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REDUCIBLE REPRESENTATIONS

OF ABELIAN GROUPS

by Aharon ATZMON

1. Introduction.

Irreducible representations of the groups Z and R in a nuclear Frechet
space are constructed in [3] and [4], respectively. As observed in [4], the
result of C. Read [23] implies that there exists an irreducible representation
of Z in the Banach space On the other hand, it is not known whether

every representation of an abelian group in an infinite dimensional complex
Hilbert space, or reflexive Banach space, is reducible. For the group Z, this
problem is equivalent to the problem of whether every (bounded linear)
invertible operator on such a space has a nontrivial bi-invariant subspace
(i.e., a common nontrivial invariant subspace with its inverse).

Some sufficient conditions for the reducibility of a representation of
an abelian group in a Banach space are given in [3] and [9]. They involve
certain assumptions on the growth and spectrum of the operators in the
range of the representation.

In this paper we prove the reducibility of representations of an abelian
group in a reflexive Banach space, under assumption of different type.
As an application of our main result we obtain a positive solution to the
translation invariant subspace problem for weighted LP spaces on locally
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compact abelian groups, for even weights and 1  p  oo. For the group
Z this was proved in [8], but the proof there does not carry over to the
general case.

In Section 2 we state our main results, and in Section 3 we give their
proofs. Section 4 is devoted to comments, problems and further results.

2. Main results.

In what follows, G denotes an abelian group, X an infinite dimensional
complex Banach space, and T a representation of G in X, that is, a

homomorphism of G into the group of bounded linear invertible operators
on X. We do not assume in general that G is a topological group. We recall
that the representation T is called reducible if the operators T(g), g E G,
have a common nontrivial (closed) invariant subspace.

A conjugate linear mapping J of X into itself will be called an

involution, if ~I2 is the identity operator on X.

Our main result is

THEOREM 1. - Assume that X is reflexive, and that there exists a
continuous involution J on X such that

If there exist nonzero elements u in X and v in the dual space X*, such
that Ju = u and the function on G defined by g - (T(g)u, v) is positive
definite, then T is reducible.

Before describing applications of the theorem, we introduce some
notations and definitions. If f is a complex function on G, and t is in

G, we shall denote by f t the t-translate of f, that is, the function on G
defined by g - f (g - t); the function g - f (-g) will be denoted by f * .

If G is a locally compact topological group with Haar measure dg,
and E is an infinite dimensional complex Banach space of locally integrable
functions on G (with respect to dg), we shall say that E is admissible, if for
every compact subset K of G, there exists a positive constant c(K), such
that
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Remark. - We identify functions in E whose difference vanishes on
a set of zero Haar measure.

We shall say that the Banach space E is translation invariant if for

every f E E and t E G, the function ft is in E, and that E is Hermitian,
if for every f E E, the function f * is in E.

As we shall prove in Section 2, the following is a consequence of

Theorem 1.

THEOREM 2. - Assume that G is a locally compact group, and that
E is an admissible translation invariant Banach space of functions on G,
which is Hermitian and reflexive. If E contains a nonzero bounded Borel

function u with compact support such that u = u*, then it has a nontrivial
translation invariant subspace.

Remarks. - For the group G = Z, the theorem was proved in [8]
under stronger assumptions. The proof there does not carry over the general
case, even for discrete groups.

ZFrom Theorem 2 we obtain an affirmative answer to the translation
invariant subspace problem for weighted LP spaces on locally compact
abelian groups, for even weights and 1  p  oo. To describe this problem,
we need some additional definitions.

Assume that G is a locally compact group. A positive Borel function
w on G will be called a weight, if for every compact subset K of G

and for every t in G

For a weight w and 1  p  oo, we shall denote by the Banach space
of all complex functions f on G, such that fw E LP(G) , equipped with the
induced norm

It is easily verified that L~(G) is an admissible translation invariant Banach
space of functions on G, which contains all continuous functions with

compact support.

The translation invariant subspace problem for weighted LP spaces on
abelian groups asks, whether for every weight w on a locally compact non-
compact abelian group G, the space L~(G) has a nontrivial translation
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invariant subspace. An affirmative answer was given by Domar [13] for

G = His proof uses boundary values of certain analytic functions in the
upper half plane, and does not carry over to general groups, in particular
to the integer group Z. For this group the problem is open for every

1  p  oo; for p = 2, it is equivalent to the hyperinvariant subspace
problem for bilateral weighted shifts on Hilbert space (see [24], Question 23
and [20], Sections 3 and 4).

A rather extensive literature appeared on the translation invariant
subspace problem for weighted LP spaces on abelian groups, and related
aspects of that problem, especially for the group Z and p = 2, and affir-
mative solutions were obtained for weights that satisfy certain regularity
and growth conditions (cf. [1-8], [12-20], [10], [24]). Some comments on the
problem for the group R (the discrete real line) appear in [14].

It is easy to see that the space LE (G) is Hermitian, if and only if,
00. If this holds, we shall say that the weight w is essentially

even.

The following is an immediate consequence of Theorem 2.

THEOREM 3. - If w is an essentially even weight on the locally
compact group G, and 1  p  oo, then has a nontrivial translation

invariant subspace.

3. Proofs.

For the proof of Theorem 1, we need the following

LEMMA. Assume that cp is a positive definite function on G, let
t E G, and s e [-1, 1]. Then the functions f - cp - 2 (~pt + p-t) and
h = p-t) are also positive definite.

Proof. Let V denote the complex vector space of all complex
functions on G with finite support. For every complex function 0 on G,
let denote the sesquilinear form on V defined by

the sum being extended over all p, q in G. Recall that the function 0 is
called positive definite, if the form is positive, that is (a, a) &#x3E; 0 for
every a in V.
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To show that the functions f and h are positive definite, fix a in V.
Using the fact that a sesquilinear positive form on a complex vector space
is Hermitian, we get by a simple computation that

and

Thus noticing that L~ (at, at ) = L~ (a, a), and applying the Schwarz
inequality for positive Hermitian forms, we obtain that

and

which proves the assertion. 0

Proof of Theorem 1. - Consider the set 

It is a closed real vector subspace of X, hence a real Banach space with
respect to the norm of X. It follows from the properties of J that the

mapping x --~ .1 (x + Jx) is a bounded projection from X (regarded as
a real Banach space) on Xo, and X = Xo + iXo. Since X is reflexive,
it follows from this decomposition that Xo is also reflexive, and therefore
by a result of Lindenstrauss [22] (see also [11]), it has an equivalent norm
which is smooth (i.e., is Catehux differentiable in the complement of the
zero vector). Thus we may, and we shall, assume that the norm of Xo is
smooth.

For every g in G, consider the operators

The assumption about the relation between T and J, implies that these
operators commute with J, and therefore they map the space Xo into itself.
It follows from these facts, that if there exists a nontrivial subspace M of
Xo which is invariant under the operators A(g) and B(g) for all g E G,
then M + iM is a nontrivial subspace of X which is invariant under all
the operators T(g) = A(g) + iB(g), g E G, so the assertion of the theorem
holds.

To establish the existence of such a subspace M, consider the set C of
all elements x in Xo, such that the function on G defined by g --~ (T(g)x, v),
is positive definite. It is clear that C is a convex subset of Xo, and since the
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pointwise limit of a sequence of positive definite functions is also positive
definite, it is closed. It is a proper subset of Xo, since if x is an element in
Xo such that (x, v) ~ 0, then either x or -x is not in C, since the value of
a positive definite function at the zero element of the group is nonnegative.

It is an elementary fact that if a closed subset of a Banach space of
dimension greater than one contains a nonzero element, then its boundary
also contains a nonzero element. Thus, since C contains the nonzero vector
u, its boundary also contains a nonzero vector. Therefore, since the distance
of a vector in a reflexive Banach space to a closed convex subset is attained

(cf. [21], p. 340), it follows that there exists an element z of Xo that is not
in C, and a nonzero element y in C, such that the distance from z to C is
Ilz - Let M denote the closed linear span in Xo of the vectors A(g)y,
B(g)y, g E G. We claim that this subspace has the desired properties.

First, M is invariant under the operators A(g) and B(g) for all g in
G, since their linear span coincides with the algebra they generate. M is
not the zero space, since it contains the vector y. In order to prove that

M ~ Xo, we have to show that there exists a nonzero element of Xô,
which annihilates all the vectors A(g)y, B(g)y, g E G. Since the norm of
Xo is smooth and the vector w = z - y is not zero, there exists a unique
unit vector q in Xo* such that (w, q) = I (see [21], Section 20). We claim
that q annihilates all the vectors above. To see this, fix t in G, and consider
the functions Fl and F2 on [-1, 1], defined by s - llw + and

s + respectively. By the lemma, the vectors y - sA(t) y and
y-sB(t)y are in C for every s E [- 1, 1], and therefore, since the distance of
z from C is Ilwll, the functions FI and F2 have a minimum at s = 0. On the
other hand, since the norm Xo is smooth, these functions are differentiable
at s = 0, and the derivatives are (A(t)y, q) and (B(t)y, q), respectively. (See
[21], p. 349). So q annihilates all the vectors A(g)y, B(g)y, g E G, and the
theorem is proved. D

Proof of Theorem 2. - For every t in G, let St denote the linear
transformation on E that sends a function f in E to the function f t . Since
E is translation invariant these transformations map E into itself, and
condition (*) and the closed graph theorem imply that they are bounded.
Thus the mapping t ~ Set is a representation of G in E. Since E is

Hermitian, the mapping J on E defined by J f = f * , f E E, is an involution
on that space, and another application of the closed graph theorem shows
that it is continuous, and it is readily verified that
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Let u be a nonzero bounded Borel function in E with compact support
such that u = u* (which exists by the assumption on E) and let v be the
linear functional on E defined by

It follows from condition (*) that v is in E*, and it is not the zero vector
since (u, v) ~4 0. A standard computation which uses the translation
invariance of Haar measure, shows that the function on G defined by
g -~ (Sgu, v) is positive definite, and therefore the conclusions of the
theorem follow from Theorem 1. 0

4. Comments, problems and further results.

It is worth noting that the reducibility of the representations in
Theorem 1 is not achieved in general by spectral decomposition of the
operators in their range or their adjoints. For example, if w is the even

weight on Z defined by

and T is the representation of Z in E defined by T(n) = ,S’n, n E Z, where
,S’ is the operator on that sends the sequence to the sequence

{a(A; 2013 1)1, then it follows from the results in [6], that the spectrum of
the restriction of each of the operators T(n), n E Z to a common nonzero
invariant subspace is the unit circle, and the same is true for the adjoints
of these operators.

If G is a locally compact group, and E is a translation invariant

admissible Banach space of functions on G that satisfies the conditions

of Theorem 2, then it follows from its proof, that there exists a nonzero
function p in the set C introduced in the proof of Theorem 1, which

generates a nontrivial translation invariant subspace of E (i.e., the closed
linear span in E of the translates Wt, t E G, is different from E). If the group
G is discrete, we may choose the function u in the proof of Theorem 2 to be
the characteristic function of the set ~0~, and in this case the corresponding
functional v is evaluation at 0. For this functional, the set C consists of all

positive definite functions on G that are in E. Thus we get that if G is

discrete, then there exists a positive definite function which generates a
nontrivial translation invariant subspace of E.
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Another result which follows from Theorem 1 is

THEOREM 4. - Let G be a locally compact abelian group with
dual group r. Assume that E is a reflexive admissible Banach space of

functions on G, which is invariant under multiplication by elements of r.
If E is self-adjoint (that is, for every function f in E, the function f is
also in E~, and contains a nonzero real valued bounded Borel function
with compact support, then it has a nontrivial subspace which is invariant
under multiplication by elements of r.

Proof. For every ~y in r, let denote the operator of multipli-
cation by q on E, and let J denote the involution of complex conjugation
on E. Then JR"’( = R--YJ, Vq E r, and an application of the closed graph
theorem shows that the operators Rq and J are continuous. Hence the
mapping ~y 2013~ Rq is a representation of r in E. Let u be a nonzero real
valued bounded Borel function with compact support in E, and let v be
the linear functional on E defined by

As in the proof of Theorem 2, we see that v is a nonzero element of E*. It
is easily verified that the function on h defined v) is positive
definite, and the conclusion follows from Theorem 1. 0

In what follows T denotes the circle group The following is
an immediate consequence of Theorem 4.

THEOREM 5. - Assume that E is a Hilbert space of complex
functions on T which is included in Ll (T), and the embedding is continuous.
If E is self-adjoint, contains a nonzero real valued function in LOO(’Jf),
and is invariant under multiplication by the functions einO, then it

has a nontrivial subspace which is invariant under multiplication by these
functions.

We now give a concrete application of Theorem 5. Let w be an even
weight on Z which is increasing on Z+, and denote by E~, the Hilbert space
of all functions f in for which the norm

is finite. (As usual we denote for a function f in Ll (T) by i the sequence
of its Fourier coefficients). It is easy to see that E~ satisfies the conditions
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of Theorem 5, and therefore it has a nontrivial subspace which is invariant
under multiplication by the functions E Z.

In addition, if we assume that the sequence c,~ satisfies the condition

oo, then by a theorem of Beurling (see [16], Theo-
rem 4.2), there does not exist a nonzero function in Ew that vanishes on
a set of positive measure, so in this case, one cannot obtain the invariant

subspace in Theorem 5, by considering the space of functions in Ew that
vanish a.e. on a set of positive measure, as in the case of for E = L2 (1r). If
w also satisfies the condition w(n)2 - oo, then one cannot take this
invariant subspace to be the set of functions in EW that vanish at a fixed

point in T, since this condition on w implies that the point evaluations are
not continuous on E~, . Thus if c~ satisfies these two additional conditions,
then the invariant subspaces of E~ provided by Theorem 5 are not plainly
visible.

The following natural question is of considerable interest.

Problem. - Does the conclusion of Theorem 5 hold without the

assumption that E is self-adjoint?

As mentioned in Section 1, it is not known whether every invertible

operator on a complex infinite dimensional reflexive Banach space has a
nontrivial bi-invariant subspace, or equivalently, whether every representa-
tion of the group Z in such a space is reducible. Theorem 1 provides the
following partial solution.

THEOREM 6. - Assume that A is an invertible operator on a

complex infinite dimensional reflexive Banach space X, and that there
exists a continuous involution J on X such that JA = A-1 J. If there
exist nonzero vectors u in X and v in X* such that Ju = u, and the

is positive definite, then A has a nontrivial bi-

invariant subspace.

Proof. The assumptions imply that JAn = Vn E Z, and
therefore the assertion follows by applying Theorem 1 to the representation
n -* An of Z in X. 11

We conclude with a concrete application of this result. Let 1 ~ p  oo,

and assume that A = a sequence of nonzero real numbers,
such that for every function f in the sequences Af and A f are
sequences of Fourier coefficients of functions in Let A denote the
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linear transformation on that sends a function f to the function
whose sequence of Fourier coefficients is A f. The assumptions on A imply
that A is an invertible operator on and an application of the closed

graph theorem shows that it is bounded. Let V be the operator on 
of multiplication by the function and denote by A the operator VA. It
is invertible, and the problem whether for every sequence A with the above
properties, it has a nontrivial bi-invariant subspace, seems to be hard. For
p = 2, it is equivalent to the translation invariant subspace problem for
weighed 12 spaces on Z.

We claim that if A satisfies the additional 1,
bn E Z, and 1  p  oo, then A has a nontrivial bi-invariant subspace.
Without loss of generality we may assume that A(0) = 1. Let J denote the
involution on defined by f - eiol, denote by u the function 1 + eiO,
and by v the functional / 2013~ f(0) + /(1) on Simple computations
show that Ju = u, JA = and

The last identity implies that the is positive
definite, and the claim follows from Theorem 6.

For p = 2, the claim is equivalent to the fact that for an essentially
even weight w on Z, the Hilbert space t2 (Z) has a nontrivial translation
invariant subspace.
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