example 2.
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