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LINEARIZATION OF POISSON ACTIONS
AND SINGULAR VALUES OF MATRIX PRODUCTS

by A. ALEKSEEV, E. MEINRENKEN
AND C. WOODWARD

1.Introduction.

Poisson-Lie groups were introduced by Drinfeld [5] as semiclassical
analogs of quantum groups. By definition, a Poisson-Lie group is a Lie

group endowed with a Poisson structure such that group multiplication is
a Poisson map. An important role in applications (for example [19], [12],
[7], [4]) is played by the notion of a moment map for a Poisson action of
a Poisson-Lie group, due to J.-H. Lu [17]. In contrast to ordinary moment
maps taking values in the dual of the Lie algebra, moment maps in the
sense of Lu take values in the dual Poisson-Lie group.

Compact Lie groups K carry a distinguished non-trivial Lie-Poisson
structure known as the Lu-Weinstein [20] Poisson structure. For this

case, the first author showed [1] that the categories of symplectic K-
manifolds with moment maps in the dual group K*, respectively dual of
the Lie algebra t* are equivalent. That is, for every Poisson K-action on
a symplectic manifold (M,f2) with K*-valued moment map ~, there is a
different symplectic form w for which the action is Hamiltonian in the usual
sense, with a t*-valued moment map Poisson reductions of (M, Q, W)

Keywords: Moment maps - Poisson-Lie groups - Singular values.
Math. classification: 53D20 - 15A18.
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are isomorphic to reductions of its linearization (M, w, 4J) as (stratified)
symplectic spaces.

The categories of symplectic K-manifolds with ~*- and K*-valued
moment maps have natural structures of tensor categories: There are

operations of products, sums and conjugation satisfying the usual axioms.
The first main result of this paper is that the linearization functor preserves
these operations up to symplectomorphism. The proof is based on a simple
Moser isotopy argument. As an application, we prove the Thompson
conjecture on singular values of products of complex matrices, which
was first established in a recent paper by Klyachko [15], and also the
corresponding statement for real matrices (Theorem 4.2). Independently, a
completely different proof of these results was obtained by Kapovich-Leeb-
Millson [13].

The second main result is a formula comparing the Liouville volume
forms defined by w and Q. This formula involves the modular function for
K* and a Duflo factor. As a corollary, we obtain a hyperbolic version of the
Duflo isomorphism. That is, a certain linear map between spaces of com-

pactly supported distributions on t and K* becomes a ring homomorphism
(with respect to convolution) if restricted to K-invariants. As pointed out
by the referee, this fact was proved in a more general setting by Rouviere

[22, Theorem 7.4].

2. Moment maps for Poisson actions.

In this section we recall the theory of moment maps for Poisson
actions of compact Poisson-Lie groups on symplectic manifolds developed
by Lu [17].

2.1. Poisson-Lie groups.

Recall that a Poisson-Lie group is a Lie group K together with a
Poisson bivector 7r K such that group multiplication is a Poisson map.
This condition implies that the inversion map K - K, k - k-l is anti-

Poisson. The Poisson bivector 7rK vanishes at the group unit of K, and its
linearization 8: t ---+ t 0 t is a 1-cocycle on t. The dual map 6* defines
a Lie algebra structure on t*. The connected, simply-connected Lie group
K* with Lie algebra t* is called the Poisson dual of K. It is a Poisson-Lie

group, with Poisson bracket induced by the Lie algebra structure on t.
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Let the vector space g == £ EB t* be equipped with the symmetric
bilinear form ( ~ , ~ ) for which t and t* are isotropic and which extends the
natural pairing between elements in t and ~* . According to [20, Theorem
1.12~ there is a unique Lie algebra structure on g = ~ 0 ~ for which t and
~* are subalgebras and the pairing (-, -) is g-invariant.

A Lie group G with Lie algebra p is called a dou ble for the Poisson-
Lie group K if the subalgebras t, t* - g exponentiate to closed subgroups
K, K* - G, and the multiplication map K* x K - G, (l, I~) H lk is a
diffeomorphism. In this case, the left-action of G on itself induces an action
on K* - G/K. Its restriction K x K* - K*, (1~, l) F__* 1 kis called the

dressing action of K on K*. Similarly, the right-action of G restricts to the
dressing action K* x K - K, (l, k) H l~l on K = K* BG. The two actions
are related by

The classification of Poisson-Lie structures on compact, connected Lie

groups K was carried out by Levendorskii and Soibelman [16]. Besides the
trivial structure, there is a distinguished example called the Lu-Weinstein
structure. Let g = tC, viewed as a real Lie algebra, and 
Iwasawa decomposition.

For any invariant inner product B on t, with complexification Bc,
the bilinear form

defines a non-degenerate pairing between t and a E) n, identifying t* ~ a ED n.
The induced Lie algebra structure on t* defines the Lu-Weinstein Poisson
structure on K, with Poisson dual K* = AN and double G = Kc = KAN.

2.2. Poisson actions.

Let (K, be a connected Poisson-Lie group, with Poisson-dual K*,
and suppose K admits a double G = K*K. Denote by 8R E 
the left- and right-invariant Maurer-Cartan forms. [17, Corollary 3.6] states
that for every Poisson map T : M ~ K* from a Poisson manifold (M, 7r)
to K*, the formula

defines a Lie algebra action of t on M, i.e. If

this action integrates to a K-action, with generating vector fields 
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d exp (-tç).m equal to çM(m), then the the triple (M, 7r, w) is called
a Hamiltonian K-space with K*-valued moment map W.

It follows from the moment map condition (2) that the action map
K x M --~ M is Poisson [17, Corollary 3.6] and that the moment map is
K-equivariant [17, Theorem 3.6]. For 0 this reduces to the usual

definition of a Hamiltonian K-space with t*-valued moment map. In the

special case where 7rK is the inverse of a symplectic structure Q E SZ2 (M), I
the moment map condition is equivalent to

There are sum, product, and conjugation operations for Hamiltonian
K-manifolds with K*-valued moment maps, as follows. Sum is given by
disjoint union. The product of two Hamiltonian K-manifolds with K*-
valued moment maps and ( M2 , r2 , w 2 ) is given by

Indeed, by Flaschka-Ratiu [8, Lemma 22.3] the infinitesimal action gener-
ated by the Poisson map WI W 2 exponentiates to the following K-action on
Ml x M2:

The twist product is associative. It defines a tensor category structure on
Hamiltonian K-manifolds, with morphisms given by equivariant Poisson
isomorphisms preserving the moment map.

LEMMA 2.1. For any Hamiltonian K-manifolds with K*-valued

moment map (M, 7r, w) the formula

defines a Poisson action on (M, -7r) with moment map Q-1. We call

(M, -7r, ~-1) the conjugate of (M, 7r, ~).
Proof - First, we check that (4) defines an action. Let KL, KR be

two copies of K acting on G by (k, g) H  kg and (k, g) ~ respectively.
Consider G as a KL-equivariant principal KR-bundle over K* - G/KR,
and let B!I*G denote the pull-back to M. The action of KL on B!I*G is free,
and has
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as a cross-section. Using t identify Bl1* G j K L = M. We claim that the
induced action of KR on M is the twisted K-action. Given m E M we

compute

The action of takes this back to ~(M), which proves the claim.

Since the inversion map on K* is anti-Poisson, is a Poisson map
for the reversed Poisson structure -7r on M. We check that it is a moment

map for the twisted action. Let pre: 9 2013~ denote projection along t*.
Using the moment map condition for ~,

which are the generating vector fields for the twisted action. D

Symplectic reduction extends to the setting of Hamiltonian Poisson
actions with K* -valued moment maps. Suppose M is symplectic structure
and that the action is proper. For any l E K*, define

where Kl is the orbit of l under the dressing action of K on K*. Then Ml is
a symplectic manifold, if the action of K on is free [17, Theorem
4.12].

2.3. Anti-Poisson involutions.

Recall the definition of compatible involutions from O’Shea-Sjamaar
[21]. Let K be a connected Lie group, together with an involutive auto-
morphism a K. Let at denote the corresponding Lie algebra involution, and
define an involution on t* 

An involution am M -~ M of a symplectic manifold (M, o) is called
anti-symplectic if a* w -cJ. If M carries a Hamiltonian K-action, with
moment map -1, : M ~ t*, then ~M is called compatible with aK if
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As explained in [21], since K is connected this implies

If M C t* is a coadjoint orbit with the Kirillov-Kostant-Souriau symplectic
structure, such that M is invariant under the involution at* 1M
is compatible with a K.

Suppose I~ is compact. Choose a Cartan subalgebra t of t such that
ta n f has maximal dimension. Let t+ C t* be a positive Weyl chamber.
The following theorem of O’Shea-Sjamaar describes the image of the fixed
point manifold M°~ under the moment map. The special case where K is a
torus and = k-1 is due to Duistermaat [6].

THEOREM 2.2 (O’Shea-Sjamaar) . Let be a connected

symplectic Hamiltonian K-manifold with proper t*-valued moment map,
and let ~M be a OK-compatible anti-symplectic involution on M. Suppose
the fixed point set Ma is non-empty. Then

A theorem of Kirwan says that if M is compact and connected,
0(M) _ n t+ is a convex polytope. By Theorem 2.2, O(M° ) n t+ is
also a polytope, obtained from the Kirwan polytope by intersecting with
the subspace (~* ) ~ .

We generalize these definitions to Poisson actions and K*-valued
moment maps as follows. Let K be a connected Poisson-Lie group, together
with an anti-Poisson involutive automorphism Then at. is a Lie algebra
automorphism, and therefore exponentiates to a Lie group automorphism

on the Poisson dual K*. For any Hamiltonian Poisson K-manifold

(M, 7r, ~) we say that an anti-Poisson involution ~M of M is compatible
with ~K if

Since K is connected, this implies Indeed, for
anti-Poisson involutions am and the composition is Pois-

son, and is the moment map for the action, (k, m) 1--* 
Condition (5) implies that these are the original moment map and action.
Examples of Hamiltonian K-spaces with compatible involution are 
invariant dressing orbits M for the action of K on K*, with M = 



1697

If ~M is a compatible involution of (M, 7r, then it is also a compatible
involution of the conjugate (M, -7r, IF-’). Similarly, if (j = 1, 2) are
compatible involutions of (Mj, 7rj, Qj), then x is a compatible
involution of their product.

The fixed point set M’ carries an action of the group Ka. For

l E (K*)’ we denote by Ml the quotient

2.4. Examples of anti-Poisson involutions.

Anti-Poisson involutions of general Poisson Lie groups are studied
by Hilgert-Neeb in [12, Section 3]. We will consider the special case of a
compact, connected Lie group K, equipped with the Lu-Weinstein Poisson
structure corresponding to an invariant inner product B on t. Let ~g be
a complex anti-linear involutive automorphism preserving t and
t* = a (D n, and aG the corresponding involution of G = Since ~g is

anti-linear, it preserves a = zit n t*. In particular, ~g permutes the root

spaces, hence preserves n.

LEMMA 2.3. - Suppose the restriction at of o-g is an isometry.
Then the exponentiated automorphism aK of K is an anti-Poisson involu-
tion.

We remark that if t is simple then any involution preserves the Killing
form, hence defines an isometry of ~.

Proof. Since at preserves B, the anti-linear map takes Bc to its
complex conjugate and so changes the sign of ( , ) = 2Im(BC). It follows
that the involutions at - and at. = are related by 
Therefore changes the sign of the cocycle 6 dual to the bracket on t*. D

Recall [10, p. 322] that for t semisimple with a given choice of

Chevalley basis, any automorphism cp of the root system of t defines an

automorphism ( of t. Let K : g ~ g be the Cartan involution given by
complex conjugation for g = Then at == "" 0 (C : g - g is an anti-linear
involution preserving t, ~*, if and only if cp takes the positive roots to the
negative roots.
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LEMMA 2.4. - Any anti-linear involutive automorphism ag of g = tc
preserving the Iwasawa decomposition g = t (D a E9 n is of the form

or = ~g o Adt, where p is a root system automorphism taking positive
roots to negative roots, and t E T is such that ~G (t)t is in the center of G.

Proof. - Since preserves the sum n of positive root spaces, the
complex linear automorphism K o takes positive root spaces to negative
roots spaces. It therefore induces a root system automorphism cp taking
positive roots to negative roots. The composition at o ~g is a complex
linear involutive automorphism acting trivially on t, and therefore equal
to Adt for some t C T [10, Prop. 2.5, p. 334]. Since c~g = at o Adt is an
involution, (at o Adt)2 = is the identity. E:l

Any automorphism of the Dynkin diagram gives rise to an automor-
phism cp of the root system taking the positive roots to negative roots,
by composing with the automorphism a - -a. Consider for example the
case G = Sl(r, C) with r &#x3E; 3. The trivial automorphism of the Dynkin dia-

gram induces complex conjugation on G, while the unique non-trivial

automorphism induces

where P is the anti-diagonal matrix P’3 = Note that the matrix

P is U(r)-conjugate to if r = 2k, and to -Ik if r = 21~ -f-1.

Therefore, the restriction of aG to K = ,S’U(r) has fixed point group
isomorphic to S(U(k) x U(k)) if r = 2k, resp. S(U(k + 1) x U(k)) if

2k + 1.

3. Linearization.

In this section we recall the notion of linearization for Lu-Weinstein

moment maps, and then prove that linearization commutes with product
and conjugation up to symplectomorphism. From now on, I~ denotes a
compact, connected, Lie group with Lu-Weinstein Poisson-Lie structure,
K* = AN denotes its Poisson dual, and G = KC = KAN the double.

3.1. Linearization theorem.

In [1] the first author constructed a 1-1 correspondence between
Hamiltonian K-manifolds with t*-valued moment maps and with K*-

valued moment maps. To set up this correspondence one first needs an
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equivariant map from t* to K*. Let /-, : g - g be the Cartan involution

given by complex conjugation of g - tC, and let t : g - g be the anti-

involution

We also denote by t the induced anti-involution of G, considered as a real
group. For K = U(r) and G = Gl(r,C), gt = gt. Let B# : ~* ~ ~ be the
isomorphism given by B. For any p E t*, the element g = exp (p) ) E G
admits a unique decomposition g = ll t , for some l C K*. It follows from
the Iwasawa decomposition that the map

is a diffeomorphism. It is K-equivariant with respect to the coadjoint action
on t* and the left dressing action on K*.

Next, we define a certain 1-form on t*. Recall that 8L E 01 (K*) (g) t*
is the left-invariant Maurer-Cartan form, and let OtL be its image under
the map t : t* C g ~ g. Then E 02(K*) is imaginary-valued,
and we can define a real-valued 1-form on t* by

where H : f~(~*) -~ SZ*-1 (~* ) is the standard homotopy operator for the
de Rham differential.

PROPOSITION 3.1. - The 1-form 0 has the following property:

A proof of this proposition will be given in the appendix. Suppose now
that (M, Q, ~) is a Hamiltonian K-space with K*-valued moment map. Let

As an immediate consequence of proposition 3.1, the moment map condi-
tion (3) for is equivalent to the moment map condition ~) = 
for the closed 2-form o.

THEOREM 3.2 (Linearization theorem ~1~ ) . - Suppose M is a K-
manifold. Let be two-forms and
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maps related by (10). Then (M, Q, w) is a Hamiltonian K-space with K*-
valued moment map if and only if (M, W, Q) is a Hamiltonian K-space with
t*-valued moment map.

We call (M, w, the linearization of (M, 0, T). For example, lin-

earization of a dressing orbit D C K* gives the corresponding co-adjoint
orbit 0 == E-1 (D) C t*. Note also that since the pull-backs of 0 and w to
any level _ ~ -1 ( L ) agree, for p = E ( l ) , there is a canonical
isomorphism of symplectic quotients

of (M, c,v, 4» at p and of (M, Q, T) at l.

Remark 3.3. - A different linearization of a Hamiltonian Poisson

K-space (M, S2, w) may be constructed from a Poisson diffeomorphism
E’ : t* - K* given by P. Boalch in [4]. The triple (M, Q, E’ o T) is

then an ordinary Hamiltonian K-space, but for a different K-action.

3.2. Moser isotopy lemma.

We will need the following variation of Moser’s argument.

LEMMA 3.4. - Let be a family of compact Hamiltonian
C ~0, l~ . For £ E t let çÂ1 denote the Hamiltonian vector

field for (M, c,~s, ~s ) . Suppose w’ and 4&#x3E;S depend smoothly on s and that
there exists a smooth family of 1-forms as such that

where the dot stands for Assume that for all elements ~ E ~K,

Then there is a smooth isotopy 01 : M - M which intertwines the
K-actions for the parameters 0, s and which satisfies

Given a family of anti-symplectic involutions aM of (M, w’, 4Ds), such that
each as is aM-anti-invariant, one can arrange that 0’ o oo - 0 cjJS.
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Proof. For each s E ~0,1~ let js : M - M := [0,1] x M be the
inclusion is(.) = (s, m). Equip M with the K-action such that the maps
is are equivariant, with respect to the K-action on M defined by Ds.

Define 4D E Coo (M) 0 t* by (js)*4) = 4Ds, and let

where pull-back to under ’ and vanish on ts. Then (11) is

equivalent to

and (12) is equivalent to the moment map condition

These two equations also hold for the average of i5 under the K-action.
Since

the averaging process changes only a, but not We may therefore assume

that i5 is K-invariant.

Let X be the unique vector field on M such that = 0 and

¿(X)ds == 1. It is K-invariant, preserves cD, and its flow ~S takes the slice
at 0 to that at s. Let 0’ be the isotopy of M defined by ~S = j~ 
Then (0s)*cD = cD implies = 

Similarly, for ~ E ~K we have

This shows (S ) * (, ) - (4l, ) , or equivalently (s ) * (4)’, ç) == (4)0,  . K-
equivariance of the flow 0’ implies that ( intertwines the K-actions on
M for the parameters 0, s. Since the moment maps are determined up to a
constant in (t*)K, this proves = 

In the presence of a family of anti-symplectic involutions with

(aM) * as = the 2-form i5 changes sign under the corresponding involu-
tion aM of M. The vector field X, and therefore its flow, are (Ta-invariant.
Equivalently, os o o7o = o ØS. D
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3.3. Linearization commutes with products and conjugation.

THEOREM 3.5. - Let be two compact Hamiltonian K-

spaces with K* -valued moment maps and (Mj, their linearizations.

Consider the products

The Hamiltonian K-space (M, is equivariantly symplectomorphic to
the linearization of (M, 0, T). That is, there exists a diffeomorphism 0 of
M which takes the diagonal K-action to the twisted diagonal action, and
satisfies

In particular, this implies that Ml x M2 is isomorphic as a Hamilto-
nian Poisson manifold to M2 x Ml , which is not at all obvious from the
definition. It would be interesting to know whether the category of Hamil-
tonian Poisson manifolds admits the structure of a braided tensor category.

Proof. Recall that the definition of a K*-valued moment map

depends on the inner product B on ~. For any s &#x3E; 0 consider the rescaled

inner product BS == and let (~ : t* - t* , p - sp. Replacing B with
BS replaces the map E by Es = ((’)*E and the form 0 by j3s = s-’((s)*13.
We obtain a family (Mj, of Hamiltonian K-spaces with K*-valued
moment map (relative to with

Taking the linearizations of their products

we obtain a family of Hamiltonian K-spaces (M, w’, -4~’) where

Consider the limit s E 0. The family of moment maps extends smoothly
to s = 0 by (Do = 4b. Since the family of 1-forms ,~s extends smoothly to
s = 0 by /3° = 0, ws extends smoothly to s = 0 by w° = w. We thus have a
family of compact Hamiltonian K-spaces, (M, wS, I&#x3E;S), s E [0,1] connecting
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(M, cJ, ~) with the linearization of (M, Q, The proof is completed by an
application of Lemma 3.4, with

To check the condition (12) for ~ E tK, we note that the first term vanishes
in our case since ç) is independent of s. Since ¿(ÇM)( tPS)*d/3 == 0, also
ÇM is independent of s, and therefore

The following corollary of Theorem 3.5 is important for the proof of
the Thompson conjecture in the next section.

COROLLARY 3.6. - Under conditions of Theorem 3.5 the reduced

spaces x M2), at 1 C K* and of (Ml x M2), at p - are

symplectomorphic.

THEOREM 3.7 (Linearization commutes with conjugation). Let
(M, Q, ~) be a compact Hamiltonian K-manifold with K* -valued moment
map, and (M, cJ, ~) its linearization. Consider the conjugates

There exists an equivariant symplectomorphism between (M, cD, ~) and the
linearization of (M, f2, x~). That is, there exists a diffeomorphism 0 of M,
which intertwines the twisted action with the original K-action on M, and
satisfies

Proof. We proceed as in the proof of Theorem 3.2. Replacing B
with BS we obtain a family (M, OS, B!IS) of Hamiltonian K-manifolds with
K*-valued moment maps (relative to BS ) with
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Conjugating and linearizing we obtain a family (M, ~s) of Hamiltonian
K-manifolds with

and

These families extend smoothly to s = 0 by = -LV and ~° - -~, and
connect the linearization of (M, f2, BÎ1) with the space (M, i5, ~). Therefore,
the claim again follows from Lemma 3.4. D

3.4 Linearization and anti-symplectic involutions.

Suppose ~K is an involution of K of the type described in Section
2.4. That is, the corresponding Lie algebra involution at is an isometry
with respect to B, and extends to a C-anti-linear involution ~g preserving
t*. Letting aK* be the induced involution of K*, we have

by the calculation,

The 1-form (3 defined in (8) changes its sign,

Suppose now that (M, Q, T) is a Hamiltonian K-space with K*-
valued moment map, and (M, its linearization. Equations (15) and
(16) show that an involution aM of M is anti-symplectic for Q and aK-
compatible with T if and only if it is anti-symplectic for w and aK-

compatible for 1&#x3E;. For p E (£*)a, l = (K*)’ one has a
homeomorphism of quotients,

Using the last part of Lemma 3.4 one obtains the following extensions of
Theorem 3.5, 3.2. In Theorem 3.5, given aK-compatible anti-symplectic
involutions the diffeomorphism 0 can be chosen to be ~M =

aM2 )-equivariant, and assuming p E (£*)a, one has a homeomorphism
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Similarly, in Theorem 3.7 the diffeomorphism 0 can be chosen to be
equivariant with respect to a given anti-symplectic involution ~M .

4. The Thompson conjecture
for complex and real matrices.

In this section we apply our results to give a new proof of the
Thompson conjecture on singular values of complex matrices and to extend
this result to real matrices.

4.1. Moduli spaces for additive and multiplicative problems.

Let 01,..., On c t* be given coadjoint orbits, and Dj = E(Oj) C K*
the corresponding dressing orbits. Also let Ci = = KgiK c G denote
the double coset containing Di. Consider the following three moduli spaces:

where in the last line Kn acts as follows:

LEMMA 4.1. - The natural map a homeomorphism.

Proof. Given a solution (gl , ... , gn ) E Cl x ... x Cn with product
fl gj = e, define kj E K recursively as follows: put e, let 1~2 E K be the

unique element with elk2 1 C K*, then let 1~3 C K the unique element with
K*, and so on. Let (ll , ... , ln ) E Gn be the image of (91, ... gn )

by the action of (ki , ... , 1 kin). By construction l j E K* for j  n, and

since the product is e we must have ln E K*. This shows that the map
A4-D -~ À4c is surjective. Starting the recursion with 1~1 = 1~ rather than

e replaces ( ll , ... , ln) by its image under the diagonal dressing action
of k. This shows that the map is a bijection. D

Corollary 3.6 shows that there exists a symplectomorphism between
À4 o and Mv. It follows that the three moduli spaces are all homeomorphic:
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Given a C-antilinear involution ~g of g preserving t, t* and the
inner product B on t, we can similarly consider moduli spaces:

Again we find À4§ , and together with (17) we obtain homeomor-
phisms

4.2. Thompson conjecture.

We now specialize to the case of K = U(r), G = K~ = Gl(r, (C). The
Lie algebra t consists of anti-Hermitian matrices. Identify t* with Hermitian
matrices by the pairing

The orbits OJ C t* consist of Hermitian matrices with prescribed eigen-
values A~,..., Àj. On the other hand, the double coset spaces Cj C G con-
sist of matrices with positive determinant and prescribed singular values

~~ , - - - , (Recall that the singular values of a matrix A are the eigenval-
ues of AAt.) Therefore, the equality of moduli spaces Me has the

following consequence.

THEOREM 4.2. - Let ~~ E be given real numbers, 1 ~ j ~ n, 1 ~
r. The following four conditions are equivalent:

(a) there exist complex matrices A~ With singular values exp (~~ ) and
product Al - - - An = I;

(b) there exist self-adjoint matrices Bj With eigenvalues ~~ and sum
Bl +...-~-Bn = 0;

(c) there exist real matrices A~ with singular values and

product A1 - - - An = I;

(d) there exist real symmetric matrices Bj with eigenvalues ~~ and
sum Bl +... = 0.
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Proof. The equivalence of (a) and (b), first proved by Klyachko in
[15], follows from (18). The equivalence of (c) and (d) follows from (19). The
equivalence of (b) and (d) follows from Theorem 2.2, since a acts trivially
on the Cartan in this case. It was proved independently by Fulton [9]. 0

We note that in a different work Klyachko [14] gave an inequality
description of the set of coadjoint orbits for which the additive problem
admits a solution. This result was generalized to arbitrary compact Lie
groups by Berenstein-Sjamaar [3]. Theorem 4.2 implies the same inequality
description for the multiplicative problem for real matrices.

The more general involutions ~K discussed in Section 2.4 yield
"twisted" versions of the Thompson conjecture. For example, from the
involution (7) we obtain

THEOREM 4.3. - Let P be the anti-diagonal n x n-matrix Pid.
Let be given real numbers.

Then the following two conditions are equivalent:

(a) there exist complex matrices Aj satisfying with

singular values exp (~~ ) and product ~4i - - - An = I; 
- ’

(b) there exist self-adjoint matrices Bj anti-commuting with P, with
eigenvalues Àj and sum B1 ~ ~ ~ ~ ~ Bn = 0.

Inequality descriptions for additive problems involving involutions ~K
are provided by O’Shea-Sjamaar [21].

5. volume forms.

Let (M, Q, T) be a Hamiltonian K-space with K*-valued moment
map. Since the symplectic form is not preserved by the K-action, the

symplectic volume form ( exp 0) [top] is not K-invariant in general. We will
show in this section that one obtains a K-invariant volume form if one

multiplies by the pull-back of a certain multiplicative character of K*.
Similar volume forms were studied by Lu in the context of Bruhat-Poisson
structures on flag manifolds [18]. In the case of dressing orbits, the volumes
agree with the ones considered by Klyachko.
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Let 6 : t ~ A’t be the co-bracket defining the Lu-Weinstein structure
on K*. It is a 1-cocycle for the adjoint representation of t:

using the Schouten bracket on At. The cocycle property (20) of 6 implies
that the operators

define a representation of t on the space Q(M) of differential forms. We
will construct a differential form F on M which is invariant under this t-

representation and such that the top degree part is a volume form.

Since the lower the degree, is then invariant under

the usual K-action.

The definition involves the modular function T : I~* ~ for the

group I~* - AN, i.e. T(g) is the determinant of the adjoint representation
of I~* on t*. One finds

Here p is the half-sum of positive roots, and p4 = B4 (p) E t.

THEOREM 5.1. Let (M, S2, IF) be a K*-valued Hamiltonian K-

space. The differential form F - is invariant under the action of

the operators L~. Hence its top form degree part

is a K-invariant volume form on M.

Proof. The exterior differential of T is given by

This shows = -T and together with =

d(~*6~) yields

To compute t(6(~)m)F, observe first that by the moment map condition,
the contraction of exp (Q) with any bivector field of the form (~l n ~2)M
for çj C t is given by
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The bivector field 6(£) M is a linear combination of such terms. Using the
defining property (pi A 112,6(~)) = ([/~i?/~2]?~) of the cocycle, the first

summand simplifies and we obtain

By the structure equation doR - 2 I OR], the first terms in (21) and (22)
agree. By the following Proposition 5.2 the second terms agree as well. D

PROPOSITION 5.2. Let (M, Q, be a K*-valued Hamiltonian K-

space. For all £ the contractions of SZ with the bivector field 8(Ç)M are
given by the formula

The proof of this proposition is deferred to Appendix B. Now let

j~ 1/2 : t -~ be the unique K-invariant function

for ~ C t, where the product is over positive (real) roots of K. Recall that the
Duflo factor Jl/2 : £ --~ R (square root of the Jacobian of the exponential
map) is given by a similar equation but with sin rather than sinh. We

therefore call ~Ih~2 the hyperbolic Duflo factor. Using the isomorphism
~ ~ we will view ~Ih~2 as a function on ~* .

THEOREM 5.3. - Let (M, 0, be a K*-valued Hamiltonian K-

space, and (M, its linearization. The top form degree parts of r =

(Q) and exp (cv) are related by the hyperbolic Duflo factor:

Proof. Since both sides are K-invariant, it suffices to verify the
identity at points of m E ~-1 (t* ) = Let p = E t* and

g = E A. Then g = E(/~) == exp (i(/2) where ( = t, and we
have

Let U c K* be a slice at p for the coadjoint-action on t*. There is a
splitting
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where t§ (the orthogonal complement of the isotropy algebra) is embedded
via the generating vector fields. Let Y = "(U). By the Guillemin-
Sternberg symplectic cross-section theorem, Y is a symplectic submanifold,
and the eInbedding t§ - TmM given by the generating vector fields defines
an cJ-orthogonal splitting

where the 2-form on t/-’ is given by the Kirillov-Kostant-Souriau formula,

Let ea E n be root vectors for the positive roots a, normalized by
B(ec,,e-,) = 1. Then Re(ea), Im(ea) form a basis of and t-L is the

subspace corresponding to roots with (a, ~) ~ 0. By a short calculation,

The splitting (25) is also Q-orthogonal. The pull-backs SZY and Wy to Y
differ by the pull-back by l&#x3E;ly of the 2-form w = d/3. Since nT mY
is a co-isotropic subspace of and Wy, Qy agree on that subspace, it

follows that the top exterior powers of wy and Qy are equal. Therefore,

Since

this gives

as required. D

Remark 5.4. - The proof has not actually used non-degeneracy of
the 2-forms w resp. Q. Since is a volume form if and only if Q is
non-degenerate, we have re-proved the second half of Theorem 3.2: The
2-form w of the linearization is non-degenerate if and only if the 2-form Q
is non-degenerate.
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6. DH-measures and the hyperbolic Duflo isomorphism.

In this section we identify t --- t* using B# . In particular E : t ---+

K* = AN is the map such that

for ~ E t. We will think of E as some kind of exponential map, and define
a hyperbolic Duflo map

in analogy to the usual Duflo map D = exp * o Jl/2: S’(t) ~ ~~ (K) . (Here
~’ ( ~ ) denotes the space of compactly supported distributions.) Recall that
D is a ring homomorphism if restricted to invariant distributions. Using
Theorem 3.5 we will show that the same holds true for the hyperbolic Duflo
map D h .

For any compact t-valued Hamiltonian K-space (M, c, ), the Duis-
termaat-Heckman measure is the compactly supported distribution on t
given as a push-forward of the Liouville measure

Similarly, for the corresponding K*-valued Hamiltonian K-space (M, 0, ~)
we define a DH-measure

It is an immediate consequence of 5.3 that the two measures are related by

Now suppose (M,, Q3, are two K*-valued Hamiltonian K-spaces,
and their linearizations. Let mj, uj denote the respective
DH-measures, so that mj = Dh(uj). The DH-measures for the product
(Ml x is the convolution on the group K*,

while the DH-measure for

the vector space t,

is a convolution on
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Since products commute with linearizations up to symplectomorphism
(Theorem 3.5), we conclude that m = Dh(u). Thus

for any distributions u2 given as DH-measures of Hamiltonian K-spaces.
In particular, it holds for DH-measures of coadjoint orbits; this is one of
the results of Klyachko [15]. Since linear combinations of delta distribu-
tions are dense in the space E’ (£) of compactly supported distributions,
linear combinations of DH-measures of coadjoint orbits are dense in the
space Fl(t)K of invariant compactly supported distributions, by averaging.
Therefore, (27) holds for arbitrary elements uj E S’ (t)K . This gives,

THEOREM 6.1 [Hyperbolic Duflo theorem~ . - The map

is a ring isomorphism if restricted to K-invariant distributions. That is,
(27) holds for all Ul, u2 E 

As pointed out by the referee, this result was proved in a more general
setting by Rouvière [22] (see in particular Theorem 7.4). Namely, for any
symmetric space S’ = G/K consider the splitting g = t (B ~ into:!: 1

eigenspaces of the involution. Assume there exists an invariant measure
on G/K, and let J5l/2 denote the square root of the Jacobian of the

exponential map eXP5 : S -~ S. Rouvière proved that in a number of cases

(including the case considered here, and also the case G solvable) the map
D5 = (exp5) * o J5l/2 takes convolution of K-invariant distributions on s (of
suitable support) to convolution on S.

If K is the maximal compact subgroup of a semisimple group G with
finite center, the algebras of invariant compactly supported distributions
on ,5’ and on s are known to be isomorphic by theorems of Paley-Wiener
type [11, Chapter]. If g is quadratic, Torossian [23] proves an isomorphism
between the algebras of K-invariant distributions on s supported at 0 and
on ,S’ supported at eK.
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Appendix A. Proof of Proposition 3.1.

In this section we prove the property (9) of the 1-form /3 used in the
linearization construction:

Let

so that T = EEt. It is straightforward to check

(Here and for the rest of this section OL, OR denote the Maurer-Cartan
forms for the group G. This does not conflict with our earlier notation,
since the Maurer-Cartan forms for K* are given simply by pull-back under
the inclusion K* - G.) Hence,

Let us denote the first summand by w1 and the second summand by W2.
The contractions of w2 with generating vector fields ç£* for E C t are
calculated in [2, Lemma 10]

To find the contractions of ~(~)~7i, we use the identity

Since ~C anti-commutes with L(£,* ) , this shows

From the definition of T and of the homotopy operator, one finds that

Hence

Summing with the expression for ¿(ç£* )W2, we obtain (28).
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Appendix B. Proof of Proposition 5.2.

It is convenient to introduce an orthonormal basis ea of t. Let

fa E t* ~ a (D n be the dual basis. We denote the structure constants

of ~ by and those of #* by Thus

using summation convention. (ea)K* denote the dressing vector
fields, and (Ea)R the right-invariant vector fields on K*. Let Sab E 
be defined by

In terms of the right-invariant Maurer-Cartan forms, Sab = Note

that the restriction to any dressing orbit D C I~* is given in terms of the

symplectic form Q on D by In particular, Sab is

anti-symmetric.

Recall that p~ = where p is the half-sum of positive roots,
and write p~ = pbeb.

LEMMA B.1.

Proof. For all u = t* , the number is the trace of the

operator on t* . For /L E n, the operator -ad(J1) is nilpotent and
therefore has zero trace. Suppose /L E a, and let ( = B’ (p) e t. Since the

pairing between a = it and e is given by we have p == (.
On any root space C n C ~* , acts as a scalar

201327rz(o!, ~(} = 7r(a, (), hence has trace 27r(c~,C).
It follows that the trace of is

LEMMA B.2.

Proof. We claim that the statement of the lemma is equivalent to
the equation
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Indeed, using the definition of ,S’ab we have

Since L((6~)6~ = the second term is To compute the
first term, note that the dressing vector fields va, together with minus the
right-invariant vector are the generators for the G-action on
K* = G/K. Therefore, using (29), and Lemma B.1, Val = 
47rpaVa which identifies the first term with 

It remains to show (30). This condition is equivalent to the vanishing
of the second order differential operator AK- - Vb(E b)R + (Ea)RVa on K*,
because

Let p : G - K* - G/K be the projection. Then p* 0 OK* = AG o p* where

is the Casimir operator on G corresponding to the invariant bilinear form

~-, ~). Since AG is Ad(G)-invariant, we can replace the superscript "R" by
a superscript "L".

Hence

where we have used f b = 0. The vector fields (ea ) L generate the right-K
action and therefore vanish on right-K-invariant functions. It follows that

p* o OK* = OG o p* = 0, so that OK* = 0. D

Now let ,S Eb. The cocycle 8 (ç) is given in terms of the
basis by b(~) = 2 ~’ ab~c ea ~ eb.

LEMMA B.3. - For all

Proof. - Using Lemma B.2 we compute

Proposition 5.2 is now a direct consequence of Lemma B.3, together
with the moment map condition.
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