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INVARIANTS OF TRANSLATION SURFACES

by P. HUBERT and T.A. SCHMIDT

0. Introduction.

A translation surface is a real 2-dimensional manifold with conical

singularities equipped with an atlas for which transition functions are

translations. The study of Euclidean billiards, the straight-line flow within
subsets of the Euclidean plane, quickly leads to translation surfaces. Indeed,
each holomorphic 1-form on a Riemann surface induces a translation

structure on the surface. There is a classic construction [KZ] which passes
from an Euclidean polygon to an associated translation surface, determining
a complex structure on the surface along with a holomorphic 1-form.

The study of billiards leads rather naturally to the more technical
ground of quadratic differentials and Teichmuller theory. The use of this
theory has resulted in deep results on the metric theory of the billiard flow.
Fundamental results obtained in this manner include those of Kerckhoff-

Masur-Smillie [KMS], H. Masur [M] and Eskin-Masur [EM]. The surfaces
associated to quadratic differentials are naturally 1/2-translation surfaces,
see [GJ2] for a discussion of these. Each such surface admits a translation
surface as a double cover. Thus the restriction to the translation surfaces
loses virtually none of this rich theory, but it does allow fairly significant
simplification of language.

Interest in translation surfaces has been greatly increased by the
deep results of W. Veech [Vel]. Veech introduced the study of the

diffeomorphisms of translation surfaces (punctured at the singularities)
which are locally affine with respect to the translation structure. The

Keywords : Flat surfaces - Teichmfller disks - Billiards.
Math. classification : 30F60 - 32G 15.
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differentials of these diffeomorphisms form a group, now called the Veech
group. Veech showed that this group has discrete image in PSL(2, R) . He
also showed that if the image is a lattice (i. e., if the group has finite

covolume), then the billiard flow on the surface is particularly attractive,
one has what has become to be known as the Yeech alternative : In each

direction this flow is either periodic, or it is uniquely ergodic.

There are a few examples of translation surfaces with lattice Veech
groups, including those found by Veech himself, see [Vo], [EG], [Wa], [KS].
There are also several results indicating that the lattice property is rare
amongst Veech groups. Surfaces with lattice Veech groups are of measure
zero with respect to a natural measure on the space of these surfaces

(of each fixed type) and amongst the translation surfaces given by
the [KZ] construction applied to acute nonisosceles triangles, there only
three within reasonable computability bounds which have lattice Veech
groups [KS]. On the other hand, the translation surfaces having arithmetic
lattice Veech groups are dense amongst all translation surfaces (of each
fixed type). (We discuss arithmeticity in §1.11.)

The question of which Fuchsian groups can be realized as Veech

groups seems completely open, other than a restriction that such a group
cannot be cocompact. By extending results of E. Gutkin and C. Judge on
arithmetic Veech groups [GJ2] we will show that there are groups which
can never occur as Veech groups: Any arithmetic Fuchsian group which is
not conjugate to a subgroup of PSL(2, Q) cannot be realized as a Veech
group. Thus, for example, whereas each of the Hecke triangle groups of odd
index were shown by Veech [Vel] to occur as Veech groups, we have the
following result.

THEOREM 1. - The Hecke triangle groups of index 4 and 6 are
not realizable as Veech groups. Furthermore, for each nonsquare natural
number N, the PSL(2,R) normalizer of the congruence group ho(N) is not
realizable as a Veech group.

By way of a simple example given in Section 2, we show that,
with minor accessory information (in our case, the genus of the surface),
the isomorphism class of the Veech group of a translation surface can
uniquely determine the surface. This determination is a priori up to affine
equivalence, i. e., up to a standard SL(2,M) action. In a general setting
one can hope for no better, as any two affinely equivalent surfaces have
isomorphic Veech groups. In our example there are distinguished elements,
and hence one can determine that surface up to translation equivalence. We
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will show by example that, in general, Veech groups are far from sufficient
to uniquely determine translation surfaces.

It is natural to study maps between translation surfaces. There are
two notions of coverings of translation surfaces in the literature. The first
of these is that for which E. Gutkin [G] has suggested the name balanced
translation covering. Here, not only does the covering map respect the
translation structures of the surfaces, but furthermore it is restricted such
that the singularities of the two surfaces are "aligned" - the map sends
singularities to singularities and the inverse images of singularities are
singularities. In the more general translation covering, one simply requires
that singularities be sent to singularities. Balanced coverings are better
adjusted to questions of Veech groups, as Ya. Vorobets [Vo] and Gutkin
and Judge [GJ2] have shown that commensurability classes of Veech
groups are preserved by such coverings. This implies in particular that
Veech’s fundamental lattice property is preserved in this setting. This is
not true under general translation coverings, as various examples in the
literature show, see say [Vo] or [HS].

It is frequently desirable to mark points on translation surfaces other
than true cone singularities - already with the case of genus one it is in
some sense necessary to mark at least one point. One then considers Veech

groups arising from affine diffeomorphisms on the surfaces with all of the
marked points removed. We show that the marking of additional points
preserves the lattice property if and only if these points are contained in
finite orbits under the original group of affine diffeomorphisms. This allows
us to point out the dramatic fact that if a translation surface has a lattice
Veech group, then the marking at random of an additional point will, with

probability one, result in a nonlattice Veech group.

We are particularly interested in the efficacy of lattice Veech groups
in identifying translation surfaces in the setting of balanced coverings of
translation surfaces. As we have already stated, the commensurability class
of the Veech group is an invariant in this setting. By refining the information
in the parabolic directions (see Definition 3 below), we define new invariants
of these coverings. Our invariants are based upon the connections between

singularities of a translation surface, thus are not far from the Veech group
itself, nor from such notions as the holonomy field as used by [KS] nor
the very related cross-ratio and trace fields as used by [GJ2]. These other
invariants are weaker than the Veech group - two surfaces having the same
Veech group must have the same holonomy, cross-ratio and trace fields.
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In their construction, these other invariants emphasize two-dimensional
aspects of the surfaces. Our invariants are closer to techniques used by
Vorobets [Vo] in that their main ingredient is the comparison of connections
in a single direction. However, we take a union over the parabolic directions.
This allows a global nature to the construction, and indeed our invariants
refine the invariant which is the Veech group, whenever the Veech group
has parabolic elements. As our examples will show, our invariants are in
practice quite easy to evaluate. In fact, one of our invariants is simply a set
of integral vectors.

We first use the invariants to show there are affinely inequivalent
translation surfaces which have isomorphic Veech groups. In order to do
this, we apply our invariants to exactly determine certain Veech groups -

each of the Veech groups in question were shown to contain lattice groups,
but their discoverers [Vo], [KS] did not show equality of the Veech group
and their indicated lattice subgroup. Our invariants allow us to very easily
show these equalities.

As we have already stated, results of Vorobets and of Gutkin-Judge
show that the commensurability class of Veech groups is an invariant

of balanced coverings. We apply our invariants to certain examples to
conclude that, in contrast to the arithmetic case, in general there is no

"final object" amongst translation surfaces having Veech groups of the
same commensurability class - that is, we show that there are translation
surfaces with commensurable lattice Veech groups which are each minimal

with respect to balanced coverings and yet are not affinely equivalent
surfaces.

Having seen that balanced coverings taken singly are insufficient to
account for all translations surfaces of a commensurability class of Veech

groups, we turn to trees of such coverings, see the definition of 35. Our
invariant allows us to show that there exist translation surfaces which

have isomorphic Veech groups but which cannot lie in any common tree of
balanced affine coverings.

One then must ask if perhaps at least each tree of balanced coverings
is identified by a Veech group which is a maximal Fuchsian group (this is
the case for the setting of arithmetic surfaces). Here again, our invariant
applied to particular examples shows that not even this is true.

Thus, we have the following theorems.
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THEOREM 2. - The translation surface arising from the Euclidean
triangle of angles ( ~r/2n,~r/2n, (n - cannot share a common tree of

balanced affine coverings with any surface which has a maximal Fuchsian
group as Veech group.

THEOREM 3. - The translation surfaces arising from the Euclidean

triangles of angles I have isomorphic Veech
groups but cannot share a common tree of balanced alfine coverings.

In our study of balanced coverings, we naturally discovered certain
facts about non-balanced coverings. Indeed, the aforementioned exclusion
of certain Fuchsian groups as Veech groups arose from studying various
coverings. As well, we show that there exist translation surfaces which cover
no translation surface whose Veech group is a maximal Fuchsian group.

Again, this is in contrast to the arithmetic setting.

In this introduction, we have mentioned the arithmetic Veech groups
several times. Here we briefly and very roughly indicate the state of
knowledge about them, see also §1.11. A noncocompact Fuchsian group is
called arithmetic if it admits a finite index subgroup which is PSL(2, R)
conjugate to a subgroup of PSL(2, Z). The fundamental result is that

of Gutkin and Judge [GJ2, Theorem 5.5]: A translation surface has an
arithmetic Veech group if and only if the surface is a translation covering
of a torus with one marked point.

One can think of this result of Gutkin and Judge as an analog of an
unpublished but rather famous result of J. Franks (see say, [F]): A pseudo-
Anosov diffeomorphism which has quadratic eigenvalue is the ramified

covering of a linear Anosov automorphism of a torus; see [BC] for related
results. There is an example of P. Arnoux and A. Fathi [AF] which shows
the failure of the natural generalization of this to the setting of eigenvalues
of degree greater than two. Our results in the non-balanced case can be
seen as analogs of their example.

We wish to thank P. Arnoux for various comments and questions as
well as M. Schmoll for various discussions about Veech groups and coverings.
The second-named author also thanks T. Drumm for discussions of the

geometry of translation surfaces, as well as the Institut de Mathématiques
de Luminy and the CNRS for providing a very pleasurable and stimulating
environment while this research was undertaken.
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1. Background.

For convenience, we collect in this section various basic notions,
notation and background results. We repeat here some of ~HS~ , ~ 1.

1.1. Translation surfaces from billiards.

A surface is said to be a translation surface if it is equipped with an
atlas for which the transition functions are translations in IR2.

A construction apparently due to [KZ] associates to each polygon
in R2 a translation surface. Briefly, one follows the straight line trajectory
of a billiard on the polygon, reflecting the polygon when the billiard reaches
an edge. If the polygon is rational angled, that is with all angles being
rational multiples of 7r, of say with least common denominator N, then 2N

copies of the polygon suffice to follow any billiard (whose trajectory does
not end in a vertex) by straight line path segments - one must identify
certain pairs of parallel edges by translation. This [KZ] -construction then
gives a finite genus translation surface possibly with singularities amongst
the vertices of the copies of the original polygon. The total angle about
each singularity is an integral multiple of 2~r.

As this construction takes place on the natural 1-form dz induces

a 1-form on the translation surface. There is a unique complex structure
for which this 1-form is holomorphic.

1.2. Translation surfaces from 1-forms.

One can as well begin with a holomorphic 1-form on a Riemann
surface. Integration gives local coordinates off of the zeros of the 1-form.
The charts so defined have translations for transition functions; one obtains
a translation surface. At a zero of the 1-form which is of multiplicity m - 1,
there is a singularity of angle 2rnJr.

Multiplying a given 1-form by a nonzero complex constant has

negligible effect. Multiplication by a real constant simply scales the area
of the translation surface; multiplication by a complex constant of norm
one merely rotates the charts, in effect inducing a different choice of the
standard, say vertical, direction.

Note also that there is no canonical direction in the [KZ] process -

dividing out by at least the natural action of the rotation group SO(2,R)
is completely natural here. Again, real constant scaling of a fixed polygon
clearly lead to scaled versions of the same translation surface.
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Thus, we will actually work in projective spaces of holomorphic
1-forms, identifying all nonzero complex multiples of a 1-form.

1.3. Near Teichmuller theory.

As mentioned in the introduction, our topic is closely allied with
Teichmfller theory. Each holomorphic quadratic differential on a Riemann
surface induces local coordinates; if the quadratic form is the square
of a holomorphic 1-form, then these coordinates are simply given in

the aforementioned manner: integration of the 1-form. Any real surface
admits an action of SL (2, R) on the set of its atlases - given an atlas, post
composition of its local coordinate functions with A E defines a

new atlas. Note that this action preserves the set of translation atlases.

Any given holomorphic 1-form determines a translation atlas; the
SL(2, R)-orbit of this translation atlas is comprised of translation atlases
arising from 1-forms. (This last - and much more - may be precisely proven
by combining results of [KMS] and of I. Kra [Kr].) In fact, [KMS] show that
the set of the squares of these 1-forms gives a Teichmfller disk of quadratic
differentials. Now, a Teichmfller disk admits a hyperbolic metric; with
respect to this metric, PSL(2, R) acts faithfully as the oriented isometry
group.

1.4. Fuchsian groups - discrete subgroups of PSL(2, R).
We have just seen a hint that PSL(2,R) plays a fundamental role in

the theory of our topic. Let us review some of the basics of the theory of
Fuchsian groups, the set of discrete subgroups of PSL(2, Ilg). Recall that
PSL(2, R) acts as oriented isometries on the hyperbolic plane in its Poincaré
half-plane model by way of fractional linear transformations.

Of fundamental importance for us will be the class of lattices.

A Fuchsian group is a lattice if it is of finite covolume (that is, the

quotient of the hyperbolic plane by the group has finite area).

Amongst the lattices are (Schwarz) triangle groups. We fix a triangle of
angles 1r / p, and 1r / r in the (extended) hyperbolic plane and consider the
reflections through the sides of the triangle. Each reflection is orientation

reversing; the group generated by the words of even length in these

reflections forms a Fuchsian group, see say, [B]. We call (p, q, r) the signature
of the triangle group. In fact, any two triangle groups of the same signature
are PSL(2, R)-conjugate. This being the case, we will sometimes speak
loosely and say the triangle group 0(p, q, r) to mean some group of this
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signature. (Indeed, in the theory of Veech groups it is conjugation classes
of Fuchsian groups which naturally arise.) Another important fact is that
triangle groups are maximal amongst Fuchsian groups: A triangle group
can only be contained in triangle (Fuchsian) groups, see say [B].

A particular class of triangle groups arises quite frequently. These are
the Hecke groups, of signature (2, q, oo). The Hecke group of index q = 3
is nothing other than the modular group PSL(2, Z). Each Hecke group is a
maximal Fuchsian group.

Recall from the introduction that a noncocompact Fuchsian group is
called arithmetic if it admits a finite index subgroup which is PSL(2,R)
conjugate to a finite index subgroup of PSL(2, Z). It is a result of A. Leut-
becher [L] that the Hecke groups are arithmetic for exactly the indices
q = 3, 4, 6.

Fuchsian groups are said to be commensurate or strictly commensura-
ble if they share a common subgroup of finite index in each. They are said
to be commensurable if a finite index subgroup of one conjugates within

PSL(2, R) to give a finite index subgroup in the other.

Warning - We follow the definitions of [GJ2] here. It is also common
to use the term commensurable to denote what they call commensurate!

A deep result of G. Margulis [M] see also [MR], implies that within
the strict commensurability class of a nonarithmetic Fuchsian group there
is a single maximal group. (Note that this does not hold in the arithmetic
setting: Each of the Hecke groups of index q = 3, 4, 6 is maximal.) Since
we will often identify groups only up to PSL(2, IR)-conjugacy, let us note
that the Margulis result clearly extends to hold for any Fuchsian group
conjugate to a nonarithmetic group.

We also will need to consider some aspects of the internal structure of
Fuchsian groups. Given an element A of PSL(2, R), we will simply represent
A by one of its corresponding elements in SL ( 2, Naturally, the trace is
then only defined up to absolute value. Recall that PSL(2, R) acts upon
the hyperbolic plane in its Poincaré half-plane model by way of fractional
linear transformations:

One solves for fixed points to find that an element A fixes exactly one
point on the boundary R if and only if A has absolute value of

trace equal to 2. Such elements are called parabolic. We say that a direction
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vector 8 in R2 is fixed by a parabolic element if one of the corresponding
elements of SL(2, R) fixes 0. Each parabolic element is PSL(2, R) conjugate
to a translation. Parabolicity is defined by trace, thus the conjugacy class
within any given Fuchsian group of a parabolic element is comprised of
parabolic elements. Furthermore, if an element is parabolic, then so is any
power of it. A primitive element of a group is one which is not the positive
power of any other element of the group. A maximal parabolic conjugacy
class of a Fuchsian group is a conjugacy class of primitive parabolic
elements. Of importance here is that each lattice group has a finite number
of maximal parabolic conjugacy classes. Furthermore, a result of C. Siegel,
see say [K], gives that any lattice is finitely generated.

1.5. Affine functions and Veech groups.

Let us fix a holomorphic 1-form W on a Riemann surface M and
let denote the set of the zeros of c~ . Let M’ : - M B Z (w). A diffeo-
morphism f : M’ -~ M’ which extends to a homeomorphism from M to
itself is called affine with respect to the translation structure on M induced
by w if the derivative of f is constant in the charts of cj and is given by
some fixed element A E SL(2,R). Note that this definition requires that
the extension of f and that of its inverse send to itself (permutation
of this set is allowed).

Away from zeros locally f (z) = where the ci depend only
on the chart of z. The set of all such functions is called the affine group of o,

The Veech group, h(c~), is the subgroup of SL(2, R) representing the
derivatives of the affine functions. In fact, Veech [VI] shows that the object
of main interest is this group taken up to projective equivalence; that is,
we need only consider the image of r in PSL(2, R). In what follows, we will
indeed simply write h (W ) for this corresponding subgroup of PSL(2, R).

This projective group acts on the Teichmfller disk given by
the quadratic differentials which are the squares of the 1-forms associated

(by way of the various affinely related translation structures) to c.~2. Veech
showed that acts discontinuously on this hyperbolic disk; that is, 
is a Fuchsian group.

The quotient of the disk by is a Riemann surface (its hyperbolic
structure identifies a complex structure) inside the Riemann moduli space
of M. It is a remark of Veech [Vel], see also [Vo], Proposition 3.3, that this
surface cannot be compact; in other words, must be noncocompact.
See [HI], [H2] for some remarks on the possible relationship of this new
Riemann surface to M.
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The fundamental Yeech alternative states that if the Veech group of

a translation surface is a lattice, then in each direction the billiard flow is
either periodic, or it is uniquely ergodic.

A fundamental open problem is to characterize which Fuchsian groups
are Veech groups.

1.6. Veech groups and automorphisms.

Given a rational angled polygon, the 2N (as in §1.1) copies which
comprise its associated translation surface are given by an action of the
dihedral group of order 2N. That is, one takes an original copy of the
polygon and a copy which is a reflection about an edge. One creates N
copies of this doubled polygon by applying the powers of the rotation of
angle These are all glued together to give the translation surface.
Thus there is an oriented self map on the surface whose differential is a

rotation of order N. Now, if N is odd then there is an element of order N
in the Veech group of the translation surface; if N = 2k is even, then there
is an element of order k in the (projective) Veech group.

In fact, self-maps of the type above induce automorphisms of the
underlying Riemann surface. Indeed, these are diffeomorphisms which are
locally rotations (up to translation); they are isometries. They clearly
preserve the conformal structure, and hence the complex structure of the

underlying Riemann surface.

1.7. Results on Veech groups from rational triangles.

We establish some notation to be used in the remainder of this paper.

Notation. - Let T(p, q, r) be the rational Euclidean triangle whose
angles are where n = p + q + r and 1 = gcd(p, q, r).

Let X(p, q, r) and cv (p, q, r) be the Riemann surface and its

holomorphic 1-form associated to the billiard flow on the Euclidean triangle
T(p, q, r). Furthermore, let r(p, q, r) be the Veech group of w(p, q, r).

be the Fuchsian triangle group for the angles 
(see say, [B]).

W. Veech [VI] showed that

THEOREM A (Veech). - For each n &#x3E; 5,
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Earle and Gardiner [EG] show, in our notation, that

Indeed, by inspection of their examples, they actually show the following
theorem.

THEOREM B (Earle-Gardiner). - Let the integer k &#x3E; 2. Then

There are various results indicating that Veech groups are rarely
lattices. Perhaps the most striking is the following.

THEOREM C (Kenyon-Smillie). - Let T = T(p,q,r) be an acute

nonisosceles triangle with p + q + r  10,000. Then r(p,q,r) is a lattice

group if and only if T is one of the following :

The first of these two cases were shown to give lattice groups by
Vorobets.

LEMMA D (Vorobets). One has that

Kenyon and Smillie proved that the third of these gives a lattice

group.

LEMMA E (Kenyon-Smillie). - One has that r(2,3,4) D A(9,oo,oo).

1.8. Marking extra points.

It is convenient to consider translation structures with some removable

singularities marked. We introduce notation for this purpose.

Notation. - Let denote the translation structure

on a surface M given by the 1-form w and having marked points PI
through pn in addition to the zeros of o. Given P of this sort, let M" be M

(having the structure of c,v) with both and the set of the pi removed.

The affine group, Aff (P), for such a marked translation structure is the
group of the affine diffeomorphisms which restrict so as to take M" to itself.
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The Veech group, h(7~), is then the (projective image of the) derivatives of
these affine diffeomorphisms.

For a fixed surface M, and marked structures P and Q, we write
P c Q if the marked structures have the same underlying 1-form, and the
marked points of P are amongst those of Q.

LEMMA F (see [HS]). - Let P and Q, P C Q, be as above. Then both
r (P) and r(Q) are subgroups Furthermore, there is a finite index

subgroup which is contained in r(P). is a lattice, then so
are and 

1.9. Translation and affine coverings, equivalence.

We say that a map f : M ~ N gives a translation covering of (N, Q)
by (M, P) if the restriction f : Me N" is such that 0 o f o are

translations where 0 and 0 are the (various appropriate choices of the)
local coordinates for the atlases of P and Q respectively. Note that a
translation covering is in particular a holomorphic (ramified) covering of
the corresponding Riemann surfaces.

Similarly, we say that a map f gives an affines covering of (N, Q) by
(M, 7~) if the restriction f : M" - N" is such that the aforementioned
compositions are of the form Az + where A is a fixed matrix in SL(2, R),
but the translation vectors c,,,, may vary with the choice of charts. Note

that an affine covering is in particular a quasi-conformal (ramified) covering
of the corresponding Riemann surfaces.

Let B be any matrix in SL(2, R) . We define (M, B o P) by replacing
the coordinate functions of the translation structure of (M, P) by their
post-composition with B. Let f give an affine covering of (N, Q) by (M, P).
If A is the matrix of the derivative of f, then we define f A to be the
covering of (N, Q) by (M, A o P). Similarly, we define f A to be the covering
of (N, A-I 0 Q) by (M, P). The following can be found in [Vo].

LEMMA G (Vorobets). - Let f give an afhne covering of (N, Q) by
(M,P). Let A be the matrix of the derivative of f. Then both fA and fA
are translation coverings.

If there is a degree one translation covering of one translation surface
by another, then the covering map admits an inverse, and we say that the
translation surfaces are translation equivalent. Similarly a degree one affine
covering gives an affines equivalence of translation surfaces.
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1.10. Commensurability results.

Given a general translation or affine covering of (N, Q) by (M, P),
it seems unclear as to exactly how and r(Q) are related. There is,
however, some vague knowledge of their relationship.

THEOREM H (Vorobets; Gutkin-Judge). - If there is a translation
covering of (N, Q) by (M,T~), then r(p) and are commensurate.

COROLLARY I (Gutkin-Judge). - If there is an afline covering of
(N, Q) by (M,), then r(p) and are commensurable.

In particular settings, these results can be strengthened. The following
observation of [AH] will be of use.

LEMMA J (Arnoux-Hubert). - The translation surface Jlil2n formed
by identifying opposite sides of a regular planar 2n-gon is balanced

translation double covered by T(1,1,2n - 2). The Veech groups of these
surfaces are isomorphic.

1.11. Arithmetic groups.

The fundamental result for arithmetic Veech groups is that of Gutkin

and Judge [GJ2], Theorem 5.5.

THEOREM K (Gutkin-Judge). - A translation surface has an

arithmetic Veech group if and only if the surface is a translation covering
of a torus with one marked point.

Note that the translation coverings of Theorem K are not necessarily
balanced.

We will show that there are arithmetic Fuchsian groups which can

never occur as the Veech group of any translation surface. For this the

following notions will be helpful. Fix a N E N, then

Let rB(N) be the PSL(2, R) normalizer of ro (N) . Each conjugacy class of
arithmetic groups has a representative inside some as shown by H.

Helling [H], see also [C].
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THEOREM L (Helling). - Given a noncocompact arithmetic Fuchsian
group, there exists N E 1~ such that rB(N) contains a PSL (2, R) -conjugate
of the given group.

Given a natural number N, let

It is easy to see that T is in But then one also notices that say

is in T B (N) . Thus if N is nonsquare, rB (N) is not a subgroup of PSL(2,Q).

2. Identifying translation surfaces by Veech groups.

We start with a rather special example to motivate our discussion of
the efficacy of the Veech group in identifying translation surfaces.

For various reasons most of the examples in the literature of

translation surfaces are the [KZ] surfaces of triangles. The following type
of construction seems well-known to the experts in the field, but has yet to

appear in the literature.

Definition 1. - The translation surface formed by taking a symmetric
rectangular cross of minor side length 1 and of internal length À &#x3E; 1 (see
Figure 1) and identifying opposite sides is called the cross of translation À.

Figure l. The cross of translation À
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LEMMA 1. - For each positive real a &#x3E; 1, the cross of translation A is
a genus two translation surface with a unique singular point. The surface
has an element of order two, T = ( °-o ), in its (projective) Veech group;
the corresponding affine diffeomorphism fixes the surface.

Proof. One easily finds that the internal vertices (again, see

Figure 1) are identified to give a single point of angle There are no

other singular points, hence the genus is indeed two. The visible rotational
symmetry of the cross gives the element of order two in PSL(2, R). D

LEMMA 2. - The cross of translation À5 = ) (1 + V~5) has as its Veech
group a triangle group 0(2, 5, oo).

Proof. Whenever A(À - 1) is rational, one easily succeeds with
the Veech construction of parabolic elements, see [Vel], Prop. 2.4, for the
vertical direction of the cross. Since a5(a5 - 1) = 1, one finds the parabolic
element ,S’ = (15 0 I

But, Sand T generate the Hecke group of index q = 5, see say [B].
Since each Hecke group is a maximal Fuchsian group, we have indeed

determined the Veech group. Finally, this Hecke group is indeed a triangle
group of the indicated signature. 0

The following is well-known, see say [S], or for a textbook discussion
[BL], p. 347.

LEMMA 3. - Up to isomorphism there is exactly one nonsingular
compact Riemann surface of genus two which admits an automorphism of
order 5. This is the Riemann surface of equation y2 = 1 - x5.

Recall that Veech [Vel] showed (in particular) that the Veech group
of the translation surface X(l, 1, 3) is (up to PSL(2, R)-conjugation) the
Hecke group of index q = 5. In that group there is a unique conjugacy class
of elements of order two. Thus, there is up to translation equivalence a

unique translation surface which is fixed by an affine diffeomorphism whose
derivative is (projectively) an element of order two. For ease of statement,
let us say that this surface is fixed by the element of order two in the Veech

group of X (1, 1, 3).

LEMMA 4. - The cross of translation À = 2 ( 1 + y’5) is translation
equivalent to the surface fixed by the element of order two in the Veech

group of X (1,1,3).
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Proof. - There is an element of order five in the Hecke group of index

q = 5. The subgroup generated by this element is unique up to conjugation
in the group. Now, the element of order five in the Veech group of the cross
of translation A = 2 (1 + V5) fixes a translation surface.

By Lemma 3, this new fixed translation surface has as its underlying
Riemann surface that of equation y2 = 1 - x5. Automorphisms of Riemann
surfaces act linearly on the vector space of holomorphic 1-forms of the
surface. In this case, a generator for the subgroup of automorphisms of
order 5 sends (x, y) to ((5x, y), where (5 is a primitive fifth root of unity.
Clearly, the forms and x dx/y are eigenvectors of distinct eigenvalues
for the action of these automorphisms. Hence, up to negligible constants,
the only 1-forms fixed by an automorphism of order five are these two.

(Recall the discussion of §1.2 of such negligible constants.) Therefore,
our apparently new fixed translation surface must in fact be translation

equivalent to the translation surface defined by one of these 1-forms.

Now, [EG] have shown that the Veech group of is isomorphic
to a triangle group A(5, 00, (0). Since the Hecke group of index five is

a A(2, 5, oo), our translation surface cannot be translation equivalent to
its surface. Veech [Vel] showed that the Veech group of X(l,1, 3) is a

A(2, 5, oo), and furthermore, that this translation surface is exactly that
given by the holomorphic 1-form 

We have identified the Teichmuller disk of the cross of translation

A -1 (1 + V5). Up to translation equivalence there is exactly one trans-
lation structure in this disk which is fixed by the element of order 2. 0

Remark 1. - There are various ways to simplify the above proof. In
particular, one could simply give the passage from the cross to X(1, 1, 3) as
an explicit affine map. We prefer the present proof, as it hints at some of
the algebraic aspects of Veech groups.

Remark 2. - The Riemann surface of equation y2 = 1- xn admits an
automorphism of order n which has distinct eigenvalues. This automorphism
is the exact analogy of that mentioned in the proof of the preceding lemma.
Furthermore, for n odd Veech [Ve2] gives a geometric property which
indicates that these Riemann surfaces are quite special amongst all those
of the same genus. Could it be that any genus g = L 2 (n - 1)~ translation
surface which has Veech group isomorphic to that of X(l, 1, n) - recall
that the underlying Riemann surface of is indeed of equation
y2 - 1 - xn must actually be affinely equivalent to X (l, 1, n)?
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3. Refining the Veech group - affine invariants of
parabolic directions.

The commensurability class of Veech groups is preserved under
balanced affine coverings, see [Vo], [GJI], [GJ2] and for some related

discussion [HS]. We ask for additional invariants in this setting.
We introduce the ingredients for our invariants, see [Vo] for related

notions. Until stated otherwise, we fix a translation surface (M, w) and a
pn ~ ) .

Definition 2. - A simple geodesic connecting two marked points
(passing through no others) is called a connection. (Recall that the zeros
of w are always amongst the marked points. Simple geodesics connecting
these are traditionally known as saddle connections.)

A direction vector 0 in R2 is a connection direction if there is a

connection in this direction on (M, w). (Note that each connection thus
defines two connection directions, 8 and -8. )

The atlas of (M, w) allows one to associate to each connection a

v E R2 (one uses the so-called holonomy of (M, w), see [KS] for discussion
of this notion). We call v E a connection vector if there is a connection

whose vector is v. Let V (P, 8) be the ordered n-tuple of all connection
vectors in the direction 8, where the ordering is by length. Let V(P, 0) be
the set formed by these vectors.

For eaeh v in V(P, 8), let n(v ) be the number of occurrences of v in
V(P, 8) . Let N(P, 8) be the sum of these n (v ) . Let vo be a shortest vector
in V(P, 8), and for each v in V(P, 8), let

be the scaled length of v. We define R(P, 0), the scaling vector, to be the
ordered N(P, 0)-tuple of the real numbers l(v). Here for eachu in V(P, 8),
£(£i ) occurs n(v ) times, and the ordering is by size of positive real numbers.
Finally, we define 8) , the counting vector, to be the ordered n-tuple of
natural numbers which, for each v in V(P, 0), reports the multiplicity n(v )
with ordering again by the size of the l(v).

Note that since P has only finitely many marked points, both R(P, 0)
and B) are indeed finite.
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Remark 3. - To summarize the above definition, the scaling vector
R(P, 0) is the N-tuple of reals by which one must scale a shortest connection
vector in the direction 0 to obtain all of the connection vectors in this

direction. The counting vector gives the number of connection
vectors in this direction which are of each possible length.

As shown by [Vo] and [GJI] , the two Veech groups involved in any
given balanced translation covering are commensurate - there is a common
subgroup of finite index in each. The following restatement of a result of [Vo]
is easily proved with the above ideas and definitions.

LEMMA 5 (Vorobets). Let M, P and 0 as above. If there exists
v E V(P ,0) such that n(~Y) 1, then any balanced translation covering
f : (N, Q) - (M,P) is such that C r(P).

Proof. This is [Vo], Proposition 5.3 restated in the present
vocabulary. 0

Notation. - Recall that for all A E whereas Aff (P) is

exactly equal to Aff (A o P), one has that the corresponding Veech groups
are conjugate. Let us denote general conjugation by A, with A - G,
then r (A o P) = A - r(-P).

Notation. - There is a natural linear action of SL(2, R) on ordered n-
tuples of 2-vectors given by extending the action on the individual vectors.
Let us denote this in our context by A * V(P, 9) .

The following lemma shows that SL(2,R) acts equivariantly on the
vectors of connections, V(P, 8) .

LEMMA 6. - Let (M,P) be a translation surface and 0 some direction
on this surface. Let A E SL(2,R). Then AB is a connection direction on

Furthermore, A * V(P, 0). As well, the equalities

Proof. - That 1/; == A9 is a connection direction and the equality of

V(A o P, AB) = A * V(P, 0) follow directly from the linearity of the action
of SL(2, R) on R~. The other equalities follow from this first one. 0

LEMMA 7. - Let M and P be as above. Let 93 be a parabolic
conjugacy class of the Veech group r(P). Suppose and 1/; are
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connection directions for P fixed by corresponding elements of ~. Then
there exists A E such that A * V(P ,0). Furthermore, the
equalities = N(P ,0) and R(P, 0) = R(~,8) hold.

Proof. Conjugate elements in fl3 fix 0 and V) respectively. Thus,
there is an A E r(P) such that 0 = A9. Hence, 0 is a connection direction
for A o P. By the previous lemma = A * V(P, 0). Thus our
conclusion holds once we have shown that V (A o P, ~) = V (P, ~) .

There is at least one f E Aff (P) whose derivative gives From

Lemma G, any such f gives a degree one balanced translation covering of
(M, A o ~) by (M, P). Hence, the set of connection vectors is the same for
both surfaces. Furthermore, the n-tuples of connection vectors in any fixed
direction is the same for both surfaces. In particular, they are the same for
the direction o and therefore V (A o ~, ~) = 1/J ). D D

Definition 3. - Suppose that M and P are as above and fl3 is a

parabolic conjugacy class of the Veech group F(P). A connection direction 0
is called a parabolic direction for ~3 if 0 is fixed by some element of this
conjugacy class. Choose any such 0. Using the previous lemma, we have the
definitions Ar(q3, 7~) :=./V(7~) and R(~, ~) . - R(P, 0).

PROPOSITION 1. - Let fl3 be a parabolic conjugacy class of the
Veech group of a translation surface (M,P). Then for any A E SL(2,R),

Proof. By the previous lemma, we can choose connection directions
0 for P and 0 = A8 for A o P which are fixed by elements of ~3 and A ~ fl3,
respectively and such that one has

and also

Therefore, Lemma 7 applies. 0

Definition 4. - Suppose that M and P are as above. Let i{} be the
set of maximal parabolic conjugacy classes of the Veech group r(P). Define

to be the set of the ~) and to be the set of the counting
vectors JV(q3.,, ~). We call the set of scaling vectors and JV(P) the set
of counting vectors.
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Now, let {Oi} be corresponding parabolic directions and let c(P)
be the greatest common divisor of the multiplicities of vectors in these
directions. That is, let

For each i and each if E V ( 8i ) , let

For each i, we define the weighted scaling vector, to be the
ordered of the ¿(if), ordering by size of positive real

numbers. We define M(fl3j), the weighted counting vector similarly. Note
that differs from only in that a common repetition of values
has been suppressed and similarly for R(q3i) and 

Finally, let R(P) be the set of the Define similarly. We
call R(P) the set of weighted scaling vectors and Ñ(P) the set of weighted
counting vectors.

From the preceding lemmas, it is clear that each of R(P), R(P), JV(P)
and N(P) is well-defined.

Remark 4. - To summarize the above definition, given a marking P
on M, R(P) is the set of the scaling vectors for the parabolic directions
of P and is the set of these except that common repetition, counted

by c(P), is eliminated. In particular, R(P) is a finer invariant of the "disk"
of (M, P). However, we will show that R(P) is an invariant of balanced

coverings. Similarly for Ñ(P) and Note also that our invariants are

independent of multiplication of 1-forms (giving the underlying structure
of the surface) by nonzero complex constants.

THEOREM 4. 2013 If/:(M,P) 2013 (N, Q) is a balanced affine covering,

Proof. By Proposition 1 and Lemma G, we may conjugate either
~ or Q so as to assume that f is a balanced translation covering.

Now, if f : (M, P) - (N, Q) is a balanced translation covering,
then in particular f takes the marked points of 7~ to those of Q, and the
pre-images of the marked points of Q are contained within those of P.
Thus, f gives an unramified covering, of say degree d, of N" by M". Here
double primes are used to denote the same translation surfaces, but with all
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marked points deleted. Let v be a connection vector for Q. The preimage
under f of each connection for Q of vector i7 is exactly d connections for P.
Since f is a translation covering, each of these preimages is also of vector 71.

The translation structures P and Q clearly share the same set of
connection directions. They also have the same set of parabolic directions.
Now, again since f is a balanced translation covering, the Veech groups r (P)
and r(Q) are commensurate, see [Vo] or [GJI] . Thus given p an element
in some parabolic conjugacy class q3 of r(,P), there exists n = n(p) E N
such that .pn E similarly for q parabolic in h ( ~) . Since pn fixes

a direction 0 if and only if p does, one indeed deduces that the sets of

parabolic directions for P and Q are one and the same. (The proofs of
the commensurateness of the Veech groups also are based upon use of the

d-sheeted unramified cover of the punctured surfaces.)
From the preceding paragraph, the set of parabolic directions is

exactly the set of parabolic directions for Q. Furthermore, in each direction,
each connection vector 71 occurs exactly d times as often as a connection
vector for P as it does for Q. However, R(Q), is defined such that each l(71)
occurs only n(v ) times; thus, the possibly complicating multiple d has been
factored out. Finally, each parabolic direction is a parabolic direction for
some maximal parabolic class. Since the invariant R is defined as a union
over these maximal parabolic classes, we find that the sets R(Q) and R(P)
are indeed equal.

Of course, the same is true for N(P) and R(Q). El

Remark 5. - The maximal parabolic conjugacy classes of commen-
surate Fuchsian groups are in general in many-to-many correspondence.
Indeed, a parabolic class of some group h may well split into several classes
in the finite index subgroup which is common with a commensurate r.
These parabolic classes may then unite amongst themselves (or even with
other parabolic classes) to form one or more parabolic classes in f.

In terms of Veech groups, given a balanced translation covering
f : (M,P) - (N, Q), F(Q) and are commensurate. We have shown

that the two sets of parabolic directions are the same. The respective
maximal parabolic conjugacy classes of the groups partition the parabolic
directions by way of the equivalence relation of being a parabolic direction
for a particular maximal parabolic conjugacy class. These two partitions
may be quite different; however, the invariants R(P) and are indeed

equal.
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Definition 5. - We call a translation surface (M, P) minimal with
respect to balanced affine coverings if the existence of a balanced affine
covering f : (M, 7~) -~ (N, Q) implies that f is of degree one and hence
that (M, P) and (N, Q) are affinely equivalent.

LEMMA 8. - If (M,P) is a translation surface such that c(P) = 1,
then (M,P) is minimal with respect to balanced affine coverings.

Proof. If f : (M, P) --4 (N, Q) is a balanced affine covering, then f
is a topological covering for the surfaces with the marked points removed.
Thus, if f is of degree d, then d divides c(P). Hence, if = 1, then f
must indeed be of degree 1. 0

4. Applicat ions t o t he arit hmet ic setting.

Recall that a Fuchsian group with parabolic elements is called

arithmetic if it is commensurable with PSL(2, Z). Gutkin and Judge [GJ2],
Theorem 5.5, have shown that a translation surface (M,P) has an

arithmetic Veech group if and only if there is a covering of translation
surfaces of some torus with one marked point by the (M, P). Their result
does not require that this covering be balanced, but simply that the marked
points of P be sent to the marked point on the torus. The inverse image of
the marked point of the torus may strictly contain the marked points of P.

Definition 6. - We call a translation surface (M, 7~) balanced

arithmetic if it admits a balanced covering to a torus with one marked

point.

With this definition in hand, Lemma 5 with Theorem K implies the
following.

COROLLARY 1. - The Veech group of any balanced arithmetic

translation surface is conjugate to a subgroup of PSL(2,Z).

Proof - By the Gutkin-Judge result (Theorem K) and Lemma 5
(or simply Vorobets’ own [Vo], Proposition 5.3), the Veech group of

any balanced arithmetic translation surface is contained in that of its

corresponding torus with one marked point. But, each such torus has its
Veech group conjugate to PSL(2, Z). D
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Which arithmetic groups might arise as Veech groups in the non-
balanced case? An easy calculation shows that the arithmetic Hecke groups

G4 and G6 cannot. This leads to the following characterization. A fairly
direct consequence of the result of Gutkin and Judge, this gives the first
obstruction to noncocompact Fuchsian groups appearing as Veech groups.

THEOREM 1’. - The Veech group of any arithmetic translation surface
is PSL(2,R) conjugate to a subgroup ofPSL(2,Q). In particular, the Hecke
groups G4 and G6 never occur as Veech groups. Furthermore, if N is a

nonsquare natural number, then (as defined can never

occur as a Veech group.

Proof. By an affine change and thus a conjugation of the Veech
group, we may assume that we have an arithmetic translation surface

(M, P) which covers the square torus. Consider the marking Q which
contains 7~ and such that (M, Q) is a balanced arithmetic translation

surface. By Corollary 1, r(Q) is a finite index subgroup of PSL(2, Z).
Furthermore, r(Q) admits a finite index subgroup which is also a subgroup
of Thus, of course, is an arithmetic group.

Now, the lattice Ao (P) in R2 generated by the connection vectors of P
is clearly a finite index sublattice of the corresponding Ao(Q), see [KS] for
the notion of Ao. Due to the translation covering, both Ao (P) and 
are of finite index in Z2. Since the Veech group r(P) sends Ao (P) to itself,
IF (-P) c PSL (2, Q) .

The elements

belong to G4 and G6, respectively. Since conjugation preserves traces,
neither of these groups can be conjugate to subgroups of PSL(2, Q).
However, G4 and G6 are arithmetic [L], see [K] for a textbook discussion.
The Gutkin-Judge result implies that these groups can only appear as the
Veech group of arithmetic translation surfaces. We conclude that they do
not in fact ever occur as Veech groups.

Recall that when N is a nonsquare natural number FB(N) is not

contained in PSL(2, Q). Thus, the theorem follows. D

Remark 6. - From Helling’s result, Theorem L, we have virtually
located all of the arithmetic groups which can fail to be Veech groups due to
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their traces being nonrational. To obtain this explicitly, one need determine
exactly which subgroups of the rB (N) fail to have rational traces.

Remark 7. - After completing this work, we noticed that an

application of Theorem 28 of [KS] easily shows that if A is a hyperbolic
element of PSL(2,M) such that the field Q(tr A2) does not contain tr A
(where tr indicates the absolute value of the standard trace), then A cannot
be an element of a Veech group.

Each Hecke group of even index has such an element : let A = ( ~/ ~§ ) ,
where A = 2 cos One checks that A is a hyperbolic element of the Hecke
group of index q. The field extension degree [Q(tr A) : Q(tr A2)] = 2 if and
only if the index q is even. We conclude that no Hecke group of even index
can be realized as a Veech group. Of course, Veech [Vel] showed that every
Hecke group of odd index is realized as a Veech group.

5. Trees of balanced coverings.

A tree of balanced coverings gives a way to pass from one translation
surface to another, without requiring that there be a map between these
two surfaces.

Definition 7. - A tree of balanced affine coverings is a lattice of

morphisms connecting objects in the category of finite genus translation
surfaces with morphisms being balanced afhne coverings. That is, it is a

collection of translation surfaces (Mi, Pi) and of balanced affine coverings
fa,~ : (Ma, P~) -~ P(3) such that for each pair of consecutive integers
(i, i + 1) in the index set, one has exactly one of fi,i+1 or fi+1,i.

COROLLARY 2. - Both the set of weighted scaling vectors, R(P), and
the set of weighted counting vectors, N(P), are invariants of lattices of
balanced affine coverings.

The following lemma follows directly from the case of a single covering,
[Vo], [GJl].

LEMMA 9. - Both the property of having a Veech group which is a
lattice Fuchsian group and that of having a Veech group with parabolic
elements is preserved within trees of balanced affine coverings.
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COROLLARY 3. - Suppose that the marked translation surface (M,P)
lies within a tree of balanced affine coverings which includes a marked
translation surface whose Veech group is a Fuchsian group with exactly
one maximal parabolic conjugacy class. Then each of the sets R(P), R(P) ,
N(P), and Ñ(P) is a singleton set.

Proof. If (N, Q) is such that r( Q) has a single maximal parabolic
conjugacy class, then R(Q) is a singleton set. If (N, Q) shares a common
tree with (M, P), then by Theorem 4, R(P) is also a singleton set. But
then even the R(~3) must be the same for all maximal parabolic conjugacy
classes i3 of the Veech group 0

Definition 8. - Given n &#x3E; 2, let be the translation surface

formed by identifying opposite sides of a regular planar 2n-gon.

Theorem B, first given in [EG], shows in particular that the Veech
group of each has two parabolic conjugacy classes. The following
result on .N-invariants is then obtained by a simple induction with respect
to quantities from elementary plane geometry, see Figure 2 and Figure 3.

Figure 2. Computing for surfaces of regular 4k-gons; here k = 2.

LEMMA 10. - The translation surface M2n, with its natural marked

structure, has set of counting vectors
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Figure 3. Computing N(w) for regular (4k + 2)-gons; here k = 2.

THEOREM 2’. - The translation surface X ( 1,1, n - 2) with n = 2m
cannot share a common tree of balanced afhne coverings with any surface
which has as its Veech group a maximal Fuchsian group.

Proof. - Theorem A gives Veech’s result: If n = 2m is even, then the
Veech group of X ( 1,1, n - 2) is a A (rn, oo, oJ) . This is an index 2 subgroup
of a A(2, 2m, oo), it is thus not a maximal Fuchsian group.

Now, ~(1,1, 2m-2) is a translation double cover of M2m, as Lemma J
states. But, Lemma 10 shows that the set of weighted scaling vectors for the
J4 2rn are not singletons. Hence, the same is true for the maximal parabolic
weighted relation vectors for these X ( 1,1, n - 2). Corollary 3 now applies
to finish our proof. 0

Recall that there are three exceptional acute nonisosceles triangle
translation surfaces within reasonable computability bounds [KS]. Vorobets
[Vo] determined that the Veech groups of two of these were contained in
certain maximal triangle Fuchsian groups, Kenyon and Smillie determined
that the third of these has Veech group also contained in some maximal

triangle Fuchsian group. In fact, in all three cases it was shown that the
Veech group in question is either of index two or is the maximal triangle
Fuchsian group. It turns out that the index two subgroups in question all
have more than one (in fact two) maximal parabolic conjugacy class, but
each corresponding maximal triangle Fuchsian group only has exactly one
such class. Thus, we are able to apply Corollary 3 and show that in all of
these cases, the Veech group is actually of index two in its (unique due to
nonarithmeticity) maximal Fuchsian group.

LEMMA 11. - The translation surfaces X(2,3,4), X(3,4,5) and
X(3,5,7) have Veech groups A(6,oo,oo) and A(15,00,00)
respectively. Each of these is a non-maximal Fuchsian group.
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Proof. The proof for each of these three cases is virtually the same.
Let us treat X (3, 5, 7) in detail.

Vorobets showed that the Veech group r(3, 5, 7) contains the triangle
group A(15, oo, oo) . This group is an index 2 subgroup of a maximal triangle
group, a A(2, 30, oo). Since the nonarithmetic Hecke group of index q = 30
is of signature (2, 30, oo), any A(15, oc, oc) can be strictly contained in at
most one Fuchsian group, thus in a A(2,30, oo).

Since a A (2, 30, oc) group contains exactly one maximal parabolic
conjugacy class, it suffices to show that the Veech group of X (3, 5, 7)
contains two distinct maximal parabolic conjugacy classes (or as [Vel]
writes, two noncommuting idempotents). For then this Veech group must
in fact be a A(15, oc, oo).

Now, Vorobets has already determined the connection vectors (and
more) in a certain direction. For the convenience of the reader, we
have copied [Vo], Figure 5, as our Figure 4, adding in labels for vertical
connection vectors. The determination of the cylinders in the vertical

direction by Vorobets allows one to conclude that the corresponding 0)
is (1,1,2,3).

Figure 4. X (3, 5, 7), from [Vo] ; N(P, 0) -- (1, l, 2, 3).

We now consider the horizontal direction, see Figure 5. It is sufficient
to notice that there are two shortest connection vectors in this direction to

conclude that the counting vectors for these two directions are not equal.
This implies the desired result for the case of X(3, 5, 7).
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Figure 5. X (3, 5, 7), the horizontal connections. e’) _ (2, 2,1, 2) .
For the case of X(2, 3, 4), we use [KS], Figure 7, and the related

discussion of [KS] to find that in the vertical direction the counting vector
is ( 1, 2, 3) . Study of the horizontal direction gives that both shortest vector
and second shortest vectors are singletons. Therefore, we have found a
distinct counting vector.

For the remaining case, that of X(3, 4, 5), we use [Vo], Figure 4 and
find that in the vertical direction there, the counting vector is (2, 3). In
the horizontal direction we will certainly find the same (there is a rotation
of -7T in the group already determined). However, we consider the direction
angle i 7r from the horizontal and find (1, 4). 0

The following gives an example of two translation surfaces of

isomorphic Veech groups but which cannot be placed in a common lattice
of balanced coverings.

THEOREM 3’. - The translation surfaces X(2,3,4) and X (1,1,16)
have isomorphic Veech groups but cannot share a common tree of balanced
coverings. The same is true for X(3,4,5) and X ( 1,1,10) as well as for
X(3,5,7) and X(l, 1, 28).

Proof. The isomorphisms of the groups follows from the preceding
lemma and Theorem A.

It now suffices to note that the Ñ-invariants are unequal for each of
the indicated pairs. Again by Lemma J, each of the X ( 1, l, 2n) is a balanced
covering of the corresponding M2m(n). The R-invariants for the X (1, 1, 2n)
are thus deduced from Lemma 10. On the other hand, the N- and hence
Ñ-invariants for the exceptional acute triangles’ surfaces are determined in
the proof of Lemma 11. These invariants are easily compared and seen to
be distinct. Therefore, an application of Corollary 2 proves our result. 0
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6. Nonminimality in general translation
coverings.

If a translation surface has an arithmetic Veech group, then the

Gutkin-Judge result states that this surface admits a translation covering
of a marked torus. We now show that there are two translation surfaces

both of which are minimal with respect to translation coverings, but which
have isomorphic Veech groups. We use the following two lemmas.

LEMMA 12. - If (M,P) is a translation surface with exactly one
marked point and whose Veech group is nonarithmetic, then (M,P) cannot
be the translation cover of a translation torus (1f, Q) with any number of
marked points.

Proof. Suppose that a general translation surface (M,P)
translation covers a torus (T, Q). Since all marked points on the torus are
removable singularities, this (M, P) also translation covers the torus (1f, ~’)
for every marking c Q of T which contains all of the images of the marked
points of (M, P). In the case that (M, ~) is a translation surface with exactly
one marked point, this implies that (M, P) can in fact translation cover
a translation torus with a single marked point. But, by Theorem K, the
Veech group of such an (M, P) would then be arithmetic. We have reached
a contradiction: There can be no torus translation covered by our (M, P).

m

LEMMA 13. - Let (M,P) be a translation surface of genus 3. If the
angles of the singularities of (M,w) are not equal in pairs, then (M,’P) can
be a translation cover of no translation surface of genus 2.

Proof. By the Riemann-Hurwitz formula, a Riemann surface of

genus 3 can only cover a Riemann surface of genus 2 by a degree 2
unramified map. Now, the pull-back of singularities under such a map
doubles the number of the singularities but preserves the angles. (For an
earlier use of these arguments, see [AF].) 0

THEOREM 5. - The translation surfaces X(3,4,5) and J42 are each
of genus 3 and of a single singularity, have isomorphic Veech groups, are
not affinely equivalent and each is minimal with respect to affine coverings.

Proof. - Theorem B and Lemma 11 show that the Veech groups are

indeed isomorphic. The respective N-invariants are given in Lemma 10 and
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in the proof of Lemma 11; they are easily seen to be distinct. Theorem 4
hence shows that these translation surfaces are not affine equivalent.

The translation surface X(3, 4, 5) is one of the exceptional examples
of [Vo]. Vorobets already pointed out that it has one singularity. An easy
angle calculation shows that the surface is of genus 3. Thus Lemma 13

shows that it can cover no genus two translation surface. Its Veech group is

nonarithmetic and hence Lemma 12 shows that it can cover no genus one

translation surface.

Lemma J states that A412 is balanced translation double covered by
X(1,1,10) and has the same Veech group. Thus in particular it has a

nonarithmetic Veech group. Furthermore, an easy calculation shows that
A412 is a genus 3 surface with one singularity. Again, Lemmas 12 and 13
show that it is minimal with respect to affine coverings. D

7. Preserving the lattice property.

In attempting to force an arbitrary covering of translation surfaces
to be balanced, one may well need to add points to the covered structure.
Suppose one is in the most interesting case, where the Veech groups are
lattices. What are the possible sets of additional points which one can mark
on a surface while preserving the property of having a lattice Veech group?

THEOREM 6. - If (M,P) is a translation surface of genus at least 2
such that is a lattice and Q is a marking of M containing P, then

r( Q) is a lattice if and only if no marked point of Q lies in an infinite
A f f(P)-orbit.

Proof. By definition, the marked points of Q form a finite set. If
none of these lies in an infinite Aff (P)-orbit, then the union ,S’ of all of their
Aff(P)-orbits is still a finite set and Aff (P) clearly acts on this finite set S.
The subgroup of Aff (P) which acts trivially on ,S’ then has finite index in

Aff (P) . But this subgroup is also a subgroup of As the derivatives

of this finite index subgroup of Aff(P) form a finite index subgroup of the
lattice h (P) , these derivatives form a lattice group. Thus we have found
a subgroup of which is a lattice. Therefore, r(Q) itself must be a
lattice.

Now, suppose that is a lattice. Since the marked points of P
form a finite subset of those of Q, the subgroup StabAff(Q) P of Aff(()
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which stabilizes the marked points of 7~ has finite index in Aff( Q) . Hence
the corresponding derivatives form a finite index subgroup of h ( ~) . Since
r(Q) is a lattice, so is this subgroup. But, StabAff (Q) P is also a subgroup
of Aff (P). Therefore the lattice group of its derivatives is a subgroup
of it must be of finite index, as any noncocompact lattice group must
be of finite index in any Fuchsian group containing it.

We would like to use the finiteness of the index of the derivatives of

stabaff (Q) P in r(P) to show that StabAff(Q) P itself is of finite index in
Aff (P). In order to do this we need to contemplate the group homomorphism
from Aff(P) to PSL(2, R) which is given by taking derivatives (and then
projectivizing). The kernel of this homomorphism is a subgroup of the
automorphism group of the underlying Riemann surface of M - if an affine
diffeomorphism has trivial derivative, it certainly preserves angles, thus
is a conformal map. But, since the genus of M is at least 2, M has a
finite automorphism group. Hence, the kernel of the map from Aff(Q)
to PSL(2,R) is finite. (For an earlier use of this argument, see [Vel].)
Therefore, the index of StabAff (Q) P in Aff (P) must also be finite.

Now choose in Aff (P) finitely many coset representa-
tives. The Aff (P)-image of the set of marked points of Q is simply the
union of its images under the coset representatives. But the set of coset

representatives is finite. Therefore, this image is a finite set. But, it contains
the Aff (P)-orbit of each marked point and thus each of these orbits is finite.

D

Remark 8. - Note that in the above the restriction on the genus was

only used to ensure that the number of automorphisms of the surface be
finite. This is true under the hypothesis of the surface having sufficently
many marked points in the genus g = 0 and 1 cases.

As a corollary to the above, we have the dramatic fact that adding
almost any point to a marking which has a lattice Veech group will cause
the loss of the lattice property.

COROLLARY 4. - Given (M,P) a translation surface with lattice
Veech group r(p), scale the natural measure given by the area form of M
so as to obtain a probability measure on M. Choose a point q at random
with respect to this measure and let Q be the marking containing P and
with the added marked point q. Then with probability one with respect
to q, r(Q) is not a lattice.
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Proof. - Recall that any Veech group is noncocompact, thus a lattice
Veech group must have parabolic elements. We fix a maximal parabolic
element of r(p). By the fundamental Veech criterion [Vel], there is a

decomposition of M into cylinders in the fixed direction of the parabolic
element such that the appropriate powers of the linear Dehn twists in the

cylinders patch together to give an element of Aff (P).

By a transformation of finite Jacobian, we can bring any cylinder
to the form of the square. Hence, consider the linear Dehn twist on a

single square cylinder of side length one: T(x, ~) _ (x, x + y mod 1). The
twist fixes the vertical sides and has finite orbits along the line segments
of equation y = mx + b with m, b rational numbers. The union of these
countably many line segments is of course of measure zero. We thus find
that the points of finite orbits for any of our linear Dehn twists form a set of
zero area. Taking the sum over finitely many cylinders still gives area zero.

Therefore, the set of points of M which have finite Aff (P)-orbits is
clearly of measure zero. 0

The following underlines this difficulty of marking points and

preserving the lattice property.

LEMMA 14. - Let (M,P) be a translation surface such that r(P) is a
lattice and let Q be a marking of M containing P. Ifr(Q) is a lattice then
the set of connection directions of (M, P) equals that of (M, Q).

Proof. Let 0 be a connection direction for Q. Thus there is a

parabolic element, say T, of r(Q) fixing 0. By Lemma H, r(Q) has a finite
index subgroup contained in h(7~). But, this means in particular that some
power of T must be in r(~) . Powers of parabolic elements of course fix
the same directions as the original parabolic elements. Therefore, 0 is a
connection direction for P.

Now suppose that 0 is a connection direction for P. Since r(Q) is

a lattice, the finite index subgroup of it which is also a subgroup of r(P)
must also be a lattice. This implies that this subgroup must also be of finite
index in r(~). Let U E r(P) fix the direction 0. There is a finite power
of U in r( Q) . Since this power also fixes the direction 1/;, we conclude that
is a connection direction for Q. 0
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9. Final comrnents and further questions.

The main open questions about Veech groups are: 1) Which Fuchsian
groups appear as Veech groups? and: 2) How do Veech groups change under
affine coverings?

We have shown that (conjugacy classes of) Veech groups do not
uniquely determine trees of balanced affine coverings. Could they possibly
uniquely determine trees of general affine coverings? We doubt this; we view
the example given in Theorem 5 as reason for our doubts. Does the Veech
group with the additional information of our invariants uniquely determine
such trees?

Is the Veech group of any covering surface actually a subgroup of
the Veech group of a surface which is minimal for that tree? We have no

counterexamples to this, and of course the answer is affirmative for generic
balanced covers, as one will generically have some connection vector which
is a singleton (see Lemma 5).

We would like to see further results on exactly which points can be
marked on a translation surface of lattice Veech group and still preserve
this property. In particular, it would be interesting to have algebraic
characterizations of these points as well as an algorithm for determining
them.

The relationship between uniformization of a surface by a Fuchsian
group and related Veech groups remains mysterious. Remarks of [HI], [H2]
clearly indicate that there are deep arithmetic connections.

Similarly, it would be interesting to see if one could characterize the

points of the (usual, say) boundary of Riemann moduli space which can
arise as cusps of quotients of Teichmfller disks by (lattice) Veech groups.
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