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EXTENSIONS OF UMBRAL CALCULUS II:

DOUBLE DELTA OPERATORS, LEIBNIZ EXTENSIONS
AND HATTORI-STONG THEOREMS

by F. CLARKE, J. HUNTON and N. RAY
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1. Introduction.

In [20] the basic notions of the Roman-Rota umbral calculus [26] were
extended to the setting of delta operators over a commutative graded ring of

Keywords: Umbral calculus - Hattori-Stong theorems.
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scalars. In the process fundamental links were established between umbral

calculus, the theory of formal group laws and algebraic topology.

In this sequel we extend these links further, introducing the notion
of a double delta operator, and showing how to pair two delta operators
to obtain a double delta operator. Together with the Leibniz property
discussed in [20] (see also §§6 and 7), this enables us to formulate a

generalisation of the Hattori-Stong theorem. Our main result here applies
to general torsion-free delta operators. Applying our results to algebraic
topology, we obtain a substantial application by determining necessary and
sufficient conditions for a complex-oriented cohomology theory to satisfy a

Hattori-Stong theorem. This result appears to be new, and confirms that
umbral techniques can provide a convenient tool for organising certain types
of calculation in the theory of formal group laws.

Throughout this article it is convenient to work over rings which
are free of additive torsion; we save the more general case for a future

paper, thereby completing a revised version of the programme begun in [20].
Traditionally, umbral calculus has been developed over fields such as the
real or complex numbers. The main effect of working over a torsion-free

ring is that problems of divisibility arise.

We summarise now the contents of each section, indicating the main
results of this paper.

In §2 we recall basic definitions from [20], and introduce our notation,
which differs to some extent from that of [20]. The fundamental concepts
are that of a delta operator E = E*) over a torsion-free ring E*, and
its penumbral coalgebra II(E) * . Here A’ is a differential operator acting
on E,,[x]. The E*-module II(E) * is generated by the polynomials of

the normalised associated sequence. The bn (~) = (x)
and belong to E* [x] 0 Q. Thus II(E) * is a rational extension of E* ~x~ . It is
important to note that II(E)* is not in general a subalgebra of E,, [x] 0 Q.

A key example of this set-up arises in algebraic topology from a
complex-oriented ring spectrum E for which the coefficient ring E* of the

corresponding generalised homology theory E* ( ) is torsion-free. In this

case II(E)* corresponds to E* ((CP°°). We also discuss in §2 the universal
delta operator, denoted 4), which does not arise from a spectrum.

The concept of a delta operator is extended in §3 to the notion of a
double delta operator. This involves a pair of differential operators acting on
the ring of polynomials over a ring G*, but with the crucial extra ingredient
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of a power series, with coefficients in G* , relating the two operators. Again
there is a universal example, denoted cI&#x3E; . Double delta operators arise in

topology from spectra with two complex orientations.

In §4 we show that the concept of a double delta operator is equivalent
to that of a Sheffer sequence.

Given two single delta operators over the rings E* and F*, it is possible
to form a ring (E 0 F) *, which is a rational extension of E* ~ F* , over which
the delta operators combine to form a double delta operator. This pairing
is defined in §5 by means of the universal example, but in contrast with
the universal case, for which (p 0 p) * = (4$ . 4l) * , it is necessary to quotient
out by any additive torsion. This requirement can be avoided by extending
the notion of delta operator, both single and double, to apply over rings
with torsion. We hope to return to this more general case in a later paper.
It is convenient in the present case to give an alternative characterisation
of (E ~ F) * as the extension of E* ~ F* generated by certain elements
defined umbrally, in (5.4), in terms of the associated sequences of the delta
operators.

Returning to single delta operators in §6, a Leibniz delta operator
is one for which the penumbral coalgebra is closed under multiplication
of polynomials, and is thus a Hopf algebra. The dual object is then

a formal group law. In the case of a non-Leibniz delta operator, extra

divisibility can be introduced into the ring E* to form the minimal Leibniz
extension L(E)* over which the delta operator becomes Leibniz. The
universal delta operator 4) is not Leibniz, but is isomorphic to the
Lazard ring over which the universal formal group law is defined. Dually

is the universal Leibniz delta operator. Since CP~ is an H-space, the
topological examples of delta operators considered in §2 are always Leibniz.
The property of being Leibniz can be expressed in terms of divisibility
relations among the coefficients of a delta operator. We formulate and

prove a particular case of such relations, a kind of Kummer congruence, in
Theorem 6.15.

The Leibniz property can easily be extended to the case of double
delta operators. In particular it is shown in §7 that E 0 F,, is Leibniz if one
of the factors E or F is Leibniz. In general (L(E) ~ F) *. The
universal Leibniz double delta operator is L(~ - 

The pairing operation for topological, and therefore Leibniz, delta
operators is considered in §8. We prove that MU* (MU), the universal
ring for strict isomorphisms between formal group laws, is isomorphic
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to L(~D - 4l)*. For general complex-oriented spectra E and F, we think
of (E ~ F) * as an algebraic model for the ring E* (F) . We show in

Proposition 8.4 that the two are isomorphic if one of E and F satisfies

the Landweber exactness conditions [14].
In §9 the pairing construction is considered in the case when one

of the factors is the delta operator arising from K-theory (or, in combi-
natorial terms, from the discrete derivative). It is shown in Corollary 9.2
that (K 0 E)* is isomorphic to the ring fl (L(E)). [x-’] obtained from the
penumbral coalgebra of the Leibniz extension of E by inverting the poly-
nomial variable. This result relates the divisibility involved in the pairing
operation, the penumbral coalgebra, and the Leibniz extension.

Corollary 9.2 is central in §10 in which we consider when L (E) * is

rationally closed in (7~0E)~. We think of this as an analogue of the Hattori-
Stong theorem. The classical Hattori-Stong theorem ([11], [30]) applies to
the universal case E - ~, for which L(4l)* = MU,, and (K 0 4l)* =

K*(MU). Using the Kummer congruence of 36, we give in Theorem 10.9
a criterion for the Hattori-Stong theorem in terms of divisibility in L(E) * .
The criterion simplifies somewhat when the ring L(E)* has unique integer
factorisation. This case is sufficient to yield a simple proof of the classical

Hattori-Stong theorem (Theorem 10.14).

Topological cases of the Hattori-Stong theorem are considered in §11.
We show that the theorem holds for the theory E if and only if the first
two of Landweber’s exactness conditions (up to height one) hold. This gives
rise to generalisations of results of G. Laures [16] and L. Smith [27].

The authors are indebted to Andrew Baker, who first saw the possibil-
ities of applying umbral calculus in algebraic topology, whose early versions
of [3] helped stimulate the entire project, and who offered useful insight
into the theory of formal group laws. Gian-Carlo Rota supplied enthusias-
tic encouragement for over a decade, whilst Peter Landweber and Volodia
Vershinin both provided helpful corrections to [20] (which are implicitly in-
corporated here). The second author thanks Trinity College Cambridge and
the William Gordon Seggie Brown fund of the University of Edinburgh for
financial support, and St. Andrews University for its hospitality. All three
authors thank the London Mathematical Society for the Scheme 3 grant
which enabled them to meet during the drafting of this paper.

We are particularly grateful to a referee, whose suggestion it was

to phrase more of our definitions and constructions in terms of universal



301

examples. This and many other comments have substantially improved the
paper.

2. Delta operators and penumbral coalgebras.

In this section we give a summary of the background information
needed from [20], with embellishments provided by [21] and [23].

Throughout this paper, E* will be a commutative ring with identity,
graded by dimension and free of additive torsion; a homomorphism between
two such rings will always respect the product, grading and identity. We
abbreviate E* 0 Q to EQ*. The binomial coalgebra over E* is the

free left E*-module on generators 1, x, ~2, ..., where x is an indeterminate
of dimension 2, invested with the coproduct

and augmentation

We write D for the linear operator d/ dx acting on E* and then a

delta operator A~ over E* is a formal differential operator

in the divided power series ring where E-2n = E2n for all n. Thus
A’ acts on E* ~x~ . We will always assume that e~ lies in Therefore since

D has dimension 2 (being dual to x) so does A~. Observe that

as functions Dualising the divided powers
gives rise to a new sequence of generators

for E* [x] over E*. These generators satisfy the binomial property

and are known as the associated sequence of A~.

We denote the pair (E*, De) by E, and will usually refer to E itself
as a delta operator; this convention makes explicit the ring on which A’
acts.
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Together with the coproduct 1/;, the usual product of polynomials
makes into a Hopf algebra with antipode given by ,S’(x) = -x. Since
E*{{D}} is the graded E*-linear dual of E* [x], it too admits a (completed)
Hopf algebra structure.

DEFINITION 2.3 The universal delta operator (1) is

defined over the ring The operator is

It is universal in the sense that any delta operator E is uniquely determined

by the homomorphism v* : ~* -~ E* that sends 0, to en. We refer to v§
as the classifying homomorphism.

This is a more restrictive definition than the one originally given
in [20].

is a delta operator with E*

torsion-free, let

The sequence of polynomials

is known as the normalised associated sequence The penumbral
coalgebra II(E) * is defined as the free E*-module generated by the 

The bn(x) satisfy the divided power property

Thus II(E)* is indeed a coalgebra, with

In addition we have z
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where for any operator r and any polynomial we let

TOPOLOGICAL EXAMPLES 2.7. - For any complex-oriented spec-
trum E, the space of loops on the 3-sphere has homology and coho-
mology modules

where x E is carried by the bottom cell S2 C and

D E E2(S2S’3) is defined by pullback along the evaluation map ,S’3;
see [23]. Under the cap product, D acts as d/dx, so that these modules are
dual Hopf algebras of the type described above. The coproduct in E* (QS3)
and the product in arise from the diagonal map, whilst the
product in E* and the coproduct in E* (083) arise from composition
of loops. The antipodes are induced by reversing the loop parameter.

A canonical map j : SZS’3 --~ (CP°° into infinite dimensional complex
projective space may be defined as a representative for a generator of the
group H2 (SZ,S’3) r_-" Z. Then the given complex orientation te C 
pulls back to j*te C E2(SZ,S’3), which by virtue of (2.8) may be expressed
as

where each e~ lies in In this way, the spectrum E and its complex
orientation te give rise to a delta operator (E* , De ) - (E,,,3*t-). The
formula (2.2) expresses the standard interaction between cap product and
diagonal.

The resulting sequence of elements Bn(x) in are E*-module
generators dual to the divided powers of A~, and satisfy the binomial
property.

In this context, is E~(CP~) on which A’ acts as the Thom
isomorphism n te, and the inclusion E* [x] C II(E)* is the homomorphism
induced by j. The generators for E* ((CP°° ) are the duals of the powers
of te.

Topological K-theory gives rise to the delta operator K = (Z[u, u-11,
A’), where u E K2 and Ak = 1) is the discrete derivative.

Connective K-theory yields the delta operator k = (Z[u], A k), while

ordinary cohomology gives rise to the delta operator H = (Z, D).

TOME 51 (2001), FASCICULE 2
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It is clear that a map m : E - F of complex-oriented spectra
satisfying determines a morphism m* : (E*, De) -~ 
of delta operators.

3. Double delta operators.

We now introduce the central idea of this paper.

DEFINITION 3.1. - A double delta operator consists of a pair of
delta operators A2 over a torsion-free, graded commutative ring G*
with identity, together with an operator equation

where gk lies in G2k for each k. We write G for the double delta operator
(G., Ali A2, 9) -

We refer to the formal power series g(y) = ~*[[~]]?
where go = 1, as a strict isomorphism from ~1 to A2, by analogy with the
nomenclature of the theory of formal group laws [12]. The compositional
inverse (or reverse, or conjugate) power series y(y) = gig2 is, of course,
a strict isomorphism from A2 to Ai , and has coefficients which are integral
combinations of those of g(g); see (3.8) below. There is, therefore, a dual
double delta operator G = (G~,A2,Ai,~).

Since the set of delta operators over a fixed ring G* forms a group
under composition of divided power series, there is always an expression of
the form 

- ,

where g’ k E for each k; see (5.6). Thus the thrust of Definition 3.1 is

that each coefficient g’-, of this series should be divisible by K! in G2k-2.
So if G* is a field (as in the classical cases R and C), or at least a Q-
algebra, then any two delta operators are strictly isomorphic, and together
they define a unique double delta operator.

For each double delta operator there are two associated sequences
of polynomials and in GQ,,[x]. Classic formulas of the umbral
calculus such as
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(see [26], Corollary 3.8.2) explain how to relate them. These formulae appear
at first sight to involve scalars in GQ*, but the following result shows that
the coefficients in fact belong to G* .

PROPOSITION 3.2. - In G* [x], the tuTo associated sequences are
related as

where the inner summation is over all sequences (ml, m2, ..., of

natural numbers such that ml + 2m2 +... + (k - and

ml + m2 + ... + so that the multinomial coefhcient

is defined.

Thus

where Bk,l is the partial ordinary Bell polynomial; see [6J, Ch. III, [3d].

Proof. - Over we may write b~(x) - To eval-

uate we apply (A’ 2 to both sides, substitute A2 = g(Al), and
use (2.6). 0

The action of forgetting one or other of the delta operators, and
the isomorphism between them, associates to each double delta operator
G = (G*, Al, A2, g) two (single) delta operators, denoted by 1G = (G*, Ai)
and 2G - (G* , 02 ) . It follows from Proposition 3.2 that the penumbral
coalgebras H(IG),, and II(2G)* are equal; we therefore denote their common
value by II(G)*.

The universal delta operator 4D = (4$* , AO) of Definition 2.3 gives rise
to the universal double delta operator.

DEFINITION 3.3. - The universal double delta is

defned over the ring (~ - 4l)* = (D~, [bi, b2 ...] I = ~[~1~2?..., bi , b2, ...],
where each bk has dimension 2k. The delta operator Ai is the extension

to (~ - cI» * of the universal delta the strict isomorphism is
is defined by
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A dou ble delta operator , with

is uniquely determined by the classifying homomorphism vg : (cI&#x3E;. cI&#x3E; ) * --&#x3E; G*
for which = ei and = gi .

The algebra plays a crucial role in the theory of Sheffer
sequences; see §4 and [24].

DEFINITION 3.4. - A morphism p : G - H of double delta
operators G and H is a ring homomorphism p* G* - H* satisfying
v* =~C* ov9.

Note that it follows that ~* (g~ ) = hk for each coefficient of the

respective strict isomorphisms.

Let the classifying homomorphisms for the single delta operators 1(~ ~
4D) and 2((D - ~) be denoted by ~*, p* : -~ (p . (D)*. While A* is simply
the inclusion C b2, ...] I - (4b - 4J)*, the homomorphism p* is

more complicated, with being the coefficient of Dk+I/(k +1)! in
b2(0~)Z+1. Thus

where bo = 1 and is the partial exponential Bell
polynomial; see [6]. For example

The classifying homomorphism of the dual double delta operator

is the homomorphism
and
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where j3n,j- is the partial ordinary Bell polynomial; see [6]. This is, of

course, the coefficient of in the inverse series g(y), and so is, despite
appearances, an integer polynomial in the bJ. For example

Clearly T* is an involution of the ring (4l . -~D), and induces an isomorphism
of double delta operators T :

DEFINITION 3.9. - Given two delta operators, A’ over E* and Of
over F*, a (Ae, Of )-operator is a double delta operator G, together with
morphisms of single delta operators A : E - IG and p : F - 2G. Thus
there are ring homomorphisms A,, : E,, --+ G* and p* : F,, ---* G* suclz that

commutes.

DEFINITION 3.10. - A morphism from the (De, Of )-operator
(G, A, p) to the (G’, A’, p’) consists of a triple of ho-
momorphisms which make the diagram

L * ~ ~* ~ .1.’*

commute, and which factor through the classifying homomorphisms.

We illustrate these concepts with an example drawn from number

theory.

Example 3.1 l. - If p is prime, define the Artin-Hasse delta operator
as A = (Z[v], A’), with v E A2p-2 and Da determined by the inverse
relation

It is clear that an = 0 unless n is a multiple of p - 1.

We define a double delta operator G as follows. Let G* - Z(p) [u],
where u E G2, let Ai be the image of the K-theory operator A’ under
the inclusion l~* = Z[u] C G*, and let A2 be the image of the Artin-Hasse
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operator A’ under the map A* = Z[v] c G* given by v H up-I. A result
of Hasse [10] shows that

where p is the Mobius function. This is a power series in A2 with coefficients
in G*, showing that ( G* , A2) is a double delta operator; by construction
it is a (A , A)-operator.

Topological examples 3.13. - Examples of double delta operators
are provided by cohomology theories with two given complex orientations. If
tl, t2 E E2(CpOO) are two orientations, then since E* ~~t2~~ we
can write t, = g(t2) for some power series whose coefficients lie in E*. Then

is a double delta operator, where j is the map discussed
in (2.7).

Suppose given two complex-oriented spectra E and F, and hence two
delta operators E and F, with the additional property that the ring

is free of additive torsion. This is the case, for example, when E is the

Eilenberg-Mac Lane spectrum H representing integral cohomology, the
spectrum K representing complex K-theory, or the Thom spectrum MU
representing complex cobordism, and F is either K or MU.

There are two natural inclusions, the left and right units,

which give rise to two complex orientations

Thus ((E IBF)*,j*(tz),j*(tr)) is a double delta operator. By the remark at
the end of (2.7), it is a (A’, Of )-operator.

If ml : E -~ * E’ and mr : F -~ F’ are maps of complex-oriented
spectra, then the triple (ml, mz A mr, mr) induces a morphism from the
corresponding (,Ae, Af)-operator to the corresponding 
As we shall see, not all double delta or (De, Of )-operators, nor all their
morphisms, arise in this fashion.
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4. Sheffer sequences.

A double delta operator is determined by a divided power series A,
and a power series g over the graded ring G*, for the second delta operator
is given by A2 = and giving g is equivalent to specifying the unit
g(Ai) /Ai in G* ~ ~O 1 ~ ~ . But the same ingredients give rise to the concept
of a Sheffer sequence, which is centrally important in the theory of umbral
calculus. We explore briefly the connection here and explain how, just as
the universal (or generic) binomial sequence lies in the ring ~* ~x~, we can
define the concept of a universal Sheffer sequence which lies in the ring
(4) - cI»* ~x~ . In fact the whole theory of Sheffer sequences may be recast in
the context of double delta operators. We shall merely sketch how this is

possible, and leave the interested reader to supply the details.

DEFINITION 4.1. - The (normalised) Sheffer sequence associated to
a double delta operator G = (G*, A2, g) is the sequence of polynomials

-.1

where bn (x) is the normalised associated sequence of the delta operator iG.

This corresponds in the terminology of [20], Definition 4.11, to the
Sheffer sequence for the pair (g,1G) . In [24] Sheffer sequences are studied
mainly in terms of the unnormalised polynomials 5~(~) = 

Recall that for a double delta operator, we can write

j=0

which shows that belongs to the penumbral coalgebra II(G) * .

DEFINITION 4.3. - A (normalised) Sheffer system consists of a
delta operator E = (E*, Ae) and a sequence of polynomials sn (x) E

EQ*[x], where has degree n and so (x) - 1, such that 
and sn(O) E E2n.

Since, by (4.2), = gn E E2n, a double delta operator gives rise
to a Sheffer system, but clearly the process is reversible. The Sheffer system
(E, sn(x)) determines the double delta operator (E,,, A’, A’), where
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It is clear that the appropriate concept of morphism of Sheffer systems
-~ (F, is a morphism -y : E - F of delta operators such

that ~y* (sn (x) ) = Equivalently, it is a morphism of double delta
operators (E*, De, OS) --~ (F*, Af 

The Sheffer system corresponding to the double delta operator W . W is
the universal Sheffer system. The polynomial s"-")(x) is written as 
in [24], where its universal properties are elaborated. The variable 1/;k of [24]
corresponds to bk in Definition 3.3 so that the ring BII 0 P of that paper is

isomorphic to our ( ~ ~ ~ ) * .
We end this section by drawing attention to Roman and Rota’s

formula for delta operators (see [26], Theorem 2.3.8).

THEOREM 4.4. - Suppose (E, sn (x)) is a Sheffer system, and A is
a delta operator defined over E*. Then

5. A pairing of delta operators.

Recall the homomorphisms ~*, p* : ~ 2013~ (4J . 4l)* which classify the
delta operators ~) and 2(4b - They endow (4b - lF) * with the structure
of a bimodule over 

DEFINITION 5.1. - If E and F are delta operators, define the ring
(E . F) * as

Here the left-hand tensor product is defined with respect to the V*-
module structures determined by the homomorphisms v* : * E* and
A* : W* - cI»*, and the right-hand tensor product is defined with
respect to the structures determined by p* and vf . Note that (E - F)* is

indeed a ring, since each of the involved is in fact an algebra

The homomorphism ( ~ ~ ~ ) * -~ (E - F) * given by z ~--4 1 0 z 0 1
will determine a double delta operator over (E - F)* as long as (E* F)* is
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torsion-free. However this not always the case. For example in (H - H) * the
element 1 0 b, 0 1 is 2-torsion, for, by (3.6),

is zero since = hi = 0.

In order to construct a double delta operator it is therefore necessary
to quotient out by the torsion ideal.

DEFINITION 5.2. - If E and F are delta operators, define the

ring (E 0 F)* as the quotient of (E - F)* by the ideal of elements a E
(E - F)* such that ncx = 0 for some non-zero integer n. Thus (E 0 F)*
is a torsion-free ring, and the homomorphism ((D - - (E - F) * )
(E 0 F) * determines a double delta operator E 0 F. Moreover the obvious
homomorphisms from E* and F* to (E 0 F)* show that E0F is a (A, Of )-
operator.

Since (p . is torsion-free, b 0 (D and (D - 4) are equal. We will
continue, however, to use the notation 4D - -4 for this universal case.

Clearly whenever there are morphisms ~y : E - E’ and b : F - F’ of
delta operators, then there is a unique morphism r 0 b from the (Ae, Of )-
operator E 0 F to the (Ae’, Af ,)-operator E’ F’.

PROPOSITION 5.3. - The double delta operator E 0 F is the uni-
versal (Ae, Af )-operator in the sense that given any G

there is a morphism E 0 F - G of (A~, Of )-operators.

Proof. The homomorphism (E - F) * ~ G* sending c 0 z 0 f
to ~* (e) v9 (z) v* ( f ) induces a homomorphism (E ~ F) * ~ G* since G* is

torsion-free. 11

Since the equations (3.5) can be solved rationally for the bk in terms
of the CPj and we have ( - p)* 0 Q == cI&#x3E;* 0 as (cI&#x3E;*, 
bimodules, and so there are proper inclusions

Applying E* 04&#x3E;* -04&#x3E;* F* to this chain of inclusions, we obtain homomor-
phisms
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the last of which factors through (E 0 F) * . Since E* and F* are torsion-
free, so is E,, 0 F* ([7], [9]). Thus there are inclusions

It is therefore clear that (E 0 F) * can be characterised as the exten-
sion of E,, 0 F* in E~ (~) F* 0 Q generated by the elements gk which are the

images of the elements E (E ~ F) * . We identify these elements in
E,, 0 F* 0 (Q as follows.

The delta operators A~ and Of extend in the obvious fashion over
the ring E* ~ F* ~ ~ and give rise to a double delta operator over that

ring. Then

with, by (2.6),

see also [26]. We may conveniently compute (
substitution

by the umbral

For example, since, by [20],

it follows that

Here and below we write e~; for Ck 0 1 and fk for 1 0 fk in contexts where
this does not cause confusion.

We have thus proved the following result, which we will use to obtain
the structure of rings of the form (E ~ F) * .

PROPOSITION 5.7. - The ring (E (3) F)* is isomorphic to the ex-
tension of E* 0 F* in E,, 0 F,, 0 Q generated either by the elements 
or by the elements b’(e), for k &#x3E; 1.
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To illustrate this construction, we describe how it works in some

specific cases. Recall the definitions of the delta operators H, k and K
given in (2.7).

PROPOSITION 5.8. - The ring (H 0 E)* C generated over
E* by the elements en / (n + 1 ) ! for n &#x3E; 1.

Proof. The coefficients of the power series expressing A’ in terms

COROLLARY 5.9. - The ring (H 0 k)* is the subring of Q[u]
generated by the elements where p is prime.

Proof. By Proposition 5.8, (H 0 1~) * is generated by the ele-

ments + 1)!. It thus contains the subring generated by the ele-

ments but it is easy to see that the two subrings are equal, having
the elements Un /m(n) as an additive basis, where m(n) is the function

of [1]. 0

COROLLARY 5.10. -

The double delta operator E 0 K for general E is considered in ~9.

Let us briefly consider the relationship between E 0 F and F o E. It
is clear that the involution T* : (~-~)~ 2013~ (-I~ - of (3.7) interchanges
the left and right (D,,-module structures on (p . cI»* and hence induces an
isomorphism
isomorphism

This in turn factors to give an

, which is the restriction of the

switch map T* : E* ~ F* ~ ~ ~ F* ~ E* ~ Q. We thus have an isomorphism
of double delta operators T : E 0 F ---+ F 0 E.

6. Leibniz delta operators and Leibniz extensions.

We now consider the Leibniz property of a delta operator. Since all
our delta operators are torsion-free, we are able to take a slightly different
approach from that of [20]. Rather than define a delta operator (E*, A’) as
Leibniz when there exists a formula expressing how the operator A’ acts
on a product (hence the name), we concentrate, dually, on the closure of
the penumbral coalgebra under multiplication.
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DEFINITION 6.1. - A torsion-free delta operator E is Leibniz if the

penumbral coalgebra II(E)* is a subring of EQ,, [x].

Since the polynomials b’(x) E II(E)* form a basis for EQ*[x] as an
there are always elements e(i, j; m) E such that

m=l

for each i, I &#x3E; 1. The delta operator E is Leibniz precisely when all the

m) belong to E*. In this case the multiplicative structure enjoyed by
the coalgebra II(E)* makes it into a Hopf algebra. The antipode is the ring
homomorphism given by x - -x, and is thus determined on the basis of
associated polynomials by

2

where Bn,2 is the ordinary Bell polynomial [6]. This integral formula clearly
involves multiplication of the b~ (x) . Note that for a non-Leibniz delta

operator E, the polynomials bn (-x) do not, in general, belong to H(E)* .
For example,

For a Leibniz delta operator, the dual of H(E)* , the ring E* ~ ~0‘~ ~ ~ , is

a (completed) Hopf algebra whose coproduct is given by

But a Hopf algebra structure on a power series ring is precisely a formal
group. The series (6.3) is a formal group law for which (2.1) is the

exponential series; see [12]. There is thus a close relation between the theory
of (torsion-free) Leibniz delta operators and that of formal group laws.

Associativity in II(E)*, or coassociativity in E* ~~De~~, imposes a large
number of relations on the e(i, j; m). A preliminary simplification can be
made by concentrating on the elements e(i, j;1), which will be abbreviated
to e (i, j ) . They may be specified by the rational equations

which are to be interpreted by first multiplying together the polynomials
bi (x) and and then making the usual umbral substitution xk = 
for I + j. The order of performing these operations is important!
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A simple computation, appealing to (5.5), reveals the first few exam-
ples to be

lie

For a general delta operator these equations take place in EQ*. When the
delta operator is Leibniz they imply that divisibility relations must hold
in E* ; see Theorem 6.15 below.

LEMMA 6.6 (See [2], Part II, §3). - For each i and j, and for each
1  m ~ i+j, the element e (i, j ; m) is an integer polynomial in the elements

Proof. We use induction on m, noting that the statement is empty
for m = 1. Working in the Hopf algebra EQ* [x], we apply the diagonal
to both sides of (6.2), and equate coefficients of (with
0  r  m) to obtain

where the summation is over 0 ~ s  i and 0 ~ t  j , with 0  s + t  I + ]*.
The inductive step now follows. 0

It is now clear how to extend the ring E* in order that a torsion-free
delta operator becomes Leibniz.

DEFINITION 6.7. - For a torsion-free delta operator E, the minimal
Leibniz extension of E is the delta operator L(E) = (L(E)*, De), where
L(E)* is the subring of EQ,, generated over E* by the elements e (i, j ) .

In general the formal group law (6.3) will be defined over the

ring L ( E) * . Inverting the series (2.1), we may write

(note the absence of factorials), where the coefficients c~ belong to L (E) *
but not, in general, to E* ; see, for example, [8], IV, §1, Proposition 1. This
is the logarithm series of the formal group law.
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In the case of the universal delta operator ~, the generators §k can
be expressed as integer polynomials in the cn, with

, mod decomposables.

Thus 4),, and is generated by the cp(i,j),
which are the coefficients of the formal group law

But this is precisely Lazard’s universal formal group law; see, for exam-
ple, [12]. We review the method of Milnor [18] for constructing polynomial
generators for the Lazard ring L* = L(4D),,. This throws some light on the
extension C L*. Let

if n + 1 is a power of the prime p,
if rt + 1 is not a prime power,

then h, is the highest common factor of the integers (nt 1 ), for 
There are, therefore, integers A) such that

Now let

Lazard’s theorem asserts that L* = ZIUI u2, ...~. For example, one choice
of the leads to

By (6.4),

where zi is an integer polynomial in the 0,, for r  n. Writing l1n for
the integer (n + 1)!/hn,
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which shows that E and that

(6.11) §n mod decomposables
in ~*. Thus letting fn = Anun, the fn are alternative polynomial generators
for cI&#x3E; *, with the inclusion

given by

For a general delta operator E the universal morphism v : -D 2013~ E

induces L(v) : - L(E). Let E E2,,, then L(E)* is

generated over E* by the elements

In general there are relations among the vn .

- Consider the delta operator

since ~1 = ul. On the other hand,

since 

In [20], §8, the universal Leibniz extension LE was introduced. This
differs in general from L (E) * ; in particular, and contrary to what was
asserted in [20], LE* may have torsion when E* is torsion-free. However, as
was shown in [20], Theorem 9.14, the universal case L(D,, is torsion-free and
is isomorphic to L*. In fact LE,, may be defined as E* @p* L*. For example,
the calculations above show that LH* is isomorphic to

which has torsion of all orders. In the cases of Example 6.12, the two
extensions coincide. In general, L (E) * is isomorphic to the quotient of LE,,
by its torsion ideal. Thus a delta operator is Leibniz if and only if the

classifying homomorphism 4D,, --+ E* factors through 4J* C L*.

Topological examples 6.13. - Delta operators arising from topology
are always Leibniz, for the map j : 083 ~ (CP°° discussed in (2.7) is, up
to homotopy, a map of H-spaces, so that II(E)* is already a Hopf algebra.
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Since the universal delta operator is not Leibniz, it does not stem

from a spectrum. Yet its Leibniz extension L* = is isomorphic
to the complex bordism ring MU* ([19]), and so corresponds to the case
E = MU, the universal complex-oriented spectrum. It is this relationship
which makes it possible to investigate Leibniz extensions by methods

adapted from algebraic topology.

In general the extension E* C L(E)* may be very complicated. We
conclude this section by giving a specific example, and by proving a result
which shows that there are general divisibility relations which must hold
among the en in L(E),,.

Example 6.14. - We refer to the quadratic delta operator R =

(Z[u], D + uD’/2) as the Bessel operator, since the associated sequence
is made up of graded Bessel polynomials; see [26]. This delta operator is
not Leibniz; for example, since rI = u, with ri = 0 for i &#x3E; 2, by (5.5),

so that

Thus The associated formal group law is

Hence

where Cn is the Catalan number

. 

, /

By analysing the 2-divisibility of such numbers it is not hard to show that

L(R),, is multiplicatively generated by the elements uj /2j-l, where 3 is of
the form 2~+2~-1. Note also that the relations (6.10) show that u3 +4u3 is
3-torsion in the ring LR,, which cannot, therefore, be isomorphic to L(R) * .

The following Kummer congruence for the coefficients of a delta

operator is related to Theorem 2 of [4]; see also [28], [29]. We will use
its corollary in the proof of Proposition 10.8.

THEOREM 6.15. - If p is prime, then



319

in the ring L(E)*.

Simple cases of these congruences arise from the formulas in (6.5). For
example, since e2 - e 2 = 2e(l, 2) and e3 - 4elC2 + 3ei = 6e(1, 3) in L(E)*,
we have e2 - eî mod 2, e3 - ei - el e2 mod 2, and e3 - eI e2 mod 3.

Proof. We will in fact show that the congruences hold modulo p
in the subring Z[cl, c2, ...~ of L(E)* which is generated by the elements cn
defined by (6.8).

Lagrange inversion applied to the equations (2.1) and (6.8) yields

where the sum is over all sequences

, this formula can be rearranged to give

We will show that

This will be sufficient, since we will also show that

The following result, generalising Wilson’s theorem (the case m = p
and a = 1), is trivial; see §1 of [5] for the proof of stronger results.

LEMMA 6.18. - If p is prime and m, a &#x3E; 1, then

It follows that 0 mod p unless (t +  p for all

t y~ p - 1. Hence the congruence (6.16) holds for all monomials for which
(t + &#x3E; p for some t 7~ p, in particular for all monomials divisible by ct
for some t &#x3E; p.

Consider now the multinomial coefficient
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If each term (t -t- is less than p for t  p - 1, then this multinomial
coefficient will be divisible by p if n + K, - p. Thus the congru-
ence (6.16) holds (again because both sides are zero modulo p) for all

monomials ci 1 c22 - - - for which

Together with Wilson’s theorem, this argument also shows that congru-
ence 6.17 holds.

For the remaining cases, Lemma 6.18 shows that

modulo p. Now we know that pkp-l  n + Ii  pkp-l + p, so that the
factor -~ p can be cancelled in the fraction, leaving a numerator and
denominator which are, by Wilson’s theorem, both congruent to -1. This
shows that

and completes the proof. 11

COROLLARY 6.19. - For any delta operator E,

in L(E)*. 0

7. Leibniz double delta operators.

In this section we extend the Leibniz concept to double delta operators
and discuss how the Leibniz properties of the double delta operator
E 0 F are influenced by the corresponding properties of its constituent

components E and F.

Given a double delta operator G, equation (6.2) yields two sets of
elements = g1 (i, j ; 1) and g2 (i, j ) 92 (i, 1) in corresponding
to the two delta operators IG and 2G.

LEMMA 7.1. - Given a double delta operator G, the delta operator
IG is Leibniz if and only if 2G is Leibniz.
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Proof. As remarked in §3, the two penumbral coalgebras 
and II(2G)* are equal. Hence if one is closed under multiplication so is the
other. 0

DEFINITION 7.2. - A double delta operator G is Leibniz if 1G and
2G are Leibniz delta operators. If G fails to be Leibniz, the Leibniz extension

is defined by adjoining either the elements or the elements g2 (i, j);
Lemma 7.1 shows that both choices yield the same result.

The concept of a Leibniz double delta operator is precisely equivalent
to a pair of formal group laws over a torsion-free ring together with a strict
isomorphism between them.

PROPOSITION 7.3. - Given two delta operators E and F,

In particular, if E is Leibniz, then E 0 F = E 0 L(F), and if F is Leibniz,
then E 0 F = L(E) 0 F; in both cases E 0 F is Leibniz.

Proof. It suffices to note that, if G = then gl (i, j ) = 

and g2(Z,~) _ .~(Z~~)~ 0

We can now construct the universal Leibniz double delta operator.

PROPOSITION 7.4.

Proof. By Proposition 7.3,

Now

which is torsion-free and hence equal to (L(~) ~ ID).. 0

In parallel with the case of single delta operators, a double delta

operator G is Leibniz if and only if the classifying map (cI&#x3E; . lF)* -~ G*
factors through (4D C L(4b - ~)*. Moreover L(G)* may be identified
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with the quotient of G* 4l) * by its torsion ideal. We may thus
characterise L(E 0 F).

PROPOSITION 7.5. - For torsion-free delta operators E and F,

Hence if E and F are Leibniz,

Even in the Leibniz case the two tensor products may not be isomor-

phic before taking the torsion quotient. For example, H* 04,. L(,b - 4l)* 0I&#x3E;*
H* is isomorphic to

where h, is as defined in (6.9).

8. Pairing topological delta operators.

As for single delta operators in §6, the double delta operators arising
from complex-oriented ring spectra, in the way described in (3.13), are
always Leibniz. We discuss now their relationship with the pairing of §5.
Recall from (2.7) that if E and F are complex-oriented ring spectra with
torsion-free coefficient rings E* and F*, they each give rise to a delta

operator, also denoted by E and F. Thus (E 0 F)* denotes the domain
of the double delta operator E ~ F; see Definition 5.2. We can think of this

ring as an algebraic model for the ring (E A F) * ^--’ E* (F) ^--~ F* (E). Under
certain conditions the two are isomorphic.

Since, as discussed in (3.13), there is a (Ae, Af )-operator over the
ring E* (F) if it is torsion-free, Proposition 5.3 provides, in this case, a

homomorphism
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In particular this applies to MU* (MU), which is torsion-free. In the general
case the orientations of E* and F* and the classifying maps of the double
delta operators combine to give a commutative diagram

THEOREM 8.1. - The homomorphisms v* : 4D),, -* (MU 0
MU)* and pmu, Mu : (MU 0 MU),, --+ MU* (MU) are isomorphisms.

Proof. Since L*, the composition of these two maps can
be identified, using Proposition 7.4, with the MU*-module homomorphism

which sends the bk to the coefficients of the series expressing one of the
delta operators over MU* (MU) in terms of the other. But it is shown

in [2], Part II, for example, that MU* (MU) is polynomially generated by
these coefficients.

Now it follows by Proposition 7.5 that (MU ~ MU)* is isomorphic

The observation that MU* (MU) is the universal ring for strict

isomorphisms of formal group laws is due to Landweber [13].
Recall that the complex-oriented spectrum E is said to be Landweber

exact if the homology theory E* ( ) can be defined for all spaces X as

Criteria on E* for this to hold were set down by Landweber in [14];
they are discussed at the beginning of §11. An elementary consequence
of these criteria is that E* must be torsion-free. Examples of such spectra
include complex K-theory, the elliptic spectrum Ell, the Johnson-Wilson
spectra E(n), the Brown-Peterson spectra BP and the complex bordism
spectrum MU itself.

LEMMA 8.2. - If E is Landweber exact, and F is a complex-
oriented spectrum, then E* (F) is a flat F*-module.

Proof. The argument is essentially the same as that of [17],
Remark 3.7. If F is any complex-oriented ring spectrum, then (see [2],
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Part II)

Hence

Thus the functor E* (F) 0~ _ can be written as the composition of the
functors M U* ( M U ) and -. The first of these is exact

because MU* (MU) is a flat MU*-module, and it is a functor into the

category of MU* (MU)-comodules. But the second is exact on this category;
this is ensured by the Landweber exactness conditions [14]. 0

PROPOSITION 8.4. - If E is Landweber exact, and F is a complex-
oriented spectrum with F* torsion-free, then

is an isomorphism.

Proof. Proposition 7.5, Theorem 8.1 and (8.3) show that (E 0 F) *
is isomorphic to E* MU* (F) modulo torsion. But, since E is Landwe-
ber exact, E* MU,- (F) ~--- E* (F), and, since F is torsion-free, there
is an exact sequence of F*-modules

Applying E* (F) 0p* - there is, by Lemma 8.2, an exact sequence

so that E* (F) is torsion-free. 0

9. Stably penumbral polynomials and K-theory.

Recall from (2.7) the Leibniz delta operator K given by K* -
and Ak = u-l(euD -1). The coefficients of Ak are thus given by

kn = un. It has Bn(x) = x(x-u) ~ ~ ~ as its associated sequence,

and therefore the normalised version may be written as bn (x) = n n

Hence K is Leibniz by virtue of the Vandermonde convolution identity
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for i, j &#x3E;- 1; see, for example, [25].
We will show that in a "stable" sense the divisibility introduced into

a delta operator by pairing with K can be identified with the divisibility
involved in forming the Leibniz extension and the penumbral coalgebra.

If F is a Leibniz delta operator, then the penumbral coalgebra II(F)*
of Definition 2.5 is closed under multiplication by x, and we may construct
the localised F*-algebra II(F)* [X-I] as the limit of the directed system of
modules

where the maps are multiplication by x.

THEOREM 9.1. - If F is a Leibniz delta operator, with F* torsion-

free, then ] and (K 0 F) * are isomorphic as F* -algebras.

Proof. By Proposition 5.7, the F*-algebra (K 0 F)* is generated
as an algebra over K,, 0 F,, = F,, [u, by the umbral elements bf (k). The
nature of the coefficients kn = un means that as defined in (5.4), is
just the polynomial Hence (K0F)* is multiplicatively generated
over F* ~u, u-1 ~ by the polynomials bf (u).

Recalling that the polynomials for n &#x3E; 0 form a basis for II(F)*,
define the F*-module homomorphism a : II(F) * ~ (K ~ F)* by setting

= Clearly a is a monomorphism of rings, with a (x) = u.
Hence the diagram

commutes. Since multiplication by u is an isomorphism on (K 0 F)*,
there is an induced map of F*-algebras a : II(F),, [x-1] 2013~(~(g) F)~. In
fact, if z E and i &#x3E; 0 is such that E II(F)*, we have
a(z) = It is clear that a is a monomorphism.

But, since F is Leibniz, H(F),, is closed under multiplication, thus any
product of the polynomials can be written as an F*-linear combina-
tion of the Hence (K 0 F)* is additively generated over F* [u, U-l]
by the polynomials and this implies that a is an epimorphism. 0

In the case of a general torsion-free delta operator which is not

necessarily Leibniz, we need to consider the minimal Leibniz extension.
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COROLLARY 9.2. - If E is a torsion-free delta operator, then

] and (K ~ E)* are isomorphic as L(E)*-algebras.

Proof - By Proposition 7.3, (K 0 E) * _ (K 0 L(E))~. It is this

identification which gives (I~ ~ E) * the structure of an L (E) *-algebra. The
result is then the special case of Theorem 9.1 in which F = L(E). 0

10. Hattori-Stong theorems.

The classical Hattori-Stong theorem (~11~, [30]), for which we will give
a proof as Theorem 10.14, asserts, in Hattori’s formulation, that the MU*-
module map MU* - K* (MU) induced by the right unit MU - K A MU
is the inclusion of a direct summand [2], Part II, §14. Note that MU* is

a direct summand as a subgroup of the abelian group K* (MU), not a
summand as an MU*-module.

PROPOSITION 10.1. - No splitting map K,,(MU) --+ MU* is an
MU*-module map.

Proof. Suppose given a factorisation

of the identity on MU* by MU*-module maps. Now applying - 
to this sequence, there is a factorisation of the identity

However, H* - Z, concentrated in degree zero, while K* (H) is a rational
vector space as shown by Propositions 5.10 and 8.4. 11

We are unaware of any splitting K*(MU) - MU* having been
written down explicitly.

What Hattori actually shows is that if a E MU* is divisible by an

integer m in K*(MU), then a is already divisible by m in MU*. In other
words MU* is a pure subgroup of K* (MU); see [9], Ch. IV. The connective
K-theory group 1~* (MU) _ (k (g) MU) * lies between MU* and 
Since I~* (MU) is finitely generated in each degree, it follows that MU* is
a summand of k*(MU), and, since k*(MU) is a summand of K* (MU), so
is MU*. Such finiteness arguments may not be available for a general delta
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operator, so we will phrase our generalisations in terms of the concept of
purity.

We can interpret MU* as L* = L(4J)* and K,, (MU) as (K 0
MU) * = (J~ 0 L(~D)). = (K 0 ~) * . For any torsion-free delta operator E,
Corollary 9.2 shows that E* C L(E)=, C (K 0 E) * so the Hattori-Stong
theorem motivates us to ask when L(E),, is a pure subgroup of (K 0 E),,.
In order to discuss this question we consider the smallest pure subgroup
containing L (E) * .

DEFINITION 10.2. - Let denote the

rational closure of E* in (K Q9 E)*.

consists of all a E (K ~ E) * for which there exists a

non-zero integer m such that ma E E*. Since E* C L(E)* C EQ*, it is

equivalent to ask that there is an integer m such that ma E L(E) * . It is

also clear that ~ (E) * is a subring of (K ~ E) * , and that L (E) * is a subring
of 2: ( E) * .

DEFINITION 10 . 3 . - We say that the Hattori-Stong theorem holds
for the torsion-free delta operator E if ~ (E) * = L (E) * , so that L (E) * is a
pure subgroup of (K 0 E)*.

We will study the by using Corollary 9.2 to identify
(1~ ~ E)* with the ring 

Writing
n

, -.L

in II(L(E))*, the coefficients a(n,r) E L(E)* may be computed as

In the notation of [22], a (n, r) == r!5E(n, r), where 8E(n, r) is an E-theory
Stirling number of the second kind. The leading coefficient a(n, n) is equal
to n !, = en-1, the coefficient of Dn /ni in A~; see (2.1). In fact
Proposition 3.2, applied to the double delta operator H (9 E, gives

where the summation is over all sequences (ml, m2, ... , mk) such that
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then the coefficient of the monomial

is equal to

This formula shows that a(n, r) E E*, as expected since xn E E*] C
C 

LEMMA 10.6. - If p is prime and j -&#x3E; 1, the coefficient u(pJ, r) is

divisible by p in E* for r &#x3E; 1.

Proof. It is clear that if s &#x3E; 0 in (10.5), then p divides the
coefficient of the corresponding monomial While if s = 0, the

first multinomial coefficient is

which is divisible by p in every case except that corresponding to

a (pi , 1). 0

LEMMA 10.7. - If p is prime and j &#x3E; 1, then

mod p in II(L(E)) *.

Proof. By Lemma 10.6 and (10.4), a(pJ, 1) be (x), but

bi (x) - x so that the result follows from Corol-

lary 6.19. 0

PROPOSITION 10.8. - Let p be a prime and l E L(E)*, then p
divides l in E(E)* if and only if p divides L(E)* for some non-
negative integer n.

Proof. It is clear by Definition 10.2 and Corollary 9.2 that p 1 1
in E(E),, if and only if p in for some positive integer j. By

Lemma 10.7 this is equivalent to p dividing in for

some
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However, since x is an element of the L(E)*-module basis for

H(L(E)). provided by the normalised associated sequence, p I l’x in

II(L(E))*, where l’ E L(E)*, if and only in L(E)*. 0

The Hattori-Stong theorem (that L (E) * is equal amounts

to saying that if a prime p divides l C L (E) * in E(E),,, then p already
divides l in L(E)*. Hence Proposition 10.8 gives a criterion for when the
Hattori-Stong theorem applies.

THEOREM 10.9. - The Hattori-Stong theorem holds for the delta
operator E if and only if, for all primes p and all l C L(E)*, whenever p
divides lep-l in L(E)*, then p divides l in L(E)*.

Proof. L(E) * , then there must be a prime p and an
element l C L(E),, such that p divides 1 in E(E),, but p does not divide l
in L(E)*. By Proposition 10.8, p divides for some n. Applying the
condition of the statement n times shows that p must divide l in L(~)~,
which is a contradiction. 

*

Conversely, if = L (E) * and p divides in L(E)*, then
Proposition 10.8 with n = 1 shows that p divides l in L(E)~,. 0

Applying Proposition 10.8 in the case l = 1 will tell us which primes
are invertible 

THEOREM 10.10. - The prime p is inverti ble in the if

and only if p divides in L(E)* for some non-negative integer n. 0

Theorem 10.10 raises the question of which primes are invertible
in L(E),,. Definition 6.7 shows that L (E) * is multiplicatively generated
over E* by elements of positive degree. It follows that if En = 0 for n  0,
then no new relations can be introduced in degree 0, so that a prime is
invertible in L (E) * if and only if it is invertible in E*. On the other hand,
if we invert the two-dimensional generator of the Bessel delta operator R to

since u2/2 E L(R)4; see Example 6.14. Hence 2 is invertible in L(R[u-’]).,
but not in 

If the prime divisibility structure of the ring L ( E) * is reasonably
simple, we can make some simplification of Theorems 10.9 and 10.10.

DEFINITION 10.11. - A ring R has unique integer factorisation if,
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for all r, s C R and prime integers p, whenever p divides rs, then either

p divides r or p divides s.

PROPOSITION 10.12. - Assume that L(E)* has unique integer
factorisation, then the Hattori-Stong theorem for E holds if and only if,
for all primes p, either p is invertible in L(E)* or p does not di vide ep-l
in L(E)*.

Proof. If L(E)* has unique integer factorisation, the statement
"p implies p 11" is equivalent to the statement "p ~ I ep-l implies p 11 I
for all l" . 0

It is useful to phrase what is essentially the same result in a different

way.

PROPOSITION 10.13. - If L(E)* has unique integer factorisation,
then E(E),, is the localisation of L(E)* in which those primes p which
divide Cp-i are inverted. 0

We conclude this section by considering a number of examples. Firstly
we can give a simple proof of Hattori and Stong’s original result.

THEOREM 10.14 (The classical Hattori-Stong theorem).

Proof. Since is a polynomial ring over Z, it has unique
integer factorisation and no primes are invertible in Hence, by
Proposition 10.12, we need only show that p t cpp-l in L (~) * . There are
many ways of doing this. We could remark that the congruence (6.11 ) shows
that cpp-l is congruent modulo decomposables to (p - 1)!Up- 1, where is

one of the polynomial generators of L(4l)* . Alternatively, the morphism of
delta operators 4) - K given by the universality of 4D maps 0,, to un E K * .
Since uP-1 is indivisible in K* = L (K) * , the prime p cannot divide 
in L(~)*. 0

The second of these arguments can be abstracted as follows.

PROPOSITION 10.15. - Suppose that the Hattori-Stong theorem
holds for the delta operator F, and we are given a morphism E - F of delta

operators. If L(E)* has unique integer factorisation, and the same primes
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are invertible in each of the rings L (E) * and L ( F) * , then the Hattori-Stong
theorem holds for E.

Proof. We apply Proposition 10.12. Supposing that the prime p
divides 6p-i in L (E) * , we deduce that p divides fp-l in L (F) * , so that
the Hattori-Stong theorem for F implies that p is invertible in L (F) * and
hence in L ( E) * . 0

PROPOSITION 10.16. - For the Artin-Hasse delta operator A of

Example 3.11, E (A),, = A* (29 Z (p)

Proof. We apply Proposition 10.13. The delta operator A is

Leibniz; see [12], §3.2. The series (3.12) giving D in terms of A’ is at the
same time a divided power series with coefficients in A* and a power series
with coefficients in A* It follows that the same is true for the inverse

series for A’ in terms of D. Hence is divisible by . So for a

prime q # p, the coefficient aq_ 1 is divisible by q. But ap_ 1 - - (p - 1) !v
which is not divisible by p. 0

We consider now two examples of delta operators where

are all proper inclusions.

Recall from Example 6.12 that for the delta operator we have

L(~/(~i)~ = Z[U2, u3, ...], which has unique integer factorisation. Since
01 = 0 in prime 2 is invertible On the other

hand, for an odd prime p, we saw in (6.11) that (p-1)!Up-l = modulo

decomposables in L*, so that p does not divide in hence

p is not invertible in Thus by Proposition 10.13 S(~/(~i)~ -

Z[-’] [U2, u3, ...~.
Our second example is the delta operator (D/02 for which L ( / 2 ) * _

~~ul, u2, u3, ...~ / (2u2 + U2) (see Example 6.12) does not have unique
integer factorisation. However unique integer factorisation fails only for the
prime 2, and since cpî = - 2u2 in Theorem 10.10 shows that 2 is

invertible Similarly 3 is invertible, since cp2 = 0 in 
For all other primes we may use the argument which applied to the previous
example to conclude that
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11. Topological Hattori-Stong theorems.

Finally we examine topological Hattori-Stong theorems. Suppose that
E is a complex-oriented spectrum with E* torsion-free. The corresponding
delta operator E will already be Leibniz, and, since the K-theory spectrum
is Landweber exact, Proposition 8.4 shows that (K 0 E) * is isomorphic
to K* (E) . Thus the Hattori-Stong theorem for E-theory asserts that E* is
isomorphic to its rational closure E (E) , under the right unit E* - K* (E).

We recall the conditions for a spectrum to be Landweber exact [14].
Fixing a prime p, for n &#x3E; 0 let un E E2pn-2 be the coefficient of tpn
in the p-series [PIE(t) of the E-theory formal group law. Clearly uo = p.
The exactness conditions at the prime p are that p, ul , u2 , ... is a regular
sequence in the ring E*. That is, for all n &#x3E; 0, multiplication by u,, on the
quotient E,,I(p, ul,..., should be injective. This is required to hold
for all primes p.

The first of these conditions says that multiplication by p is injective
on E*, and thus E* is torsion-free, which is a blanket assumption for all
the spectra we consider.

The next condition, at height one, says that multiplication by ul on

E* / (p) is injective. That is to say, if p divides ul e in E*, then p divides e.
Now ul = cp-l modulo p, where Cp-i 1 is the coefficient of tP/p in the log
series of the formal group law (see [15], Lemma 2.1), and we saw in 6.17
that Cp-i = e?-i mod p in E*. So, given that L (E) * = E*, this height-one
condition is equivalent to the criterion of Theorem 10.9 for the Hattori-
Stong theorem to hold. We shall say that E* (or more generally an E*-
module M* ) satisfies the height-one Landweber exactness condition for all
primes if E* (or M* ) is torsion-free and for each prime p the sequence
p, eP_ 1 is regular. We have thus proved

THEOREM 11.1. - If E is a complex-oriented ring spectrum with
E* torsion-free, then E* is a pure subgroup of K* (E) if and only if E
satisfies the height-one Landweber exactness condition for all primes. 0

COROLLARY 11.2. - If E is a complex-oriented ring spectrum
which is Landweber exact, then E* is a pure subgroup of K. (E) - 0

The following generalisation closely parallels a result of Laures [16],
Theorem 1.6, which applies to the case of elliptic cohomology.
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THEOREM 11.3. - Let E be a complex-oriented ring spectrum
and X a space or spectrum such that E* (X ) satisfies the height-one
Landweber exactness condition for all primes, then E* (X) is a pure

s u bgro u p of K* ( E n X).

Proof. Since E* (C~P°° ) - II (E) * is a free E*-module, there is

a Kfnneth isomorphism E* (X n CP’) E,,(X) 0E* II(E) . Similarly,
since Lemma 8.2 shows that K* (E) = E* (K) is a flat E*-module, A

X ) - E* (X n K) ‘~’ E* (X ) K* (E) . Moreover the isomorphism of
Theorem 9.1 is compatible with these isomorphisms so that K* (E A X) ~
E,,(X) 0E* Now apply the arguments used in the proofs of
Proposition 10.8 and Theorem 10.9. D

It is striking that for these results only the first two of Landweber’s
criteria are needed. It is tempting to suspect that using the higher condi-
tions one might prove that E* is a pure subgroup of F* (E), where both E
and Fare Landweber exact theories. In the absence of any analogue of
Theorem 9.1, or indeed of any space to play the role that CP~ plays for

K-theory, it is difficult to see how to generalise our proofs.

Of course, if E* (X ) satisfies the height-one exactness condition, then
so does E* ; the converse is true if E* (X ) is free over E*. This follows in
turn if X is a finite complex and H* (X ) is a free Z-module. Smith [27]
states the classical Hattori-Stong theorem, for E = MU, in this last form.

Suppose that E satisfies the height-one exactness condition, and M*
is a flat E*-module, then tensoring the exact sequences

with M*, it follows that M,, satisfies the height-one exactness condition.
In particular, if E is Landweber exact, then Lemma 8.2 implies that

E* (E) satisfies the height-one exactness condition. Hence E* (E) is a pure
subgroup of K* (E n E). More generally a similar result will hold for

E* (E n E A ... n E). These remarks follow closely the case of elliptic
cohomology considered in Theorem 2.10 of [16].

Though Theorem 11.1 gives the complete picture, in some cases the
following results provide a simple way to verify that the Hattori-Stong
theorem holds.

PROPOSITION 11.4. - Suppose that the complex orientation MU -~
E extends via a map E - K to an orientation of K, and E* has unique
integer factorisation, then the Hattori-Stong theorem holds for E-theory.
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Proof. The K-theory orientation which factors through E may
not be the standard orientation. But together the two orientations deter-
mine a double delta operator over K* . For the standard orientation, for
each prime p, the sequence p, is certainly regular in K* = Z[u, 
so the Hattori-Stong theorem holds. It follows that the Hattori-Stong theo-
rem holds for the delta operator determined by the other orientation. Since
no primes are invertible in K*, none can be in E*, so Proposition 10.15
applies. 0

For p-local spectra there is a corresponding result. Let G denote a
ring spectrum which is a summand of p-local K-theory.

PROPOSITION 11.5. - Suppose that E is a complex-oriented ring
spectrum for which E* is a Z(p) -module. If the complex orientation MU -~
E extends via a map E - G to an orientation of G, and E* has unique
integer factorisation, then the Hattori-Stong theorem holds for E-theory.

Proof. A suitable orientation for G gives rise to the delta operator
A 0 ~~P~, where A is the Artin-Hasse operator of Example 3.11. Proposi-
tion 10.16 shows that the Hattori-Stong theorem holds for G-theory. The
remainder of the proof follows that of Proposition 11.4. 0

It is clearly possible to state results which are intermediate between
Propositions 11.4 and 11.5, for example for theories in which 2 is invertible
and which map into KO ~ 2 ~ .
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