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ON COMPLETE INTERSECTIONS

by Franc FORSTNERI010D

1. The results.

In this paper we give examples of closed complex submanifolds in
complex euclidean spaces which are differential complete instersections
but not holomorphic complete intersections (Theorems 1.1 and 1.2). We
also prove a result on removing intersections of holomorphic mappings
from Stein manifolds with certain complex subvarieties in euclidean spaces;
Theorem 1.3 below extends a result of Forster and Ramspott from 1966

[FRa].
Recall that a closed complex submanifold Y of codimension d in a

complex manifold X is a holomorphic complete intersection if there exist

d holomorphic functions f 1, ... , fd E such that

and the differentials d) are C-linearly independent at each
point x E Y. These differentials induce a trivialization of the complex
normal bundle NY = of Y in X. There is a partial converse
when X is a Stein manifold: If the normal bundle Ny is trivial then Y is
a holomorphic complete intersection in some open neighborhood of Y in
X (since a neighborhood of Y in X is biholomorphic to a neighborhood of
the zero section in the normal bundle Ny ; see [GR], p. 256). Similarly, a
smooth real submanifold Y of real codimension d in a smooth manifold X

Keywords: Complete intersections - Homotopy principle.
Math. classification: 32C25 - 32Q28 - 32Q55 - 57R40.
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is a differential complete intersection if there exist d smooth real functions

on X satisfying (1), with independent differentials along Y. For results on
complete intersections we refer the reader to the papers [Sch] and [BK] and
the references therein.

1.1. THEOREM. - There exists a three dimensional closed complex
submanifold in (C5 which is a differential complete intersection but not a
holomorphic complete intersection.

More precisely, given any compact orientable two dimensional surface
M of genus g &#x3E; 2 we construct a three dimensional Stein manifold Y which
is homotopically equivalent to M and whose tangent bundle TY is trivial
as a real vector bundle, but is non-trivial as a complex vector bundle. We
then show that any proper holomorphic embedding Y - C~5 (or Y - CC7)
satisfies the conclusion of Theorem 1.1. In fact, we prove

1.2. THEOREM. - Let Y be a Stein manifold of dimension m whose

tangent bundle is trivial as a real vector bundle, but is non-trivial as a
complex vector bundle. Choose integers m and d such that either

Then the image of any proper holomorphic embedding Y ~ cm+d
is a differential complete intersection but not a holomorphic complete
intersection in 

Multiplying our y3 C C5 by (C~ we obtain similar examples in higher
dimensions. Submanifolds of this type don’t exist in C’~ for n  3, but we
don’t know the answer for two dimensional submanifolds in (C4. Recall
that every smooth holomorphic curve in (Cn is a holomorphic complete
intersection [FRa], and so is every complex hypersurface in (Cn (since all
divisors on C" are principal).

Example 1. - There exists a Stein manifold X of dimension four
and a closed complex submanifold Y C X of dimension two such that
Y is a differential complete intersection but not a holomorphic complete
intersection in X. We can choose Y to have the homotopy type of the real
two-sphere. (See Proposition 2.4 in Section 2). D

In the remainder of this section we discuss the problem of removing
intersections of holomorphic maps from Stein manifolds into Cd with
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certain analytic subvarieties C C~. Our main result, Theorem 1.3,
contains as a special case the result on complete intersections due to
Forster and Ramspott [Fra]. To motivate the discussion we first look

at the complete intersections problem in the more general context of
complex spaces (with singularities). A closed complex subvariety Y of a
complex space X is a holomorphic complete intersection in X if there exist
d = dim X - dim Y global sections of the analytic sheaf of ideals Jy which
generate this sheaf at each point of X. Consider the short exact sequence

When Y is a local complete intersection of codimension d, the quotient
NY = is a locally trivial analytic sheaf of rank d with support on
Y, that is, a holomorphic vector bundle of rank d over Y. The dual bundle
NY of Ny is by definition the normal bundle of Y in X; in the non singular
case this coincides with the usual definition of Ny.

Suppose now that X is Stein and Y C X is a local complete
intersection of codimension d in X with normal bundle Ny. If Y is a

complete intersection then Ny is trivial (since its dual bundle Ny = 
is generated by the images of the generators of Jy and hence is trivial). The
following partial converse was obtained in 1966 by Forster and Ramspott
[FRa] by using the Oka-Grauert homotopy principle ([Gra], ~Car~ ) :

Let Y be a local complete intersection of codimension d with trivial
normal bundle in a Stein space X. Suppose that U C X is an open set
containing Y and the functions f -_ ( f l, ... , fd) E Jy
on U. If there is a continuous map f : X - Cd such that f - f near Y
and i~-1(0) = Y, then Y is a holomorphic complete intersection in X.
Such f always exists if dim Y  dim X/2, or if X is contractible and
dim Y 2(dimX - 1)/3.

Furthermore, M. Schneider proved that for any local complete in-
tersection Y C X with trivial normal bundle the sheaf Jy admits d + 1

generators (Theorem 2.5 in [Sch]).

Suppose now that £ is a closed complex subvariety of (Cd, f: X - C~
a holomorphic map from a Stein manifold X and Y C X a connected

component (or a union of such components) of f-l(2:). When is it possible
to modify f to a holomorphic map g: X - Cd such that g-1 (~) = Y and
g - f vanishes to a given order on Y ? A necessary condition is that we
can modify f to a continuous map with the required properties, and we
are interested in the corresponding homotopy principle. Example 2 below
shows that we must restrict the class of subvarieties to obtain positive
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results. Denote by Aut Cd the group of all holomorphic automorphisms of
Cd

DEFINITION 1. - A closed complex subvariety E C ~Cd is said to be
tame if there is E Aut Cd such that b (E) C r = {(~, Zd) E 

Every proper complex algebraic subvariety of (~d is tame. Conversely,
a subvariety E C Cd of pure dimension d - 1 contained in r is algebraic
[Chi], and hence Ed-1 C (Cd is tame if and only if it is equivalent to an
algebraic subset by an automorphism of Cd. For discrete sets our notion of
tameness coincides with that of Rosay and Rudin [RR].

1.3. THEOREM (Removal of intersections). - Let E be a closed
complex analytic subvariety of Cd satisfying one of the following conditions:

(a) E is tame and 2;

(b) a complex Lie group acts holomorphically and transitively on
.

Let X be a Stein manifold, f: X - C~ a holomorphic map and Y C X
a union of connected components of f-1(~). If there is a continuous

map /: ~ 2013~ C dwhich equals f in a neighborhood of Y and satisfies

f - 1 (E) = Y, then for each r E N there is a holomorphic map g: X ---+ C d
such that g-1 (~) = Y and g - f vanishes to order r along Y. Such
g always exists if dim X  2(d - dirn £), or if X is contractible and

The theorem on complete intersections [FRa] mentioned above cor-
responds to the special case of Theorem 1.3 with ~ _ {0} C (Cd; in this
case we have dim X - dim Y + d, dim = 0, and hence the dimension
conditions in both theorems agree.

Theorem 1.3 is proved in Section 4. Using the Oka-Grauert-Gromov
homotopy principle from [Gro], [FP2] we reduce it to an extension
problem for continuous maps to which we then apply some standard results
from the obstruction theory. The following example shows that Theorem 1.3
fails for non-tame subvarieties of Cd, independently of their codimension.

Example 2. - For each d &#x3E; 1 there is a discrete set E C (Cd such
that every holomorphic map g: has rank at most d - 1. When

d = 1, this holds already if E contains two points (the complement is then
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hyperbolic); for d &#x3E; 1 such sets were constructed by Rosay and Rudin [RR].
For such E the conclusion of Theorem 1.3 fails for Y = 101 C CCa = X. D

We observe that complements of tame subvarieties of codimension at
least two admit Fatou-Bieberbach domains; for proof see Section 4:

1.4. PROPOSITION. - For each tame complex subvariety E c C d
of codimension at least two there exists an injective holomorphic map
F: Cd ---+ Cd B E (a Fatou-Bieberbach map). If 0 ~ E, we can choose F
such that F(O) = 0 and F is tangent to the identity at 0 to arbitrary finite
order. The same is true if E is a compact subset of Cd whose polynomial
hull does not contain the origin.

1.5. COROLLARY. - Let E C Cd B 101 be as in Proposition 1.4.

If Y C X is a complete intersection of codimension d in a complex
space X, ure can choose generators fi, ... , fd of Jy such that the map

Proof. If g - (g1, ... , gd) is any set of generators for Jy and F
satisfies Proposition 1.4, the components of the map f = F o g : X ~ C d
are generators of Jy and we have f (X ) C Cd B E. 0

We conclude this introduction by mentioning two open problems.

Problem 1 (Murthy). - Let Y c C’ be a local holomorphic com-
plete intersection with trivial normal bundle. Is Y a complete intersection
in cn? In particular, is every closed complex submanifold Y C C’ with
trivial normal bundle a holomorphic complete intersection in C’? The

first open case to consider is five dimensional submanifolds in C8 [Sch].
The answer is negative for differential complete intersections (Example 1.1
in [BK]).

Problem 2. - If the answer to Problem 1 is negative in general, we
may ask whether there exists a closed complex submanifold Y C C’ with
the following properties:

(a) the complex normal bundle of Y in cn is trivial,

(b) Y is a differential complete intersection in C’, but

(c) Y is not a holomorphic complete intersection in cn.

The paper is organized as follows. In Section 2 we collect some
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preliminary material on vector bundles. In Section 3 we prove Theorems 1.1
and 1.2. In Section 4 we prove Theorem 1.3 and Proposition 1.4.

2. Preliminaries.

We begin by recalling some basic facts on real and complex vector
bundles over CW-complexes; the proofs can be found in [Hus]. The results
concerning complex vector bundles remain true for holomorphic vector
bundles over Stein spaces in view of the Oka-Grauert principle [Gra], [Car]
and the fact that any n-dimensional Stein space is homotopy equivalent to
an n-dimensional CW-complex [Ham].

We denote by Vect~(X) (resp. Vect~(X)) the topological isomor-
phism classes of real (respectively complex) vector bundles of rank k over
a CW-complex X. If X is a Stein space then by Grauert’s theorem [Gra],
Vect# (X) coincides with the equivalence classes of holomorphic vector bun-
dles of rank k over X. By Ti (resp. T¿) we denote the trivial real (respec-
tively complex) vector bundle of rank k over a given base (which will always
be clear from the context).

2.1. THEOREM. - Let X be an n-dimensional CW-complex. The

map

is surjective n and is bijective 

2.2. THEOREM. Let X be an n-dimensional CW-complex. The
map

is surjective when I~ &#x3E; [n/2] and is bijective when k &#x3E; [’+’]. In particular,
if E --+ X is a nontrivial complex vector bundle 2 the
bundle E 0 Tj is nontrivial for each r E N.

Remark. - Theorem 2.2 shows that any complete intersection sub-
manifold Y in C" is parallelizable, since TY s9 NY = Tcnly == T2 and Ny
trivial implies TY trivial. Likewise, any real submanifold Y C R N which is
a differential complete intersection is stably parallelizable, i.e., is

trivial. D

We shall also need the following result from [BK].
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2.3. THEOREM. - Each smooth submanifold Y C IRn of codimen-

sion d E ~ 1, 2,4,8} and with trivial normal bundle is a differential complete
intersection in 

Proof. - We recall the proof from [BK] for the sake of completeness.
By triviality of NY there is an open set U C Rn containing Y and a smooth
map f - which defines Y as a smooth complete
intersection in U. Let U* U B Y and let 0: U* ~ (the unit sphere
in be defined by ~(x) - If d E ~2, 4, 8~, admits

d - 1 linearly independent vector fields V2, - - -, vd . For x C U* we denote
by A(x) the d x d matrix whose first column is f (x) and the subsequent
columns are vj o cp( x), 2 _ j _ d. Let E - be the smooth rank d vector

bundle obtained by patching the trivial bundles over the open covering
Y) of by the map A: U B Y - GL(d, R). Since f = Ael for

el = (1, 0, ... , 0), the maps f and ei patch together to a global section
f : IRn ---+ E which has no zeros outside of U. Since every vector bundle over
Rn is trivial, f gives rise to a smooth map which defines Y as a

complete intersection in R . D

Remark. - Theorem 2.3 holds (with the same proof) if we replace
by any contractible smooth manifold. However, the argument does not

apply if d ~ f 1, 2, 4, 8 1, and the authors of [BK] conjectured that the
conclusion holds only for the indicated values of d. D

The following result justifies Example 1 in the introduction.

2.4. PROPOSITION. - There exists a Stein manifold X of dimension

four and a closed complex submanifold Y C X of dimension two which
is homotopy equivalent to the two-sphere such that Y is a differential
complete intersection but not a holomorphic complete intersection in X.

Proof. We take X to be the total space of a rank two holomorphic
vector bundle over a two dimensional Stein manifold Y such that the

bundle is trivial as a real vector bundle but non-trivial as a complex
vector bundle over Y. Its zero section, which we identify with Y, is

then a differential complete intersection but not a holomorphic complete
intersection in X. To obtain such a bundle we let ,5’ be the Riemann sphere
and set E = T¿ -7 S’, where TS is the holomorphic tangent bundle
of S. Since TS’ is non-trivial and the base has dimension two, Theorem 2.2

shows that E is non-trivial as a complex vector bundle. However, as a real
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bundle we have E = Tni) EB TRI which is trivial. We now take Y to be
a Stein complexification of S, containing ,S’ as a maximal real submanifold,
and we extend E to a holomorphic vector bundle X - Y. 0

It is instructive to carry out the above procedure explicitly by defining
a non-trivial complex structure on the trivial rank four bundle Tnt -~ S.
The last part of the argument below is essentially the same one which can
be used to prove Theorem 2.2.

Explicit construction of a non-trivial complex structure on E R 4 over
the 2-sphere: Let x - X3, X4) be real coordinates on R 4 and
let 4} be the corresponding standard basis of Let

S C {0} x R3 c Jae4 be the unit hypersurface sphere in the hyperplane
x1 = 0, and let V = ,S’ x R~. We can equip V with the structure of
a rank 2 complex vector bundle over ,S’ by choosing a map J: S - GL(4, R)
satisfying Jx2 - - Id for One such choice is = e2,

Jlle3 = e4; in this structure V - ,S’ is a trivial C-vector bundle over

S. Another choice is obtained by starting with

Let Y1 C Vx be the real 2-plane spanned by ei and Jxe1, and let Y2 C Yx
denote the orthogonal complement to Notice that V2 = TS and hence
it is nontrivial. Since V2 is an oriented plane bundle, we can choose an
orientation preserving J x: Y2 -~ Y2, depending continuously on and

such that Jx2 _ - Id on V2. (The choice is unique if we require that Jx be
orthogonal.) We then extend Jx by linearity to Vx.

We claim that the C-bundle (V, J) over ,S’ is not equivalent to the
trivial C-bundle (V, JO). Suppose on the contrary that there exists an
equivalence ~4:5’ 2013~ GL(4, R) between the two bundles, meaning that

J. The group preserving J° is precisely GL(2, C), and hence
for any map B: ,5’ ~ GL(2, C) we have

We claim that we can choose B such that B-1A-1e1 == ei on S. Since
S’3 , every map ,S’ = S’ ---+ is homotopic to a constant

map. Thus there is a homotopy vt: S - 1~4 B {0} (t E ~0,1~) from vo = el to
v, = A-lel. Denote by T: GL(2, C) ---+ R~ ) f 01 the map T(B) = Bel.
Clearly this map is a Serre fibration, i.e., it has the homotopy lifting
property. Thus there is a homotopy Bt : S’ ~ GL(2, C) (t E ~0, l~ ) , with
Bo = Id, satisfying Bte1 = vt for each t E [0, 1]. At t = 1 we get the desired
map B = B1 satisfying 
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Write C - AB ; hence J = CJOC-1. By construction we have
Cel = el and Ce2 = Jei. Thus C maps the trivial subbundle

U - I~2 x ~0~2 C Y onto the subbundle Vl C V, and hence it induces
an isomorphism of quotient bundles -- TS. This is a
contradiction since the first bundle is trivial while the second is not.

3. Proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.2. - Let F: Y --~ C~, n = m + d, be any proper
holomorphic embedding. We identify Y with the submanifold F(Y) C C’
and denote by Ny its holomorphic normal bundle. By the Oka-Cartan
theory we have a holomorphic splitting TY o Ny [GR]. Since Y
is a Stein manifold of dimension m, it is homotopy equivalent to a real m-
dimensional CW-complex. Since TY is a trivial real bundle of rank 2m over
Y, Theorem 2.1 shows that its complement NY is also real trivial provided
that 2d &#x3E; m. Furthermore, the real codimension of Y is 2d which is assumed
to be either 4 or 8 and hence Y is a differential complete intersection in cn

by Theorem 2.3. On the other hand, since TY is non-trivial as a complex
bundle over Y, Theorem 2.2 implies that Ny is also a non-trivial complex
vector bundle and hence Y is not a holomorphic complete intersection in
any open set U C C’ containing Y. (There are no restrictions on d and m
in the last argument). D

In the proof of Theorem 1.1 we shall need the following:

3.1. PROPOSITION. - For any compact orientable two dimensional
surface M of genus g &#x3E; 2 there exists a three dimensional Stein manifold

which is homotopically equivalent to M and whose tangent bundle is trivial
as a real vector bundle but is non-trivial as a complex vector bundle.

Proof. Let M be any surface as in the proposition; such M is
the connected sum of g &#x3E; 2 tori. Its tangent bundle TM is non-trivial,
but TM e El is trivial since M embeds as a real hypersurface in R 3. By
Theorem 1.8 in [Forl] there exists a smooth (even real-analytic) embedding
M ~ (~2 which is totally real except at finitely many complex tangent
points which are hyperbolic in the sense of Bishop [Bis] and such that the
embedded submanifold M C (C2 has arbitrary small Stein neighborhoods
Q C C2 with a deformation retraction 7r: Q - M.
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We endow TM with the structure of a complex line bundle and
take E = Q. By the Oka-Grauert theorem [Gra] the bundle
p: E 2013~ Q has an equivalent structure of a holomorphic vector bundle. In
the present situation we can obtain such a structure quite explicitly as
follows. Assume (as we may) that the embedding M C (C2 is real-analytic.
We can represent the bundle TM by a 1-cocycle defined by real-analytic
functions ci3: Uij - C ) 0 1 on a (finite) open covering U = of M such

that the closure of each of the sets Uij = 6~ n Uj for i is contained in

the totally real part of M (we only need to avoid the finitely many complex
tangents in M). The complexifications of the functions cjj now determine
a holomorphic line bundle structure on E over an open neighborhood of M
in C.

We claim that the total space E of this holomorphic vector bundle sa-
tisfies Proposition 3.1. Since the base Q is Stein, E is also Stein. Clearly
E is homotopy equivalent to Q and hence to M. We identify SZ with the
zero section of E. The tangent bundle of E equals T E = where

TEIQ = TQ o E = E. Since E - Q is a non-trivial bundle and the

base Q is homotopic to the surface M, Theorem 2.2 shows that TEIQ is

non-trivial as a complex vector bundle over Q, and hence TE is a non-
trivial complex vector bundle. On the other hand, as real vector bundles
we have E = (TQ o E). We have already observed
that the second summand is trivial and hence is a trivial real bundle.

Therefore TE is also trivial as a real bundle over E. 11

Proof of Theorem 1.1. - Let Y be a Stein manifold satisfying Propo-
sition 3.1. By the embedding theorem of Eliashberg and Gromov [EGr] and
Schürmann [Schür] there exists a proper holomorphic embedding Y - C5.
By Theorem 1.2 Y is then a differential complete intersection but not a
holomorphic complete intersection in C5 . The same argument applies to
any embedding y __4 C~7. 0

4. Removal of intersections.

Proof of Proposition 1.4. - Consider first the case when £ C (Cd is
a tame subvariety of dimension at most d - 2. For d we denote

by 7rj: CCd-1 the projection onto the coordinate hyperplane = 0}.
Tameness of ¿; implies that, after a biholomorphic change of coordinates on
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Cd, the restriction of 7rj to E is proper for each j, and hence (S) is a
proper closed analytic subset of By translation we may assume that

£j does not contain the origin for any j. Choose a holomorphic function
gj on such that and gj = 0 on and set

~ restricts to the identity on E, -D(O) = 0, and = 2 I. Thus 0 E (Cd
is an attracting fixed point of (D whose basin of attraction is a Fatou-

Bieberbach domain SZ C Cd B E. We obtain the corresponding Fatou-
Bieberbach map F: Cd ---+ 0 as in [RR].

If K is a compact subset in C dwhose polynomial hull does not contain
the origin, we can construct a Fatou-Bieberbach map F : Cd B K by
the push-out method of Dixon and Esterle [DE] (see also [For2]). Here is the
outline. Replacing K by K we may assume that K is polynomially convex
and 0 ~ K. Denote by Br the closed ball of radius r in (Cd. Proposition 2.1 in
[For2] (or the results in [FRo]) gives an automorphism Go E Aut C d which is
tangent to identity to a given order r at 0 and satisfies 0. Set

K1 = Go(K). Next we choose (D1 E Aut Cd which approximates the identity
map on B1, is tangent to the identity at 0 and satisfies n B2 = 0,
and we let Gl = o Go. Continuing inductively we obtain a sequence
G3 E Aut Cd ( j E Z+) which converges on some domain Q C Cd to a
biholomorphic map G: 0 ---+ Cd of G onto Cd (Proposition 5.1 in [For2]).
By construction G is tangent to the identity to order r at 0 and K n Q = 0.
The map F = G-1: Cd ---+ 0 satisfies Proposition 1.4. 11

Proof of Theorem 1.3. - We use the same notation as in the

statement of the theorem. Let Jr be the sheaf of ideals of E C (Cd and let

Jy be the sheaf of ideals of Y C X. We define an analytic sheaf of ideals S
on X as follows: at points x E Y we take Sx to be the pull-back of JE,f(x)
by f, and for x E X B Y we take Sx = Ox,x. More precisely, if x E Y and
if Jr is generated by functions hl , ... , hm in some neighborhood of f (x)
in we take the functions hj o f (1 ~ j ~ m) as the generators of S in
a neighborhood of x. Clearly S is a coherent analytic sheaf of ideals on X
and is supported on Y.

Choose r E N and let TZ = this is also a coherent sheaf of

ideals on X which coincides with Ox on X B Y. By the Oka-Cartan
theory there are finitely many global sections ~1, ... , Ç,k of R such that

Y = ~x E X:~(~) =0, 1  j  (We do not require that the £j’s
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generate We seek a map g : X - C dsatisfying Theorem 1.3 in the form

where G(x) == (gl (x), ... , g~, (x)) is a holomorphic d x k matrix-valued
function and £ = (Ç1,... ~~ ) t . For any choice of G the map g = f + G~
agrees with f to order r + 1 along Y. Our goal is to choose G such that
g-1 (~) = Y. Define a holomorphic map X x C - C~ by

and let

Then the map g = f + Gç satisfies Theorem 1.3 if and only if G is

holomorphic and its graph in X x avoids ~ defined by (3).
Observe that for each fixed x E X B Y the C d

is an affine surjection, while for x E Y we have 4l(x; ) - f (x) (hence
denote the base projection. We

shall need the following lemma.

4.1. LEMMA. - The set ~ defined by (3) is a closed complex
subvariety of X x Moreover, for each point a E X B Y there is

a neighborhood U C X B Y of a and a biholomorphic self-map T of
is affine linear for each

Proof. By definition E is a closed complex subvariety in (X B Y) x
Cdk . The second statement follows immediatelly from the observation that

(Cd is an affine surjection for any x E X B Y and hence is
locally (with respect to the base) equivalent to the projection of Cdk onto
Cd x .

It remains to show that ~ is closed in X x We need to show
that, as x E X B Y approaches a point xo E Y, the fibers £x leave any
compact subset of Choose a neighborhood V C Cd of the point f (xo )
and holomorphic functions h = (1~1, ... , hrn ) on V which generate the ideal
sheaf Jr on V. Also choose a neighborhood U C X of xo with f (U) C V.
Let Ç1, ... , Çk be sections of the sheaf R as above. By Taylor expansion of
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h at the point j

where A is a holomorphic d x k matrix function. Denoting by I I - I I the

Euclidean norm on (Cd (and the corresponding matrix norm) we have

The components of h( f (x)) generate the sheaf S at each point of U. Hence,
as z - zo e Y, the term 11Ç-(x)11 is of size by the definition of
the sheaf R = Hence for each C &#x3E; 0 there is a neighborhood UC C U
of xo such that for all x E UC and v C with C we have

and hence D(x, v) E E if and only if x E Y.
Thus for x E UC the fiber ~x does not intersect the ball of radius C in C~~ .
This proves that £ is closed in X x 0

We continue with the proof of Theorem 1.3. The assumptions on E
imply that the complement admits a spray in the sense of Gromov

(see [FP1] and Lemma 7.1 in [FP2]). ¿From this and the second statement
in Lemma 4.1 it follows that the holomorphic submersion h: Z - (X x
C~) B E 2013~ X admits a fiber dominating spray in a small neighborhood of
any point x E X B Y ([Gro] or Definition 1.1 in [FP2]). By Theorem 1.2
in [FP2] (see also [Gro], 4.5 Main Theorem) the homotopy principle holds
for sections of Z, meaning that any continuous section G : X -~ Z can be
deformed to a holomorphic section.

A continuous C~ of f as in Theorem 1.3 can be
lifted to a continuous section G: X -~ Z which is holomorphic near Y (see
Lemma 8.1 in [FP2]). The homotopy principle gives a holomorphic section
G:X 2013~ Z such that the corresponding map g: X ---~ Cd (2) satisfies

Theorem 1.3.

In the remainder we investigate the existence of a continuous exten-
sion f using the obstruction theory (see e.g. Section V.5 in [Whi]). By
[Ham] the subvariety Y has a closed neighborhood A C X such that the
pair (X, A) is homotopy equivalent to a relative CW-complex of dimension
n = dim X and Y is a deformation retraction of A. Moreover, we may
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choose A so small that {.c E A: f (x) E ~} = Y. Hence f maps A* = A B Y
C’ B E, and we wish to find an extension of f to a map from

The pair (X*, A*) can be represented by the same relative CW-
complex as (X, A). Denote by Xq its q-dimensional skeleton, so our goal
is to extend f to a map Xn -&#x3E; Q. We begin by extending f to the zero-
skeleton Xo by arbitrarily prescribing the values at the points of Xo. Since
Q is connected, we can further extend to a map Q. Suppose
inductively that f has already been extended to fq : Xq - Q for some q &#x3E; 1.
The next skeleton Xq+1 is obtained by attaching (q + I)-cells eq+1 to Xq
by maps aeq+1 --~ Xq. Composing this attaching map with fq: Xq ---+ 0 we
obtain for each such cell eq+1 a map which defines an element

of the fundamental group 7rq(O). In this way we obtain a singular cochain
cq+1 E rq+1(x*, A* ; 7rq(Q)) (which is in fact a (q + 1)-cocycle, called the
obstruction cocycle), and fq extends to a map fq+1: 0 if and only
if = 0.

In our case we have = 0 for 1  q  2s - 2, where
s = d - dim. This implies that f can be extended to the skeleton X2s-1.
Hence, if dim X  2s = 2(d-dim ~), we have an extension f : X BY --~ 
as required.

Assume now that X is contractible (e.g., X = C’). We shall use
the following more precise result from obstruction theory ([Whi], Theo-
rem V.5.14):
Let fq: Xq - Q for some q &#x3E; 1. Then fqlxq-1 can be extended

- 

-.&#x26;’ ... , ,

A*; 7rq(O)), i.e., the cohomology class of the obstruction cocy-
cle equals zero.

By excision we have ~(X~.4*;C) = Hq (X, A; G) for any abelian
coefficient group G. Since X is contractible, the long exact sequence for
the cohomology of the pair A - X gives Hq(A; G)
for q &#x3E; 1. Furthermore, since Y is a deformation retract of A we have

Hq (A; G) = G). Together we obtain

Since Y is a Stein manifold of dimension m, it is homotopy equivalent to an
m-dimensional CW-complex and hence Hq (Y; = 0 for q &#x3E; m. Thus,
if f : A* -~ SZ admits an extension to the skeleton it also admits an

extension to all higher dimensional skeleta and hence to X*. Earlier we
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have seen that there is an extension to X2s-1 with s = d - dim. If we
assume m + 1 ~ 2s - 1, we thus obtain a desired continuous extension of f
to X*. This completes the proof of Theorem 1.3. 0
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