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SUBALGEBRAS TO A WIENER TYPE ALGEBRA
OF PSEUDO-DIFFERENTIAL OPERATORS

by Joachim TOFT

Ann. Inst. Fourier, Grenoble
51, 5 (2001), 1347-1383

0. Introduction.

In 1993 J. Sjostrand introduced in [Sl] without explicit reference to
any derivatives, a normed space of symbols, denoted by Sw in [S2], which
contains the Hormander class 88,0 (smooth functions bounded together
with all their derivatives), and such that the corresponding space of pseudo-
differential operators of the type

when a E is stable under composition and is contained in the

space of bounded operators on L 2(R’) - (Throughout the paper we are going
to use the same notations as in [H] for the usual spaces of functions and
distributions.) Here 0  t  1. He discussed also some invariant properties
and proved for example that if a E Sw and as (x, D) = bt (x, D), for some
choice of s, t E ~0,1~ , then b E Sw.

Some further developments and improvements have been made sin-
ce [Sl]. In [S2] J. Sjostrand proved among other results that Opt(Sw) is a

Keywords: Pseudo-differential operators - Weyl calculus - Schatten-von Neumann classes
- Admissible functions - Holder’s inequality - Young’s inequality.
Math. classification: 35SO5 - 47810 - 47B33 - 42B99 - 28E99.
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Wiener algebra. Interesting results in the topic have also been presented by
A. Boulkhemair in [B], who extended the results concerning L 2-continuity
not only to pseudo-differential operators of the type

when a E but also to Fourier integral operators, in which the
factor in the integral in (0.2) may be replaced by where

the phase function p should satisfy some appropriate growth conditions.

In this paper we shall discuss some continuity properties for an

increasing family 1  p  oo, of symbols such that = This

is done essentially in the framework of the analysis which was used in [Sl].
However, when proving the general results, valid for any we shall

apply some additional convexity arguments which are frequently used in

many other situations. Our discussions concerning L2-continuity will also
be different comparing to [Sl]. In these considerations we use the definition
of admissible partitions, a generalization of the concept admissible partition
of unity, introduced in Section 2.4 in ~T1~ . Admissible partitions give rise to
symbol classes, where the corresponding pseudo-differential operators are
continuous on L2, and we obtain ,S’w by choosing the admissible partition
in an appropriate way.

Since the results and the proofs for given in [Sl] will be in

the background of this paper, we start by briefly recall the definition for
when m ~ 1 is an integer, and write down in Proposition 0.1

below, the results from [Sl] which are important to us.

Let A C R~ be a lattice, and let X E be non-negative such
that if X (y - x), then Ei E A = 1. Then Sw(Rm)
is the set of all a E S’ (Rm) such that the function

belongs to Here 7 denotes some Fourier transform. J. Sjostrand
then proved the following.

PROPOSITION 0.1 (J. Sjöstrand). - Let a, b E Sw(T*IRn). Then the
following is true:

(1) at (x, D) is continuous on L2(IRn) for every t E ~0,1~;
(2) if c E S’(T*IRn) satisfies cs(x, D) - for some

s, tl, t2 E [0,1], then c E Sw(T*IRn);
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(3) the Hbrmander space 88,0 is contained in ,S’w;
(4) is independent of the choice of x and the lattice A, as long

as ¿jEA Xj = 1;
(5) if 4) is a real valued non-degenerate quadratic form on then

the convolution mapping a on S(T*R’) may be uniquely
continued to a continuous mapping on 

J. Sjostrand remarked also in [Sl], that he got the ideas for these
results by proving that if a C and that

belongs to then at (x, D) is a trace class operator. A strict proof
of this result may be found in Chapter IX in [DS].

The functions in (0.3) and (0.3)’ are indeed related to each other.
More precisely, if d~ is the measure 6i (X) on R’, and Ha,p
is the function

where 1  p  oo (with obvious interpretation when p = oo), then it follows
that and Ha,l agree with the earlier definitions in (0.3) and (0.3)’.
By letting Zl and be the sets of trace-class operators and continuous

operators respectively, it follows from Sjostrand’s results above that for any
t E [0,1] and p E then

implies

One of our goals is to present an extension of this result, where we prove
that (0.4) is true for any p E when Zp is the set of Schatten-von
Neumann operators of order p on L2(lRn).

According to the previous discussions it follows that we are particu-
larly concerned about the set where p E [1, oo], which consists of
all a E such that Ha,p E As before we observe that any

SP.-space is defined without any reference to derivatives, and that coin-

cides with ,S’w . In a large part of the paper we are concerned with extending
and improving Proposition 0.1 to any In Theorem 1.5 and Propo-
sition 1.6 we prove for example that (0.4) is true for any p, which extends
Proposition 0.1 (1). The statement (2) of Proposition 0.1 is generalized
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into: if a E b E where p, q E [1, oo~ , and c E S’(R 2n) sat-
isfies cs (x, D) = for some choice of s, tl, t2 E ~0,1~, then
c E when r E is chosen such that the Hölder condition

1/p + 1/q = 1/r is fulfilled. (Cf. Theorem 4.1.)

In order to discuss the invariance property (4) in Proposition 0.1,
we observe that for any Borel measure dp and any function X on R’,
then Ha,p,x,dp, in (0.3)" makes sense, and we let be the set of

all a E such that Ha,p,x,dp, E Then as a consequence of

Theorem 2.7, it follows that if is a positive periodic Borel measure, and
x E satisfies

then In particular is independent of
the choice of test function X and measure dp, which gives an extension
and improvement of (4) in Proposition 0.1. Finally we prove in Proposition
2.14 that for any + in Proposition 0.1 (5), then the map a ~ a is

continuous on (Rm), for every p.

Some other continuity results in the calculus are also discussed. We
consider for example compositions of entire functions and prove that if f is
entire, then the map a H f (a) is continuous on If in addition f (0) = 0,
then a H f (a) is continuous on for any p E The proofs are
based on a Holder type relation, proved in Proposition 3.1, which asserts
that ,S’~ ~ Sin c when p, q, r E [1, oo] satisfy 1/p + llq = 1/r.

We consider also pseudo-differential operators of the type (0.2),
which makes obviously sense when a E S (II~3n ) . In [B], one proves that
it is possible to extend the definition of Op(a) in a unique way to any
a E and that one still has that Op(a) is continuous on L (R).
Through the papers in [S2] and [B], it seems to be well-known also that for
any a E and t E [0, 1], then there exists a unique b E S;: (Iae 2n )
such that bt (x, D) = Op(a). In Proposition 4.6 we present a refinement of
this result and prove that if p E [1, 00] and a E Sw (R 3n), then b E (R 2n).

In the last part of the paper we discuss a case of dp-admissible
functions where may not be necessarily periodic. The corresponding
symbol classes which arise here, are in some sense related to the Hormander
classes S(m, g) (see Section 18.4-18.6 in ~H~ ), and in general quite different
from the ,S’w-spaces above.
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1. Preliminaries.

In this section we introduce the notion of admissible functions, an
extension of the concept admissible partition of unity (see Section 2.4
in [Tl]), and prove a result which indicate that admissible functions

are interesting, when discussing L2-continuity in the Weyl calculus. The
considerations are based on an analysis of the Weyl calculus from the

operator theoretical point of view, presented in Section 1.4 in [Tl], Section
1 in [T2] and Section in [T3]. We start therefore the section by a short
review of the results which we need from these papers.

We recall that for any a E then at (x, D) in (0.1) is continuous
on The definition extends to any a E S’(JR2n), for which one obtains
a continuous operator from S(R n) to We remark also that the map
a H at (x, D) is injective, and that any continuous operator from to

S’(R’) may be written of the form in (o.1 ) . Hence the map a - at (x, D)
is a homeomorphism from S’(R 2n) to the set of continuous operators from

to (See Chapter XVIII in [H] for more details.)
Next we shall consider the Weyl quantization and a certain type

of symbols spaces. The Weyl quantization a~’ (x, D) for a E S’(JR2n), is

obtained by choosing t = 1/2 in (o.1), i. e., a2" (x, D) - oPl/2 (a). We let
be the set of all S’(JR2n) such that aW(x, D) E lp, where lp is the

set of Schatten-von Neumann operators of order p on We recall

that an operator T on is a Schatten-von Neumann operator of order

p E [1, oo], if and only if

is finite. Here the supremum should be taken over all 

and E ON(R) , where ON(R~) is the set of orthonormal sequences
on L2 (JRn). We observe that 11 - 11 . III2 are the trace norm,
Hilbert-Schmidt norm and operator norm respectively. In particular, the
definition here concerning LI and agree with the earlier definitions in

the introduction.

We notice also that if p  oo, then T E Lp, if and only if T =

for some sequences and 

such that Aj &#x3E; 0 for every j, and Here and

in what follows we identify operators with their corresponding Schwartz
kernels. We refer to [Si] for more facts about the lp-spaces.
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For any a E we set Ilallsp = liaw(x,D)11_T,. It is then true

that a E if and only if  oo, and that a H a~’ (x, D) is an
isometric homeomorphism from sp(R2n) to In particular, is a

Banach space under the norm 11 - lisp’ for any p, since similar facts hold for
the 2p-spaces (see [Si]).

The spaces sl(R2n) and 82(R2n) consist of all symbols whose cor-
responding Weyl operators are of trace class type and Hilbert-Schmidt
respectively. Parseval’s formula shows that IIalls2 = since

the Hilbert-Schmidt norm for an operator is equal to the L2-norm for the
Schwartz kernel of the operator. In particular, s2 (II~2n ) = L2 (IR2n).

In Proposition 1.1 below we list some general facts which we need
concerning the sp-spaces, and refer to [Tl], [T2] and [T3] for other facts
about these spaces. First we recall a few facts concerning the Fourier
transform. The Fourier transform which we shall mainly use is defined by

In the case when m = 2n is even, we shall use also the symplectic Fourier
transform, 7a , defined by

Here cr is the standard symplectic form defined by Y) = (y, ç) - (x, TI),
where X = (x, ~) E Jae2n and Y = (y, r~) E Jae2n, and dY = dydq. The
definitions for ,~’ and Fa extend in a usual way to homeomorphisms on S’
which are unitary on L2. We observe also that

and

where * denotes the convolution, and that ( 1.1 ) holds also when m = 2n and
the Fourier transforms are replaced by the symplectic Fourier transform.
An interesting property, of the symplectic Fourier transform is that , is
the identity operator. In the statement (2) of the following proposition we
get a motivation for our choice of Fourier transform.

PROPOSITION 1.1. - The following is true for the sp-spaces:

(1) let PI,P2, r E [1, oo] such that 1/pl + l/p2 = 1/r. Then the Weyl com-
position # from X S(1R.2n) to S(1R.2n) extends to a continuous
bilinear map from sp, (1R.2n) x SP2 (1R.2n) to Sr (Il~2n ) . One has
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(We recall that the Weyl product a#b, between a E S and b E S is
defined through the relation (a~b)~’ (x, D) - a’ (x, D)bW(x, D). Of.

Section 18.5 in [H].);

(2) the Fourier transformations T and the map a H a and com-

position by any translation on R 2’ are unitary transformations on
for every p E [1,00];

(3) if p is a measure wi th fini te mass lipli, then the mapping a F-* [L * a
on extends to a continuous mapping on for every

p E [1, oo~. One has that 

(4) the product (a, b) = f a(x)b(x) dx on S(JR2n) extends to a duality
between and when p E Here p’ is the

conjugate exponent for p satisfying 1/p + 1/p’ = 1. One has that

when a E sp and b E sp,. On the other hand, if
a E sp, then Ilallsp = sup I (a, b) 1, , where the supremum is taken over
all b E such that 1;

(5) the set is dense in when p  oo, and dense in the

weak* topology when p = oo.

Proof. We prove only the assertion concerning the Fourier trans-
form.F in (2), since the other results follow from Section 1.4 in [Tl], Section
1 in [T2] or Section in [T3]. We observe o ~,, where J is the

map on S’, given by (ja) (x, ~) = a(x, -~). The assertion follows there-
fore if we prove that J is unitary on But this is obviously true,
since we have by some simple calculations, that if K(x, y) is the Schwartz
kernel for a’ (x, y), then K(y, x) is the Schwartz kernel for D),
which in turn implies that = (I (.7a)~’ (x, D)IIIp. The proof is
complete. D

We shall need also the following Young type results.

PROPOSITION 1.2. - Assume that p, q, r E [1, oo] satisfy the Young
condition 1/p -f- 1/q = 1 + 1/r. Then the convolution on extends

uniquely to continuous bilinear mappings sp(1R2n) X 
and X if one requires that * is the ordinary
convolution when one of the factors is in S. One has the estimates
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Proof. - The result follows from Theorem 2.2.3 in [Tl], Theo-
rem 1.13 in [T2] or Theorem 2.1 in [T3]. 0

PROPOSITION 1.3. - Assume satisfy
lIP1 + ... + 1/pN - N - 1 + 1/r, and that are real

numbers such that

for some choice of ± at each place.

Then the mapping on S (II~2’~ ) extends
uniquely to a continuous map from
One has the estimate

where i

Proof. - The result follows from Theorem 2.3.2’ in [T1] or Theorem
3.3’ in [T3]. El

We shall now discuss admissible functions, which are defined as

follows.

DEFINITION 1.4. - Assume that m &#x3E; 2 is even, let d~c be a positive
measure in a measurable set M, and let x be some function from M x R’
to C. We say that X is a dJ1-admissible function to the order q, 1 ~ q  00, if
there exists a x Jaem ~ (C such that the following conditions
are fulfilled:

(1) the functions x and x are measurable functions with respect to the
measure dit Q9 dy;

(2) then the mappings y - = X (x, y) and y F-+ 
y) belong to 

(3) if y E R’, then the mappings x H x(x, y) and x H are

dJ1-measurable and

(4) there exists a constant C such that for every v E one has
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We shall mainly consider the case when A4 C and that x(x, y) =
xo(y - x), for some Xo E Then we say that xo is dit-admissible
when X is d/z-admissible. In Proposition 1.6 below we prove that xo is

du-admissible when p is periodic and XO, dp satisfy (0.5).
The next results are motivated by ~S 1~ . We recall from the intro-

duction that for any measure dJ-l and function X as in Definition 1.4, then
is the set of all a E such that - 

is finite. Here is given by (0.3)", and we note that the Fourier
transform 17 acts on the function y H considering x as a fixed

parameter.

THEOREM 1.5. - Assume that m &#x3E; 2 is even, let p E and

let p’ be its conjugate exponent. Let X be a du-admissible function to the
order p’. Then continuously embedded in 

Proof. - Assume that a E By Proposition 1.1 it is

enough to prove that there is a positive constant C such that 
We have

where It follows that

where = Ø(ç +1]). By Proposition 1.1 we have that
r

Hence there is a constant C, which depends on X only such that

It follows that the right-hand side of (1.4) can be estimated from above by

where C’ is a positive constant which is independent of 0. D

PROPOSITION 1.6. - Let m ~ 2 be even and let dp be a positive
periodic Borel measure on satisfies (0.5), then X is a
du-admissible function to the order q, for every q E 
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In Section 5 we present a generalization of this result. We need

some preparations for the proof. We start by discussing some translation
invariant subspaces of LP(dJ1). Let m &#x3E; 1 be an integer and let be

the set of all f E such that x - f (ax + y) is dJ1-measurable when
a E { -1, I} and y E Then for any p e [1, oo] we be the norm

where the supremum is taken over all a E ~ -1,1 ~ and y E R’ - If p  oo,

then we let be the completion of under the topology defined
by 11 - and if p = oo, then we let be the set of all f E 
such that  00.

Since df.1 is periodic, we note that it is enough to take the supremum
in (1.5) over a ball in 1I~’n, provided that the radius for the ball is chosen
large enough.

LEMMA 1.7. - Let m &#x3E; 1, let df.1 be a positive periodic Borel measure
on II~’~’2, and assume that 0 E n Then for every q E [1,00],
and v E we have

Proof. - Assume first that q = 1. Then we have for a E ~ -1,1 ~ that

Hence and the assertion holds for q = 1.

The result follows now for general q by interpolation, since the state-
ment is obviously true in the case D

LEMMA 1.8. - Let m ~ 1, let dp be as in Lemma 1. 7, and assume
that x E satisfies (0.5). Then for some x(x, y) - x’(y - x)F(y),
where F E Coo is periodic and X’ E Co vve have

In particular F is a bounded measure.
Proof. First we prove that it exists a function X’ E such

that 0  X’  1, X’(0) = 1 and
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where x~ (y) = x’ (y-x) . In fact, since d~u is periodic, it follows for any choice
of x’ E Co that the left-hand side of (1.6) is a periodic C°°-function, with
the same period as dJ1. Hence, if K C R’ is a fix compact set, containing a
whole period for dJ1, then it suffices to prove that (1.6) is true only for every
y E K. From (0.5), it follows now easily, using some simple arguments of
approximation, that (1.6) holds when y E K, for some choice of largely
supported x’ E Co .

The assertion follows now if we let be equal to the left-hand
side of (1.6). It is then obvious that F E C°° and has the same period
as dJ1. From this fact one obtains also that for some lattice A in R"~,
then F(x) = c.xe2i(x,.x), where ] is rapidly decreasing to zero as

I-XI - oo. This in turn implies that 1fm/2 ~~ is a bounded

measure on R’. The proof is complete. D

Remark 1.9. - Let &#x3E; be a positive periodic Borel measure on R’ and
define the &#x3E;-convolution *~ by the formula

when a, b E Then it follows easily, by similar computations as in
the proof of Young’s inequality in [RS], that the Young’s inequality is true,
when the LP-spaces and the usual convolution are replaced by the 
spaces and the u-convolution.

Proof of Proposition 1.6. - Let X’, 5~ and F be as in Lemma 1.8.
Then the conditions ( 1 )-(3) in Definition 1.4 are fulfilled. It remains to

prove that (4) in Definition 1.4 holds.

Let v E Co. Then we have

where O(x) = x’(-x) E If h is the Fourier transform of

x - ( 1 + then it follows that h E n (See for
example Theorem 2.2.7 in [Tl] or Theorem 2.6 in [T3].) This gives

where Inserting this into
and using Lemma 1.7 we get
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where the last inequality follows from Proposition 1.2. Since F is a bounded
measure by Lemma 1.8, it follows from (1.1) and Proposition 1.1 that

Combining (1.8) and (1.9), we obtain (1.3). The proof is complete. 0

Theorem 1.5 and Proposition 1.6 motivate us to study more carefully
the spaces when is periodic. This will be done in the next section,
where we discuss some continuity properties for the 

2. Some basic continuity properties.

In this section we shall discuss some basic continuity properties
for when dp is some positive periodic Borel measure on

R’, and X E We discuss invariant properties and prove that

when u is a positive periodic Borel measure on

and X E satisfies (0.5). In particular it follows that is

independent of any such positive periodic Borel measure J-l and any such

function x.

In many situations we need to approximate elements in by
elements in S. It was remarked already in [Sl] that S is not dense in 
with respect to the usual topology. For this reason, the narrow convergence
was introduced in that paper. Here we shall use a similar technique where
we modify the definition of narrow convergence, in order to obtain similar
approximation possibilities for any Sp,X,dj.L-space.

DEFINITION 2.1 (cf. [Sl]). - Assume that a, aj E =

1, 2, .... We say that aj converges narrowly to a (with respect to p, X, dJ-l),
if the following conditions are satisfied:

Remark 2.2. - Assume that a, aI, a2, ... E S’(R-) satisfies (1) in
Definition 2.1, and assume that ~ E R’. Then it follows from Fatou’s

lemma that

We have now the following proposition which guarantees that we may
approximate elements in with elements in S.
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PROPOSITION 2.3. - Assume that dJL is a positive periodic Borel
measure on R’, and that X E S(R’) satisfies (0.5). Then for every
p E [1, oo] one has that Cü(JRm) is dense in with respect
to the narrow convergence.

In the proof of Proposition 2.3 and in many other situations we need to

apply Minkowski’s inequality, in a somewhat general form. We recall that
for a dv-measurable function f with values in the Banach space B with

then Minkowski’s inequality states 
In our applications one has that B is equal to for some p E [1, oo],
and then Minkowski’s inequality takes the form

LEMMA 2.4. - Assume that aj, k, aj, a E for every j, l~ &#x3E;

1, and that aj,l,aj,2,... converges narrowly to aj for every j &#x3E; 1, and
that aI, a2,... converges narrowly to a. Then for some increasing sequence
, ..., the sequence ~~1,~,2,... converges narrowly to a, for any

choice of the sequence l~l,1~2, ... such that jr x kr for every r &#x3E; 1.

Proof. The result follows easily by an application of Cantor’s

diagonal principle. D

LEMMA 2.5. - Assume that p E and that a E 

~’(R~), where and dp are as in Proposition 2.3. Then a E Co (R’) n

Proof. Let Q be a fix and bounded open neighbourhood of supp a.
Since (0.5) holds, we may find a function p E such that

is non-zero in Q. We note that Fo E S and that for some choice of

1b E Cü(IRm) we have OFo - 1 in Q. From the fact that a E E’, it follows
also that â E C°° n S’. We claim that

where

In fact, let *2 be t4e partial convolution multiplication for functions
on R’ x II~~, defined by (u *2 v) (x, ~) - f u(x,ç - dq, and set
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This proves ( 2 .1 ) . By Holder’s inequality we have

where C =  oc. This gives lei * ~ L’, in view of
(2.1). Hence a E FL’, which in turns implies that a E C(1Rm). Since a is
compactly supported, we may therefore conclude that a E TLI n Co. The
proof is complete. D

Proof of Proposition 2.3. - It follows from Lemma 2.4 that it

is enough to first prove that E’(R’) n is narrowly dense
in and then that is narrowly dense in E’(R-) n

Assume therefore first that a ~ and choose a function

such that 0 and § are non-negative functions which satisfies
o(O) = 1. Set aj - aoj, where = and Ej ~ 0 as j ~ oc. We
shall prove that aj converges to a narrowly.

It is clear that aj ~ a in S’ as j ~ oc, and we shall therefore
prove that Ha.,,p Ha,p in Ll as j ~ oo. It is clear that =

1f-m/2 J F(Xxa)(ç - d?7. Hence Minkowski’s inequality gives

It follows now that Haj,p - in L’ as j ~ oo from these facts, Remark
2.2 and a generalization of Lebesgue’s theorem which asserts that if fj -~ f
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a. e. as j - 00 and if there exists a sequence gj E L’ such that 
and Ilgj - gk IIL1 -~ 0 as j, k - oo, then -~ 0 as j - 0. Hence
we have proved that s, is narrowly dense in 

Assume next that a E Sp,X,dJ.L n E’ and let aj = a, where
= e Co is 1 and Cj E 0 as

j -~ oo. The proposition will follow if we prove that aj E Co converges to
a narrowly.

By an application of Parseval’s formula we have

If we replace a by aj, then we get

This gives

By Minkowski’s inequality and that 0 is non-negative it follows

Since a E Co by Lemma 2.5, it follows from the last inequality that

Here we have used (2.2) and that
Remark 2.2.

In order to prove that Ha, p in L 1 as j - oo, it suffices

now to find a majoring L1-function to the H,,,,p- functions - Take a function
1b E Co such that 0 = 1 in the supports of a and aj for every j. Then
it follows that lbaj = as - By (2.2) and (2.3) one obtains
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From the fact that IF(T£Jya)1 = lâl, it follows from Minkowski’s inequality
that

where

Since the mapping (x, ~) ~ belongs to (it might be
considered as a partial Fourier transform acting on the tempered function
(x, y) - x(y - it follows that g E L’. Hence g * c L1, since
a by Lemma 2.5. We have therefore found the desired majoring L 1-
function to the ,p-functions, and the result follows. 0

Remark 2.6. - Assume that J-tl, J-t2 are positive periodic Borel mea-
sures on R’, and that Xl, X2 E satisfy f Xk (Y - x) 0

when k E {1,2} and y E R’. Then it follows from Proposition 2.3

and its proof that for any a E we may find a sequence (aj) in
such that and

We shall next prove that is independent of the choice of
the periodic measure dp and function x E s satisfying (0.5).

THEOREM 2.7. - Let dp and dv be positive periodic Borel measures
on IIg"2, x, qb e and assume that X, p satisfy (0.5). Then for every

where C is independent on a and p.

If in addition, f x) dv( x) =1= 0, for every y E JRm, then

is equal to with equivalent norms.

We need some preparations for the proof. In what follows we use the
notation for the completion of x under the norm

Then is continuously embedded in the completion of
the set + under the norm IlaIILl,*(djl) == inf +

where the infimum is taken over all a 1 E and a2 C
such that ~==~1+~2.
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In the following lemma we use the notation .~’2 for the partial Fourier
transform on S’ (JRm x with respect to the second variable.

LEMMA 2.8. - Assume d~ and dv are as in Theorem 2.7
and Lemma 1.8. Let T be the operator from S(R’ x to S’(RI x 
defined by T = F2 0 S, where

Then the folloiving is true:

(1) T is continuous on S(JRm x 

(3) T may be extended to a continuous operator from
for every p E [1, on]. In particular

for some constant C independent on u and p.

Here we have identified subspaces of D’(II~’~’2; D’(I~"2; C)) with the

corresponding su bspaces x C).
Proof. Since (2) is a consequence of some straightforward com-

putations, using Fourier’s inversion formula, we prove only (1) and (3).
Let F be as in Lemma 1.8, and assume that uy (g) = u(y, ç) E S(R 2.) . A
straightforward computation shows that Tu = 1f-mj2 (80 Q9 F) * U where

and

Here x’ is the same function as in Lemma 1.8. It follows that K E S, since
it is essentially a partial Fourier transform of a Schwartz function. This
implies that U is rapidly decreasing for every u C S. The same is true for
any derivative of U, since any u(a) may be written as a finite sum Ei Uj, I
where each Uj has the same form as U in (2.5), with K replaced by some
derivatives of K, and by P(Y)Uy(r¡), for some polynomial P on R’ - In
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particular, the map u - U is continuous on S. Since F E C°° is periodic,
T is continuous on S, which proves (1).

In order to prove (3) we observe that from the above we have for any
u E that

Here the convolutions on Kx-y(ç), and F(~) in the integral act on
the ~-variable only. From this inequality it follows that

where C = I I.P I Here I is the total mass

norm of F. Since K is rapidly decreasing, C  oo, and we have proved that

(2.4) holds when p = 1.

Next we prove that (2.4) holds when p = oo and u ~ S. Set

Then (2.6) gives

If we let

then K E since K is rapidly decreasing. By Minkowski’s inequality
it follows that the right-hand side of (2.7) is less than or equal to

I-

where Hence (2.4) holds when p E ~ 1, oo}.
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Since we have already proved the result for p = 1, it follows that T

extends to a continuous operator from LI’*(dJ1) to 
The result follows now for general p by interpolation, using the

Theorems 4.1.2, 5.1.1 and 5.1.2 in [BL]. The proof is complete. C7

Proof of Theorem 2. 7. - The result is obviously true when dv = 0. We
assume therefore that 0, and consider first the dv(x) #
0 for every y E R~. Let a E By Proposition 2.3 and Remark
2.4 we may assume that a E 

Set u(x, ~) - Then Lemma 2.8 gives for any p E 
that

for some constant C. Hence Since an opposite
estimate is obtained by interchanging the roles for (0, dv) and (X, it

follows that for every p E and we have

proved the assertion when f 0(y - x) dv(x) # 0 for every y.
Assume next that o E S is arbitrary. Then we may find a function

p E S such that if + p and V)2 = p, then J ’ljJj (y - x) dv(x) # 0,
j = 1, 2, for every y E From the first part of the proof it follows that

and the proof is complete. 0

DEFINITION 2.9. - Assume that dJ.1 is a positive periodic measure on
that x E such that (0.5) holds, and that p E Then the

set - called the Boulkhemair-Sjostrand space, or
BS-space, of order p.

It follows from Theorem 2.7 that is independent on the choice
of dJ.1 and X in Definition 2.9.

PROPOSITION 2.10. - Assume that 1 ~ oo. Then one has

the following inclusion relations:

Moreover, then (Iaem) C L2 (Iaem).
Proof - Since is independent of the choice of dJ.1 and X in

Definition 2.9 we obtain S’wl C as p2, if we choose 
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LjEA 8(x - j), where A is some lattice. If instead dx, then the
other inclusions in (2.8) become obvious.

The last part is an immediate consequence of Proposition 1.1, Theo-
rem 1.5 and Proposition 1.6. 0

In most of our considerations we have dp(x) = dx, and in these cases
we use the more short notation 11 instead of 11 -

We shall next prove that the Fourier transform is continuous on

PROPOSITION 2.11. Assume that X E has non-vanishing
integral such that i = -~. Then IIallsl ,x == In particular it follows
that 0 is a homeomorphism on 

Proof. By (2.2) we get

and the result follows. D

We have also the following property for which we shall use

later on.

PROPOSITION 2.12. - Assume that V C R’ is a vector space with

Euclidean structure inherited from R’. Then the mapping a - a I v is

continuous from to ,S’w (V ), for every p E [1,00]. Here a I v denotes
the restriction of a to V.

For the proof we need the following lemma.

LEMMA 2.13. - Let T be an automorphism on JRm. Then the map
continuous on also in the narrow convergence

with respect to the Lebesgue measure.

Proof. The result follows immediately from the definitions. D

Proof of Proposition 2.12. - It follows from Lemma 2.13 that we

may assume that V = for some k. Assume that a E and set

b(xl) = a(xi, 0) E S’(R k) f1 Let 0 E such that f 0 0,
and take a function E such that ~p(o) - 1. We shall prove
that for some x E 
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It follows that b(xi) = c(xl, 0), if c(x) - By Fourier’s
inversion formula we get

In the last expression we let X - 0 0 K, where K E satisfies
= 1. By Minkowski’s inequality we obtain

Now we let where (X2) =
(1 + I x2 I 2 ) 1 / 2 and 1/p + 1 as before. Then Holder’s inequality with

respect to the y2-variable implies may be estimated by

Next we observe that for some constants ca,,~, depending on m, cx and
,3 only, we have

Here 

This implies that

for some constant C, where

If we let then it follows that the last

expression is equal , i.e., Ia,~ - ~ . Since cpa E S, it
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follows easily , for some constant Co:. Hence
Theorem 2.7 implies that for any choice of a then Ia,~  
for some constant Co:,ø. by (2.9). This completes
the proof of the proposition. D

Next we shall consider a similar type of convolution operators acting
on the BS-spaces, as in (5) in Proposition 0.1. Assume that V, and Y2 are
vector spaces such that VI EB V2 = and V11v2, and define for every
non-degenerate real quadratic form &#x26; on Vl, the operator TQ on S, by the
formula

Here Acp is the matrix for  satisfying CP(XI) = dim V,
and 6 is the Dirac measure on V2. By a simple application of Fourier’s
inversion formula, it follows that T~ is a homeomorphism on S, with inverse

This allows us to extend T~ to a continuous operator on S’. We also observe
that the Fourier transform of det AepI 1/2eiep is equal to c for

some complex constant c such that Icl = 1. We have now the following
result.

PROPOSITION 2.14. - Assume that C are vector spaces

such that V, C V2 = II~’~’2 and and leto = where X E 
has non-vanishing integral. Then

E (~(R~), and c f X dx 54 0, for some complex
constant c such = 1;

(2) HT4?a,p,1j; = Ha,p,x. In particular Tep is homeomorphic on for

every p E and = 

Moreover, if aj a narrowly with respect to p and x, then 
T~a narrowly with respect to p and 0.

Proof. The assertion (1) follows easily by a straightforward com-
putation. It suffices therefore to prove that HT4?a,p,1j; = Ha,p,x.

If we write ~ = (Çl, ~2 ) , where çj E then it follows from (2.2) and
from the above that
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where yo = (A;lçl’ 0). This gives

where we in the last equality have taken x - yo as new variables of

integration. This proves the proposition. 0

We finish this section with the following remark, which gives an
alternative explanation of the S’w-spaces. In the case p = oo, the result
was presented by Professor A. Melin at the Lund University in the end of
1999, and is similar to the localization result Corollary 1.3 in [B].

Remark 2.15. - Assume that p E [1, oo] and that a E ~(R~). Then
a E if and only if for some b E x RI) one has that

and

In fact, assume first that a E and let qb, x e be

chosen such that j x dx = 1 and V) = 1 in the support of x. Let also b be
the smooth function given by

By Fourier’s inversion formula it follows that (2.10) holds. Since a C 6~
and 0 ~ Co , an application of Minkowski’s inequality proves that 

 oo, and (2.11) follows.

On the other hand, assume that a satisfies (2.10) and (2.11), for some

Now we may replace I
Then an integration by parts 2m times gives
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for some constants C~,/3. If we let Ca,~ _ ~ dr~  oo, then an

application of Minkowski’s inequality finally gives

Hence a E and the assertion is proved.

Remark 2.16. - If m is even, then c by Theorem 1.5
and Proposition 1.6. This is also a consequence of Remark 2.15 and some
inclusion relations between sp and Sobolev spaces, proved in or [T3].

In fact, assume that a E and let b E C°° be chosen such that

(2.10) and (2.11) are fulfilled. By Theorem 2.2.7 in [Tl] or Theorem 2.6 in
[T3] it follows that

Hence Ilallsp  oo, by (2.10) since the mapping a H is unitary on

sp for every ~ E R’. (Cf. Proposition 1.1 (2).)
More generally, assume that 0 C sp(R2) is a ft6chet space, and that

a is given by (2.10) for some b E Then a E 

3. Convolutions, multiplications and compositions
by holomorphic functions for elements in sw.

In this section we start by discussing multiplication and convolution
properties for the and prove a Holder type inequality for

multiplication and a Young type inequality for convolutions. We may then
apply the results to prove that if f is an entire function on C such that

f (0) = 0, then a H f (a) is continuous on for any p E Before

starting the discussion, we remark that the result of this section is not
used in the forthcoming sections, where continuity properties for pseudo-
differential operators are discussed, and may therefore be skipped by the
reader who is interested only in these questions.

We start with the following result.

PROPOSITION 3.1. Assume E 

satisfies the conditions

and
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and assume that aj E (R~) for every j = l, ... , N. Then ala2 ... aN E
Sw (~m ) and we have that

= XN.
The convolution * on may be uniquely continued to a con-

tinuous mapping from S~1 x... x to and if instead

a~ E 53 (IRm) for every j = 1,..., N, then

where O(x) = xN(x/2).
Proof. We prove the proposition in the case N = 2, and leave the

details for general N to the reader.

Assume that aj E 6~(R~), ~ == 1, 2. By (1.1) and Minkowski’s
inequality we have

Applying Holder’s inequality to the inner integral in the last expression,
we obtain

and the first part of the assertion is proved.

In order to prove the second part, we observe first that it is enough
to prove the assertion when m is even, since the case when m is odd may
be transmitted to the case that m should be even using the relations that
a E if and only if a 0 a E and 0 *

Since m is even, it follows that a, * a2 makes sense as an element in

by Proposition 1.3, Theorem 1.5, Proposition 1.6 and Lemma 2.13.
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Let O(x) = x2 (x/2) . Then it follows by some straightforward computations
that

By applying Parseval’s formula on the integral involving the y-variable, we
obtain

If we combine the last estimate with

we get

To establish the last inequality we have used Minkowski’s inequality. We
note that we may consider the integral in the x-variable as the Lr-norm of
a convolution product. An application of Young’s inequality therefore gives

If we integrate the ~-variable we finally obtain

and the proof follows. D

We shall now reformulate Proposition 3.1 in such a way that the
admissible functions which occurs in the estimates (3.1) and (3.2) should
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be the same, i.e., for some constants CN and we will try to obtain
estimates of the type

and

This seems to be a difficult task for general x, if one desires that the

constants CN and CN should be simple expressions. However, if we consider
functions x = x, on R~ of the type

(i. e. X is Gauss function) we shall now prove that (3.1)’ and (3.2)’ are true
for some simple choice of the constant CN . We start with the following
lemma.

LEMMA 3.2. - Let XÀ be as in (3.3), and let a E S’ (II~’~’2 ) . Then for
any p E [1, oo] and 1, one has that

Proof. - The assertion is obviously true for 0 = 1. We may therefore
assume that {3 &#x3E; 1, and start to prove the first inequality in (3.4). Since

by the definitions, it follows that we have to prove that

From the definitions we have

By (1.1) and (3.5) we get
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Here the convolution product is taken with respect to the ~-variable,
considering x as fixed parameter. An application of Minkowski’s inequality
together with the fact that 0(x~ ) = one gets

Here Ha,p,x).. is given by (0.3)" with dJ1(x) = dx. The desired estimate
follows now by evaluating Ilxl/()..(¡3-l)) 

The second inequality of (3.3) follows from (3.5), and by letting q = p
in the following lemma. D

LEMMA 3.3. - Let 0  t  1 and that a E and assume that

p, q E [1, oo] satisfy p  q. Then for any,3 &#x3E; 1 we have

where po E [1, oo] satisfies 1/po = 1 + 1/q - 1/P. Here X, is the same as in
Lemma 3.2.

Proof. - We shall proceed in a similar way as in the proof of the first
inequality of (3.3). Let t = 1/(3, and set s = 1 - t. Then it follows that
s, t &#x3E; 0. From the fact that F(X,) = an application of (2.2) and (3.5)
gives

where the last equality follows from ( 1.1 ) . Here the convolution should
be taken with respect to the x-variables, considering the ~-variable as
parameter.

The inner integral in the last expression is the Lq-norm of a convolu-
tion. From the fact an application of

Young’s inequality therefore gives
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By evaluating IILPG, we obtain (3.6) from the last inequality. The proof
is complete. C7

We have now the following alternative version of Proposition 3.1.

PROPOSITION 3.1’. Assume that the hypothesis in Proposition 3.1
is fulfilled and let X(x) = x~ (x) - where A &#x3E; 0.

Then (3.1)’ and (3.2)’ are true with CN = (27rA) -(N-1)14 N m/2 and

Proof. If we let 0 = N, then (3.1)’ is a consequence of (3.1), (3.4)
and (3.5). By similar reasons we obtain (3.2)’, if we let 0 = N/4, since

We shall next use Proposition 3.1’, to investigate compositions of
elements in with analytic functions. First we observe that if we let

~=~1=~2=...= aN, PI = p, and p2 = P3 =... = pN - oo in

Proposition 3.1’, then we get

In order to estimate in terms we have the following
lemma.

LEMMA 3.4. - Let x~ be as before and assume that a E Let

also h : [0, 1] - ~1, 4~ be the continuous and increasing function defined by
h(O) = 1, h( 1) = 4 and h(a) = 0152-a(l - + when 0  a  1.

Then for any p, q E [1, oc] such that one has that

Proof. We observe that for any {3 &#x3E; 0, then (3.6) holds. If we set
apply Lemma 2.13 and (3.3), then we get

Here po is given by 1/po + 1/p == 1 + 11 q. The estimate (3.9) is valid for any
(3 &#x3E; 1. By a straightforward minimalization treatment, one obtains that
the minimum of the right-hand side is attained for /3 = I + p- 1 - If we

insert this into (3.9), then we obtain (3.8), which completes the proof. D

Remark 3.5. - We may obtain stronger estimates by using the best
constants in Young’s inequality and Haussdorf-Young’s inequality in the
proofs. (See [L].)



1376

If we let q = oo in Lemma 3.4, then we get

Inserting this into (3.8) one gets

where

where h is the function in Lemma 3.4. It follows now from (3.10) and (3.11)
that the following must be true.

PROPOSITION 3.6. - Assume that R &#x3E; 0, is given by (3.11),
and that f is an analytic function in ~ z ; ~ such that f (0) =
0, with expansion f (z) - F_’ and let g(z) = E~ If

then f (a) E one has the estimate 

If the condition f (0) = 0 is removed, then the assertion
is still true for p = oo.

4. Some applications in the theory
for pseudo-differential operators.

In this section we shall apply the results in the previous sections, in
order to prove some general continuity properties for pseudo-differential
operators. The section starts by discussing compositions between pseudo-
differential operators, when the symbols belong to some BS-spaces. The
last part of the section is devoted to some considerations of the operator
Op(a) in (0.2), where we prove that if a E and b E 

satisfies bt (x, D) = Op(a), for some t E [0,1], then b E 

Before discussing composition properties for pseudo-differential oper-
ators, we recall that the condition that Ha,p,x,d¡.t E is invariant

under the choice of Fourier transform, and in this section we shall use
the symplectic Fourier transform 0u (cf. (1.2)) for distributions on 
The reason for this is that we shall mainly deal with the Weyl calculus,
and in this topic the symplectic Fourier transform is in many situations
handsome to use. (See for example (4.1) below.)
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THEOREM 4.1. Assume that s, tl, t2 E [0, 1], and that pl, p2, r E
[1, too] satisfies l/pi+l/p2 = 1 /r, and let c E S(JR2n) be defined through the
formula Ops (c) = Opt, (a2 ), as aI, a2 E Then the bilinear

map (aI, a2) H c may be uniquely extended to a continuous mapping from

Moreover, where have non-

vanishing integrals, then

We observe that is well-defined as an element in when

aj E 1, 2, by Proposition 1.1, since (Ilg2n ) C 8pj ~~2n 1.
Before the proof we introduce some notations and discuss some

preparatory results. First we note that we may write the Weyl product
a#b as

when a, b E (See Section 1.2 in [T2].) Here X E is the

translation operator = a(Y - X) as before.

We omit the proofs of the following two lemmas, since they are simple
consequences of the definitions.

LEMMA 4.2. Let a, b E and c E Then the

following equalities are true:

LEMMA 4.3. - Let a, b E 800 (IR2n) and set I

for every X, Y E R~. Then the following is true:

We may now prove the following lemma:

LEMMA 4.4. - Assume that the hypothesis in Theorem 4.1 is fulfilled,
a E E and that c is equal to a#b. If H, and H2 are
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given by the formulas

then

Proof. - We shall frequently apply Lemma 4.2 and Lemma 4.3. By
some straightforward computations we get

... ,.

Since x = it follows from Lemma 4.3 (1) and (3) that

By applying Lemma 4.2 (2) on the last expression we get

Let J be the operator Ju(X) = = u(-X). Then Lemma 4.2 (2)
implies that (Ja, c) = (~?). A combination of Lemma 4.3 and Lemma 4.2
(1) now gives

Hence

where

We have to examine I~1 and K2 more briefly. By (4.1), Lemma 4.3
and the fact that ~ is the identity operator we have
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In the last equality we have used also that a( Z, Z) = 0, which is a

consequence of the anti-commutativity of a. In the same way we obtain

The assertion now follows if we insert these expressions for K, and K2 into

(4.2). The proof is complete. 0

We have finally the following lemma:

LEMMA 4.5. - Assume that a E and let b E 

be chosen such that at (x, D) - b’ (x, D), for some t E [0, 1]. Then

b E In particular, C Ip.
Proof. - One has that b = (Cf. Section 18.5 in [H].)

Since it is possible to find a real non-degenerate quadratic form -(D on IR2n
such that ei(I/2-t)(Dç,Dx) a = Ce.’(1) * a, for some constant C, the assertion
follows from Theorem 1.5, Proposition 1.6 and Proposition 2.14. 0

Proof of Theorem 4.1. - It follows from Lemma 4.5 that we may

assume that s = tl = t2 = 1/2.
Assume that a E and b E S’w2 (IR2n) and let c = a#b. From

Lemma 4.4 we obtain

where the last inequality follows from Minkowski’s inequality. Holder’s

inequality applied to the inner integral in the last expresion gives

Here we have used that

The proof is complete.
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If we have x1 - x2 - X, where 0’(x, D) is an or-

thonormal projection, it follows that x - and f X(X) dX =
C f xl dX f x2 0, for some non-zero constant C. Hence Theorem 4.1

gives us in this case

These conditions are obtained if for example

We shall end this section by considering the operator Op(a) in (0.2)
when a E S(IR3n). One has that Op(a) = Opt (b) , when t - 0 and
b E is uniquely determined and is given by

Since we have that = H*a, where H(x, y, ç) == (21f)-n8(x)e-i(y,ç),
it follows from Lemma 2.13, Proposition 2.12 and Proposition 2.14 that

(3.8) extends uniquely to a continuous map from to ,S’~ (I~2n ) . In
particular we have the following result. (Cf. Lemma 4.5.)

PROPOSITION 4.6. - The mapping a H Op(a) from to Too
may be uniquely continued to a continuous mapping from SZ’ (R 3,) to 
If a E ~S’w (1I~3’~) where p E and t E [0, 1], then Op(a) = Opt (b) for
some b E In particular it follows that Op(a) E Ip.

5. Some further extensions.

In this section we shall discuss a case of dp-admissible functions,
where the measure dp is not necessarily periodic, and the symbol classes
in some sense are related to the symbol classes S(m, g), introduced by
Hormander in Section 18.4-18.5 in [H]. As in Section 1, we consider here
only continuity properties in the Weyl calculus. Since these questions may
be discussed independently of the choice of symplectic coordinates, we
may formulate the results in such a way that the symbols are functions
or distributions on the symplectic vector space W = T*V = V 0 V’,
with symplectic form a. Here V is a vector space of dimension n  oo,

V’ its dual, and a (X, Y) = ~y, ~~ - ~x, r~~ , where X = (x, ~) E T * V and
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The metric g above should be slowly varying and a-temperature on
W, and we let hg(X) = be the Plank’s constant. (See
Section 18.4-18.6 in [H].) By Lemma 18.6.4 in [H], there are symplectic
coordinates (y,17) on W, such that gx(y,17) = Aj ( Yi 2 + 17i 2), where

~2 &#x3E; ’2013 ~ An &#x3E; 0 are uniquely determined by gx. In particular,
Kg (X) m ~1 ~2 ~ ~ ~ An is invariantly defined.

Some more notation will be needed in order to formulate the result.

If u is a smooth function on W then as in Section 18.5 in [H] we norm the
k:th differential of u at X E W by

and we set

We have now the following (cf. Proposition 5.1.5 in [Tl]).

PROPOSITION 5.1. - Let dp be the measure on the index set J C W
defined be a a-temperate metric on
W with 1, and let (Oj)jEj be a sequence of elements in Co (W ) with
the following properties:

(1) there is a bound for the number of overlapping supports of the Oj,
c, for some c;

(2) there is a positive number R and for each j an element Xj E W such
that

(3) there are constants CN when N = 0,1, 2, ... such that CN,
j = l, 2, ..., where gj and the norm is defined as in Section 4. l.

If q and where Kj = K(Xj), then 
a dJ-l-admissible partition to the order q, provided R is small enough.

We observe that dl-i is not necessarily periodic. In view
of Theorem 2.7 it follows therefore that Proposition 5.1 in some sense

generalizes Proposition 1.6.
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Proof. - If R is small enough, then we may choose a sequence (OP)
such that ~° E 1 in supp Oj and that (1)-(3) are fulfilled
when the Oj is replaced by ~° . This is in fact a consequence of Lemma 18.4.4
in [H]. Set Xj,q’ = where §j = ~° / ~ Oj. It is then easily seen that
the conditions (1)-(3) in Definition 1.4 are fulfilled for these choices of X
and k. It remains to prove that (4) in Definition 1.4 holds.

We start by consider the case q = 1. Let t = (tj) E l°° and set

at (X ) _ It follows from Theorem 18.6.3 in [H] that there is a
constant C, which is independent of t such that Hence

when p E 81 (R 2,) , and it follows that which

proves the proposition in this case.

Next we consider the case q = oo. By Section 2.2 in [T1] or Section 2
in [T3] it follows for some constant C independent
on j. This implies that supj (x~,1, cp) (  which implies that the
condition (4) in Definition 1.4, and the proposition follows in this case.

For general q we let 9 e ~0,1~ , and consider the mapping Te :
sq (IR2n) ~ l q, defined by the formula

where No is an arbitrary positive integer. From above we have that

for some constant C  oo independent on No. It follows now from

Proposition 8 and Theorem IX.20 in Appendix to IX.4 in [RS] that

C. Since No was chosen arbitrary we conclude that

and the proof is complete. D
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