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1. Introduction.

A contact structure on a manifold M of dimension n = 2k + 1 is a

smooth field D of hyperplanes p - D(p) C TpM which satisfies the contact
condition, also called the Darboux condition,

where w is a locally defined 1-form such that D(q) - for any

point q near an arbitrarily chosen point p E M. The Darboux theo-
rem says that around any point p satisfying (DC) there exists a system

z) of local coordinates such that

In particular, this means that all 1-forms satisfying the Darboux condition
are locally equivalent with respect to the natural action of the group of
local diffeomorphisms.

In this paper we study local invariants of singular contact structures
which are defined by nonvanishing 1-forms w satisfying the Darboux
condition only on a dense set of points.

To be precise, by a local singular contact structure we mean a module
P = (w) of germs at the origin of differential 1-forms on M = (K = R
or K = C) generated by the germ of a nonvanishing 1-form w such that the
set of noncontact points

contains the origin, but is nowhere dense in a neighbourhood of the origin.
The module P is considered over the ring of function germs in a fixed

category. The set ,S’ is called the Martinet hypersurface. It is the set of

zeros of the Martinet ideal (H) generated by the function germ H defined
by the relation

in a given coordinate system.

Our aim is to identify sets of complete invariants (strictly speaking,
covariants) of the C°, real-analytic, and holomorphic local singular con-
tact structures, with respect to the natural action of the group of local

diffeomorphisms of the same category.
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The simplest invariants are the Martinet hypersurface S’ and the

restriction Pis of P - (c~) to S defined as follows. We say that S’ is

structurally smooth at p E S if dH(p) 54 0 (then it is smooth at p and

it remains smooth in a neighbourhood of p when P = (w) is replaced by
P = (cD) with cD close to w in the C2 topology). Let be the set of

structurally smooth points of S. We prove (Proposition 3.1) that for any
local singular contact structure this set is nonempty. The naturally defined
pullback of P to ,S’reg will be called the restriction of P to ,S’ and denoted

by Pis (Section 3.1).

The following question is natural.

Is the hypersurface S together with the restriction Pis a complete
invariant ?

In restricted form, this question was asked in [Ma2] and [JP]. For
first occurring singularities an affirmative answer follows from the Martinet
normal form (see [Mal] or Section 3.1). In [Zhl], [Zh2] normal forms for
deeper singularities were obtained, which imply an affirmative answer to
our question for singularities of codimension  3 in the Coo category. (For
such singularities these normal forms imply an affirmative answer to the
stronger conjecture, also mentioned in [Zhl], that the characteristic line
field on ,S’ is a complete invariant.)

One of the main results of the present paper gives an affirmative
answer to the above question for all singularities excluding degenerations
of infinite codimension. The following statement follows from Theorem 3.1
and Proposition 3.4.

THEOREM 1.1. (i) In the space of germs at the origin of holomor-
phic nonvanishing 1-forms w on there exists a subset E of infinite

codimension such that any two local singular contact structures P = (w)
and P = (cD), with w and lll not belonging to E, are equivalent if and only
if the pairs (S, Pis) and (8, Pis) are equivalent.

(ii) The same is true in the real-analytic category with the space of all
germs replaced by the set of germs w whose Martinet ideal has the property
of zeros.

(iii) With the definition of the set E given below, the statement (ii) holds
in the C~ category without the claim codim E = oo (we conjecture that
this claim is also true).
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We recall that an ideal has the property of zeros if any function

vanishing on the set of zeros of this ideal belongs to the ideal. The property
of zeros of the Martinet ideal will be called property (PZ) (see Section 3.1).

The set E in our theorem can be described explicitly. Namely, we
define the characteristic form

and the quotient ideal

where I(H, q) denotes the ideal generated by H and the coefficients of the
2k-form 1]. The ideal will be called characteristic ideal of P

(see Sections 3.2 and 3.3).
The set E consists of the germs w for which  2.

In the holomorphic category the condition w g E is equivalent to the
condition codim (81) = 2 (in S) or Sl = ~s, where the set ,5’1 C S’ consists of
the points of S at which the characteristic form q vanishes. This condition
is natural since the set of all local singular contact structures such that
q(0) - 0 is a stratified codimension 2 submanifold in the space of local
singular contact structures (see Proposition 3.3 in Section 3.2).

We also introduce the following more subtle invariants:
(i) an orientation C7 (Sections 3.2 and 4.1),
(ii) a line bundle L over the Martinet hypersurface ,S’ (Section 4.1),
(iii) a canonical partial connection Ao on L at 0 E K’ (Section 4.2),
(iv) a 2-dimensional kernel K(O) = ker(w n (Section 4.2).

We establish independence of these invariants and obtain a few results
stating that they (or part of them) form a complete set of local invariants.
In particular, in the case where S is structurally smooth our results in
Sections 2.1 and 4.2 include the following statements.

THEOREM 1.2. - In the set of holomorphic local singular contact
structures P = (w) on C2k+l, with the Martinet hypersurface S structurally
smooth, the following objects form complete sets of local invariants:

(a) 8 and Pis, if k = 1,
(b) S, Pis and I~(o), is transversal to S,
(c) L and Ao (under no a priori assumptions).
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These statements also hold for Coo and real-analytic local singular
contact structures on JR2k+l if we add to the invariants the orientation 0~
with the exception of statement (a~ in the Coo category.

A version of this result was already announced in [JZh2].
Another result of this paper, Theorem 3.2, concerns the more gen-

eral case; we allow ,S to have singularities. We introduce the condition
2, where gen(Ich) denotes the minimal number of generators of

the ideal Ich, which is slightly weaker than the condition w g E. We show
that under this condition the restriction and the orientation are complete
invariants.

Relations between the invariants are studied in Section 4.3. We prove
that under the condition w V E the restriction determines the orientation,
and under the condition gen(Ich) ~ 2 the line bundle determines the partial
connection.

In Section 5 we present a realization theorem which describes the
Pfaffian equations on the Martinet hypersurface ,S’ that can be obtained as

restrictions of local singular contact structures to ,S’ (see also Section 2.1 ) .
Our results can be used for obtaining a classification of certain classes

of Pfaffian systems as we explain in Section 2.4. In particular, in dimension
3 our results allow reducing the classification problem of local singular
contact structures in the smooth category to the known results on smooth
orbital classification of singularities of vector fields [B], [Ro]. In the analytic
categories the functional moduli appear in the local classification of Pfaffian

equations in dimension 3, just as they appear in the orbital equivalence of

holomorphic or real-analytic singularities of vector fields (Martinet-Ramis).
Other applications of our results in dimension 3 are presented in

Section 2.3. In particular, our realization theorem allows us to introduce
an interesting class of singular foliations orienting the plane. We observe
that the characteristic vector field of a local singular contact structure
introduced by us in Section 3.2 has a meaning in sub-Riemannian geometry
(cf. e.g. [A], [Mon], and [LS]). Namely, the so-called abnormal curves
appearing there are the integral curves of our characteristic vector field.
Our results imply that in dimension 3 the abnormal curves determine the
local Pfaffian equation up to equivalence.

Restrictions of contact structures to odd-dimensional generic subman-
ifolds are singular contact structures. Thus our results and the relative Dar-
boux theorem determine complete local invariants of generic submanifolds
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of contact manifolds. Another reason for interest in the local structure of

Pfaffian equations comes from the geometric theory of differential equations
[BC3G], [VKL].

2. Dimension 3.

2.1. Main results.

We begin formulating our results with the somewhat easier case of
dimension 3 and structurally smooth Martinet surface S. Let us recall that
by equivalence of germs of two objects (or tuples of objects) we mean the
fact that one of them (or one tuple) can be transformed to the other by
the germ of a diffeomorphism.

THEOREM 2.1. Let P = (w) and P - (15) be local singular
contact structures on C3 with structurally smooth Sand 8. Then, in the
holomorphic category, eq ui valence of the pairs (S, Pis) and (8, implies
equivalence of P and P.

THEOREM 2.2. - The same is true in JR3 in the Coo and real-analytic
categories provided that the 1-form a = on S either does not vanish

or has an algebraically isolated singularity at the origin.

The condition that a has an algebraically isolated singularity means
that factorizing the ring of all function germs over the ideal generated by
the coefficients of a = + a2 (X, y) dy we obtain a linear
space of finite dimension.

The difference between the holomorphic and the other two categories
is due to the existence of a canonical orientation C~s on the Martinet surface
,S’ which is, in general, an independent invariant. The canonical orientation
is defined as follows. 

We use the following convention on inducing orientation from an n-
manifold M to its boundary aM. Let M C R’ and, locally, 8M = {h = 0) ,
M = {p E Rn : h(p) &#x3E; 01, where h : JRn ---+ R is a function regular on aM.
Then any orientation on M given by an n-form SZ induces an orientation
on aM which, by our convention, is the orientation defined by the unique
volume form Qa M on c~M satisfying dh(p) = Q(p), p E 8M.

When S = {p E ]R3 : (w A 6~)(p) == 01 is structurally smooth at
0 E ]R3, then S’ divides a neighbourhood U C R3 of the origin into two
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disjoint connected open subsets U+ and U- such that U B S = U+ U U-.
The differential 3-form (where w is a generator of P) does not vanish
on U+ and on U-, and so it defines orientations C~+ and C~- on U+ and U-,
respectively. These orientations depend on P but are independent of the
choice of the generator w (since cp2w/Bdw). As S is part of the
boundary of U+ and U-, the orientations 0+ and C7- induce orientations

ot and Os on S. It follows from the structural smoothness of S that the
3-form w n dw "changes sign" when passing from U+ to U-. Therefore ot
and (9~ coincide. We define* the orientation Os as Os = Oj = ~s ~

Note that a volume form Qs on S defining C~s can be uniquely
determined from the equation Qs(p)AdH(p) = for p E S,
where H is any generator of the Martinet ideal (see also Section 3.5).

THEOREM 2.3. Theorem 2.1 holds in JR3, in the real-analytic
category, with the pairs (8, Pis) and (,S’, P ( s ) replaced by the triples
(8, Pis, Os) and (,S’, Pis, 6s). It also holds in in the smootll category,
with the same replacement, provided that the pullback is either not

fiat at 0 0.

Above and thereafter by a flat form we mean a form with coefficients
being flat functions (i.e., having vanishing Taylor series).

Theorems 2.1, 2.2, and 2.3 are explained in the next subsection.
There we also show that the orientation C~s is, in general, an independent
invariant, i.e., Theorem 2.1 does not hold in the COCJ and real-analytic
categories. The additional "nonflatness" requirement in Theorem 2.3 in the
smooth case can not be removed. This will be shown in Section 4 where

we introduce (for any dimension n &#x3E; 3) one more invariant - a canonical
partial connection.

Theorems 2.1 and 2.2 imply many corollaries provided that we
know what Pfaffian equations on R2 are realizable, i.e., can be obtained

by restricting a singular contact structure to the Martinet surface. The
realization theorem in I~3 is as follows.

THEOREM 2.4. - Let P be a local singular contact structure on ~3
with structurally smooth Martinet surface S, and let (a) be the restriction

* 
This definition was suggested to us by V.I. Arnold.
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of P to S. Then there exists a 1-form /3 on S such that

and the canonical orientation Os is defined by Vice versa, if a and 0
are local 1-forms on a smooth surface S C JR3 satisfying (2.1) then there
exists a local singular contact structure P on JR3 with structurally smooth
Martinet surface S’, such that Pis = (a), and the canonical orientation Os
is defined by d/3. Both statements hold in the categories Coo and CW. They
also hold on C~ in the holomorphic category, with the conditions involving
the orientation removed.

In the following subsection we use the realization theorem to show
that if the restriction (cx) has an algebraically isolated singularity then it
uniquely determines Os.

2.2. Determinacy of the orientation by the restriction.

In this subsection we explain the relation between the restriction Pis
and the orientation Os, in the real categories CW and Cl.

Let us fix a surface S and a Pfaffian equation (a) on S’ C R3, which
is realizable in the sense of Theorem 2.4. Consider arbitrary local singular
contact structures P and P on JR3 with the structurally smooth Martinet
surface S and the same restriction (cx) to S. A priori there are 3 possibilities:

(a) Any such P and P define the same orientation Os = C~s on S
(then we say that determines Os).

(b) There exist such P and P which define different canonical orien-
tations Os. There is a diffeomorphism 4D : S --~ ,S that preserves (a)
and reverses the orientation of S.

(c) There exist such P and P which define different canonical orien-
tations Os . Any diffeomorphism P : S --+ S that preserves (a) also
preserves the orientation Os.

Note that in the cases (a) and (b) the triples (S, Pis, Os) and
are equivalent if and only if so are the pairs (8,Pls) and

°

We will show below that all the cases (a), (b), and (c) are realizable.

PROPOSITION 2.1. If cx (o) - 0 and 0 is an algebraically isolated
zero of a then the restriction determines the orientation Os, i.e., the
statement (a) holds.
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Proof. Let P and P be local singular contact structures with the
same ,5’ and the same restriction (a) to S. Let Os and 6s be the canonical
orientations of S defined by P and P. By Theorem 2.4 we have da = a A /3
and da = a!B /3 for some 1-forms ~3 and /3 on ,S’ with nonvanishing
differentials and defining the orientations C~s and respectively. It

follows that a!B (/3 - /J) == 0. Since a has an algebraically isolated singularity
at the origin we can use a result in [Mou] to conclude that $ - $ = f a
for some function f. Since a(0) = 0 then, by Theorem 2.4, da(0) = 0 and
consequently = Therefore Os = Q.E.D.

Note that, by Proposition 2.1, Theorem 2.2 follows from Theorem 2.3
and the following remark.

We have the case (b) if the restriction is not singular, i.e., 0.

The classical Martinet theorem says that in this case P is equivalent to
the fixed singular contact structure (dy - x2dz), therefore P (and so Os)
is determined up to a diffeomorphism by Pls. For example let us take
(P, P) - (P+, P-) = (dy ± x2dz). Then S = ,S’+ = S- - fx = Of and we
may take a = a+ = a- = dy. The canonical orientations on ,5’ are defined

by 2-forms :l=dz!B dy. The existence of an orientation reversing symmetry
of (a) is obvious.

The following example shows that the case (c) is realizable, i.e.,
the orientation C7s is an independent invariant. We have to take a with

singularity of infinite codimension.

Example 2.1. Define a - xdy + (3y + x3 y2)dx. The Pfaffian
equation (x2a) does not admit symmetries reversing the orientation of the
plane (x, y) (the proof of this fact is given below) and is realizable. Namely,
the Pfaffian equations P~ generated by 1-forms W::f:. = dz+x2a+z(2x2ydx:l=
a) have the same structurally smooth Martinet surface 9 = Iz = 0} and
the same restriction (X2a) to S. They define different canonical orientations
on S. Therefore P+ is not equivalent to P-.

The proof that the Pfaffian equation (x2a) on R 2 does not admit
orientation-reversing symmetries is as follows. Let T be a symmetry of (a).
Then is an orbital symmetry of the vector field

which means QV, Q(0) # 0 for some The

y-axis is the set of singular points of V, therefore T brings the function
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x to a function A(x, y)x, A(O) =,4 0. Then and so

. Let u = x3y and w = u o ~. Note that V1 (u) - -u2. This
relation and imply

The coordinate axis are invariant manifolds of the vector field Vl , therefore
Bl1 has the form x ---&#x3E; A(x, y)x, y - B(x, y)y. Let T = A 3 (X, y)B(x, y).
Then it follows from (2.3) that

The vector field VI has the property: for any function T the formal series
of the function Vi (T) does not contain the resonant term x3y. Therefore,
taking the formal series of the relation (2.4) we obtain T(0) = A2 (o)T2 (o)
and, consequently, T(0) = &#x3E; 0. Thus = &#x3E; 0,
i.e., W does not change the orientation of the plane.

2.3. Corollaries.

This and the next subsections contain corollaries of Theo-

rems 2.1 - 2.4.

At first we note that Proposition 2.1 and Theorem 2.4 allow us to
define an interesting class of foliations of a plane orienting the plane.
Observe that any Pfaffian equation (a) on the plane defines a foliation
Fa (with singularities) of the plane by curves. These curves are the phase
curves of the vector field defined by i = a2 (x, y), y = -a1 (x, y), where

COROLLARY 2.1. - Any foliation of the plane defined by a Coo
Pfafhan equation (a) such that a has an algebraically isolated singularity
at the origin and satisfies the condition (2.I), for some 1-form ~3, defines a
unique orientation of the plane described by the 2-form d~3.

To prove this statement we show that the foliation Fa can be identified
with the Pfaffian equation (a). More precisely, if a and a have algebraically
isolated singularity at the origin and Fa = Fa then (a) _ (a) . Namely, the
equality of the foliations implies that a A a = 0. Using a result in [Mou]
and the condition of algebraic isolation we can conclude that a = f a and
a = f a for some functions f and f. Therefore the Pfaffian equations (a)
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and are the same and the corollary follows from Proposition 2.1 and
Theorem 2.4.

These arguments allow us to reformulate Theorem 2.2 in the following
geometric way.

COROLLARY 2.2. - Let D be a 2-distribution on JR3 described by a
1-form w, with the Martinet surface S corresponding to (w) structurally
smooth. Let F be the foliation of S cut by D. If the restriction a = was
is nonsingular, or it has an algebraically isolated singularity at the origin,
then the foliation F is a complete invariant of D in the categories Coo
and CW .

The foliation F plays a special role in the sub-Riemannian geometry
and control theory. It consists of so-called abnormal (or singular) curves
that are the critical points of the endpoint map, see [A], [Mon], [LS]. The
significance of abnormal curves as local minimizers in sub-Riemannian
geometry was showed by R. Montgomery, see [Mon]. The last corollary
can be reformulated as follows.

Under the given mild condition on a the set of all abnormal curves is
a complete invariant of the distribution D.

The case (b) of the previous subsection, when the restriction Pis does
not define the orientation Os, but the restriction Pis admits an orientation
reversing symmetry, is not exhausted by the Martinet case 0.

Another simple example is the case a - 0 which means that the field of
planes defined by P is everywhere tangent to the Martinet hypersurface S.
This case is realizable, by Theorem 2.4, and an example of P satisfying this
requirement is as follows: P± = (dz ± xzdy) (the canonical orientations on
S = Iz = 0} corresponding to the signs + and - are different) . Obviously,
(a) admits symmetries reversing the orientation of ,S and, by Theorems 2.2
and 2.3, we obtain the following corollary.

COROLLARY 2.3. - Any field of planes on described by kerw,
which has nonempty and structurally smootll Martinet surface S, and
which is tangent to S at any point is locally equivalent to the field
of planes described by the 1-form dz + xzdy (this holds in holomor p hic,
real analytic, and Coo categories).

Our construction of the orientation C7s and Proposition 2.1 imply the
following result, which might be used in the global study of singular contact
structures.
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COROLLARY 2.4. - Let P = (w) be a global singular contact struc-
ture on a 3-manifold M3 with structurally smooth Martinet surface Sand
w nonvanishing. Then S is an orientable surface, with the orientation Os
invariantly related to P. If there exists a point p E S at which the pullback
cx = has an algebraically isolated singularity, then the orientation Os
is uniquely determined by the germ of a at p.

2.4. Local classification of singularities of plane fields on JR3.

Below we use the reduction Theorem 2.2 and the realization Theorem

2.4 in order to reduce the local classification of singular contact structures
to the well known problem of the orbital classification of vector fields on
the plane.

Let P be a local singular contact structure on R3 given by a Coo
nonvanishing 1-form c,~ with structurally smooth Martinet surface S. Let

(a) be the restriction of P to S. By Theorem 2.2, P is determined up to
equivalence by (a), provided that 0 or a has an algebraically isolated
singularity at the origin. This reduces the classification of P’s (satisfying
the given conditions) to classification of Pfaffian equations (a) = Pis. The
latter problem coincides with the problem of orbital classification of vector
fields on the plane (where equivalence is defined up to diffeomorphisms and
multiplication by nonvanishing functions).

Assume that a(0) = 0. Then the realizability condition (2.1) implies
that da(o) = 0. Let X be a vector field obtained from a via a nondegenerate
volume form Q on S: a. The vector field X defined up to

multiplication by a nonvanishing function is invariantly related to P. It is
called characteristic vector field on S. The condition da(0) = 0 is equivalent
to the fact that the sum of the eigenvalues of the linear part of X at the
origin is equal to zero. Therefore we can distinguish hyperbolic, elliptic,
and parabolic singularities of local singular contact structures on JR3 with
,S’ structurally smooth. They correspond, respectively, to the eigenvalues
~ 1, ±i and 0, 0 (up to multiplication by a common factor).

In the hyperbolic case the characteristic vector field X is reducible,
by a formal change of coordinates, to the resonant normal form

where f(0) = g(0) = 0, see [AI]. One can show that the realizability
condition (2.1), considered for the Pfaffian equation (a) corresponding to
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a vector field having the formal normal form (2.5), is equivalent to the
condition

It is known that a smooth vector field X whose resonant normal form (2.5)
satisfies (2.6) is smoothly orbitally equivalent to the normal form

where b is a modulus, see [AI], [Bo]. It follows that the restriction to the
Martinet surface of any hyperbolic singular contact structure is generated,
in suitable coordinates, by the 1-form

Note that da = a A ~3 where,

The singular contact structure (dz + a + z~3) has the Martinet surface
,S’ = Iz = 01 structurally smooth and its restriction to ,S’ is generated by a.
Thus, from Theorem 2.2 we obtain the following normal form for hyperbolic
singularities of singular contact structures.

COROLLARY 2.5. - Any Coo singular contact structure on JR3 having
a hyperbolic singularity at the origin is locally Coo equivalent to the

singular contact structure generated by the 1-form dz -t- cx + z/3, where
a and 13 have the form (2.7) and (2.8).

In the elliptic case X is reducible by a formal diffeomeorphism to the
resonant normal form

where f (0) = g(O) = 0. Like in the hyperbolic case, the realizability con-
dition (2.1), expressed in terms of this normal form, is equivalent to the
condition (2.6). In the elliptic case this condition means that the first focus
number of X is different from zero, see [AI]. A smooth vector field X whose
resonant normal form (2.9) satisfies (2.6) is smoothly orbitally equivalent
to the normal form
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where b is a modulus, see [AI], ~Bo~ . It follows that the restriction to the
Martinet surface of any elliptic singular contact structure is generated, in
suitable coordinates, by the 1-form

(2.10) 
- - - - - - - - - -

Note that da = c~ n ~3, where

By Theorem 2.2 we obtain the following normal form for elliptic singulari-
ties of singular contact structures.

COROLLARY 2.6. - Any Coo singular contact structure on JR3 having
an elliptic singularity at the origin is locally Coo equivalent to the singular
contact structure generated by the 1-form dz+a+z/3, where a and /3 have
the form (2.10) an d (2.11 ) .

The results of Corollaries 2.5 and 2.6 are not new; equivalent normal
forms were obtained in [Zhl] by rather complicated techniques. The new
classification results of the present subsection concern analytic hyperbolic
and elliptic singularities and smooth parabolic singularities.

In the real-analytic category our reduction and realization theorems
also reduce (in the same way) the classification of plane fields on JR3 to
the orbital classification of vector fields having the resonant formal normal
form (2.5) or (2.9) and satisfying the condition (2.6). The classification of
such vector fields in the real-analytic category is much more complicated
than in the Coo category. It was obtained by Martinet and Ramis [MR].
The orbitally nonequivalent germs of such vector fields are distinguished
by the modulus b of the formal normal forms (2.7) and (2.10) and certain
functional moduli of the kind of Ecalle-Voronin. We obtain

COROLLARY 2.7. - These moduli are the only ones in the classifica-
tion of hyperbolic and elliptic singularities of analytic local singular contact
structures.

Now we consider the case where a singular contact structure P has a
parabolic singularity at the origin. In this case the characteristic vector
field X has zero eigenvalues. We will say that a parabolic singularity
is nilpotent if 0, i.e., the differential equation corresponding to
the linear approximation of X is equivalent to X2, X2 == 0. A

nilpotent singularity will be called algebraically isolated if the origin is



251

an algebraically isolated singular point of X. In this case X is formally
orbitally equivalent to the normal form ~1 = X2, ’-k2 = r§7 + X29(xl),
where m &#x3E; 2, ~(0) = 0, see [AI]. Therefore the restriction of P to the
Martinet surface is formally equivalent to the Pfaffian equation generated
by a 1-form cx = (xm + x2g(xl))dxl - x2dx2. It is easy to see that the

realizability condition (2.1) is equivalent to the condition that 

r§7h(ri), where h’(0) # 0. Under this condition da - a A 3, where
~3 - Using Borel’s theorem on existence of a
smooth function with a prescribed Taylor series and Theorem 2.1 in the
Coo category, we obtain the following classification result.

COROLLARY 2.8. - Any local singular contact structure having an al-
gebraically isolated nilpotent singularity at the origin is formally equivalent
to the local singular contact structure generated by the 1-form dz + cx + z /3,

where m &#x3E; 2 and h is a C°°-function with h’(o) ~ 0.

3. Reduction theorems for general S.

In the present section we extend our results in Section 2.1 to arbitrary
dimensions, without assuming S’ to be regular. We introduce the character-
istic ideal (Section 3.2) and state a theorem which says that under a natural
condition on the depth of the characteristic ideal the pair (S, Pis) is a com-
plete set of invariants (Section 3.3). Generalizing the notion of orientation
0 to arbitrary dimension and using a weaker condition on the minimal
number of generators of the characteristic ideal, we state a theorem on
sufficiency of the triple of invariants (S, Pis, C~) (Section 3.4).

In our considerations we fix a category C which is any of the three

categories: holomorphic, C = Ch, real-analytic, C = Cw, or smooth,

We denote by R the ring of germs at 0 E of functions of category C.

3.1. Basic notions and notation.

Let P = (w) be a local Pfaffian equation, i.e., a module over R of

germs at the origin of differential 1-forms of category C on K’, n = 21~ + 1.



252

Given a generator of P and the germ at the origin of a nondegenerate
n-form Q on ocn of category C, we define the function germ

The ideal (H) of R generated by H is called the Martinet ideal of P and it
is independent of the choice of w and Q. The germ of the set of noncontact
points S _ ~ p : H(p) = 0 }, called the Martinet hypersurface, is the set of
zeros of the Martinet ideal (H). By definition, P is a local singular contact
structure if a representative of ,5’ is a nowhere dense subset defined in a

neighbourhood of 0 E (equivalently, H is a noninvertible nonzerodivisor
in R).

We call S smooth at 0 E S’ if S is a smooth submanifold of M = K"

of codimension 1 in a neighbourhood of 0. A slightly stronger property
says that S is structurally smooth at 0 E S if 0. Note that

structural smoothness of ,S’ is the property of the ideal (H) but this abuse
of language should not cause confusion. Given a representative H, we define
the regular part part of ,S as ,S’reg = ~ p E S : 0 }, and the singular
part ,S’Sing p (E S : dH(p) - 0 ). Again, sreg and depend on the
ideal (H).

(PZ) We say that a local PfafIian equation P has the property of zeros,
called briefly property (PZ), if the ideal (H) of R has the property of
zeros, i.e., any function germ E R which vanishes on S = {77 = 0}
belongs to the ideal (H).

If P is a local Pfaffian equation with ,S‘ structurally smooth, then P
is a local singular contact structure and the property of zeros (PZ) holds
automatically. Additionally, when our ideal has the property of zeros, it is
defined uniquely in a given category by the hypersurface ,5’ (as the set of
function germs vanishing on S). Then the structural smoothness and the
regular and singular parts ,S’reg, ,S’sing are defined by ,S’ itself (and not only
by the ideal (H) ) . The following fact will be proved in Section 3.6.

PROPOSITION 3.1. - If P = (w) is a local singular contact structure
which has the property (PZ), then the regular part sreg of S is nonempty.
In the holomorphic category sreg is dense in S if and only if P has the

property (PZ).

Example 3.1. - In the real categories the regular part of ,S’ may be
not dense in S. Let w = dz -f- ( 3 x3 - xzy2)dy. Then the Martinet ideal is
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generated by the function H - x2 - zy2. Its zero set (called Whitney
umbrella) contains the halfline x - 0, y = 0, z  0 which is the set

.

Remark (Realization of S). - Any function H which does not vanish
at generic points near 0 E (i.e., such that H is a nonzerodivisor in
R) can be realized as a generator of the Martinet ideal of a singular contact
structure P = (w) of category C . In particular, in the Coo category ,S can be
the germ of any closed, nowhere dense set. This follows from the fact that,
given an arbitrary function germ H of category C, the Pfaffian equation
generated by the 1-form w = dz -f- h(x, y, -f- ~ ~ ~ where

,9hlOxi = H, x = (XI, Xk), and y = (yl, ... , Yk), has the Martinet ideal
equal to (H).

Let P - (w) be a local singular contact structure of class C and
assume that 0 E K’ is a structurally smooth point of S. Then ,S’ is the

germ of a regular hypersurface in M. We define the restriction Pis of P
to ,S’ as the module (over the ring of function germs on ,S’) of differential
1-forms, generated by where denotes the pullback of w to S.

The notion of the restriction Pis can be generalized to include the
case where the Martinet hypersurface is not structuraly smooth. Since the

regular part Sreg is a submanifold of K’, then the pullback wl Sreg is well

defined. We introduce the ring Rls as the ring of (the germs of) functions
on ,S’ which have extensions of category C to a neighbourhood of 0 in K~.

By definition the restriction of P to S, denoted by is the module over

Rls of the germs of differential 1-forms on sreg, generated by Wlsreg. Note
that if P has the property (PZ), then the ring Rls is isomorphic to the
quotient ring R/ (H) .

Remark. Note that the ring RIS determines ,S’ and so, with our

definition of the restriction P|s, the restriction determines ,S’. In our

theorems we will not use this implicit encoding of ,S’ in and we will

list ,5’ as a separate, though dependent, invariant.

It was proved by Martinet [Mal] that all local singular contact
structures P - (w) which satisfy the condition (called below Martinet
condition)

are equivalent, and are equivalent to P generated by the 1-form



254

For this normal form the Martinet ideal is (zi ) and the Martinet hypersur-
face is given by the equation x 1 = 0. The restriction Pis is generated by
a = dz + x2 dy2 ~ ~ ~ + This 1-form satisfies the genericity condition

(a A (da) ~-1 ) (o) ~ 0, therefore, it defines a quasicontact structure on S.

The Martinet singularity characterized by the condition (MC) is

the least degenerated singularity of a singular contact structure and its
codimension is 1 (which corresponds to the condition H(0) = 0). It is

easy to see that condition (MC) is violated if either dH(0) = 0, i.e., if S

is not structurally smooth, or 0, but is not a quasicontact
structure. In order to study the singularities which violate condition (MC)
we introduce the following notion.

3.2. Characteristic ideal.

We define the characteristic differential form of a local singular
contact structure P = (w) on K’, n = 2k + 1, as the germ at the origin of
the 2k-form

This form depends on the choice of the generators w and H of the Pfaffian
equation P and the Martinet ideal (H), respectively. However, the module
of germs of 2k-forms generated by 17 depends only on P if the 2k-forms and
the function germs are taken modulo (H), i.e., if the ring R is replaced by
the quotient ring R/ (H) .

We will denote by the ideal of the ring of germs R generated
by H and the coefficients of the characteristic 2k-form q, in some coordinate
system. (Equivalently, is the ideal generated by H and all function
germs of the form 17(Xl,... , where X 1, ... , are germs of vector

fields.) We introduce the characteristic ideal of P as the following ideal of
the quotient ring R/ (H)

The ideals and Ich do not depend on the choice of the generators
Hand w, neither they depend on the choice of coordinates used to take
coefficients of 1].

Note that the Martinet condition (MC) means that the characteristic
form does not vanish at 0 and it is equivalent to the condition Ih - R/ (H) .
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Sometimes, instead of the characteristic form, it is more convenient

to use a dual object called characteristic vector field. It can be defined as
follows (see Section 2.4 for a special case).

Let Q be the germ at 0 E K’ of a nondegenerate n-form of category
C on K~. At first we introduce the characteristic vector field Z on JKn to

be the germ of the vector field defined by

The characteristic ideal can be equivalently defined as Teh = I(H, 
where I(H, Z) denotes the ideal generated by H and the coefficients of the
characteristic vector field Z.

Note that the vector field Z is tangent to S. Namely, if p E ssing,
then dH(p) = 0 and Z(p) = 0. We also have A (Zj Q) =
-dH A w A A dH = 0 which means that Z] dH = 0 and so Z is
tangent to S.

This allows us to define the characteristic vector field on ,S’ as the

restriction of Z to S,

The characteristic vector field X depends on the choice of the generator
w and on the choice of Q. However, the module (X) (over the ring Rls of
function germs on ,S’) generated by X is uniquely defined by P. If the

Martinet ideal has the property of zeros (PZ) then the rings Ris and
R/ (H) are isomorphic. This implies the isomorphism I(X), where
I(X) denotes the ideal in generated by the coefficients of X (i.e., the
coefficients of Z expressed in a coordinate system in K’ and restricted

to S).
Now we will show that the ideal Ich is 2-generated if S’ is structurally

smooth or if the weaker condition w n (dc,~)~-1 (o) ~ 0 holds. We will also
construct its generators. Define

where by the kernel of an exterior form 1 we mean the space of vectors v
such that = ~y(v, -, ... , -) = 0.

LEMMA 3.1. (a) If S is structurally smootll then w A 0.
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(b) The latter condition implies that dimK(p) = 2, for any p E S, and
that there exist two germs of vector helds Xl and X2 on of category C
such that Xl (p) and X2(p) span K(p) for anyp G 6’.

Proof. - (a) If w n (dw ) k-l (0) = 0 then the rank of dw (0) restricted
to is less then k - 1. In this case H E .Jlil2, with the maximal

ideal in R, which contradicts to the structural smoothness of S.

(b) We have w A 0 and w n (dlJ)*’(0) = 0, thus P is
equivalent to a Pfaffian equation (w), with w of the form dz+ fdYl +x2dY2 +
... + xkdYk and f E M2 (cf. [Zhl], Section 16). For this Pfaffian equation
we have, ¡ and K(p) = span{ , for

PROPOSITION 3.2. - If P = (c,~) has the property (PZ) and w A
(dc.~) ~-1 (0) ~ 0 then the characteristic ideal 1ch is isomorphic to the ideal

f 2 ) generated by two function germs f 1, f 2 on S, where

and X2 are germs of linearly independent vector fields Xl and X2 on
K’ of category C such that K(p) = X2 (P) 1, for p E S.

Proof. Let X2 be germs of vector fields on K’ which span
ker w A for p E ,5’. Let X3, ... , Xn be the germs of other
vector fields such that Xl, ... , Xn are linearly independent. The ideal 
generated be the coefficients of the characteristic form q = 
is generated by the functions Oi - r~(X1, ... , X2, ... , Xn), i = 
(Xi indicates absence of Xi). Since XI (P), X2(p) E ker(w A 
p E S’, it follows that only two such functions are nonzero on S, namely
Øi = ’ljJdH(Xi), i - 1, 2, where ?p = (w A (dw)~-1)(X3, ... , Xn) is

nonvanishing. We conclude that the ideal restricted to ,S’ is generated
by the functions fi(p) = dH(p)(Xi(p)) (Xi(H))(p), i - 1,2. By the

property (PZ) the characteristic ideal I~h I(H, 71)1(H) is isomorphic to
the ideal I( fl, f2). Q.E.D.

An important invariant is the set of zeros on S’ of the characteristic
ideal I~h, given by

This is exactly the set of points where the Martinet condition (MC)
is violated. If ,5’ is structurally smooth then it follows from the above
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proposition that, independently of the dimension, the set S’1 is defined

by the three equations H = 0, 11 = 0 and f2 = 0. The following fact holds
without assuming structural smoothness of S.

PROPOSITION 3.3 [Mal]. - The set Zl of 2-jets at 0 such

that

is a stratified algebraic subset of codimension 3 in the space of all 2-jets at
0 of 1-forms.

The stratification of Zl into submanifolds of the space of 2-jets at 0
is

where Z° is a codimension n stratum defined by the equality w (0) = 0, the
stratum Z’ has the smallest codimension, equal to 3, and is defined by the
conditions

(we use notation from Proposition 3.2), and Z2 is a stratified submanifold
of codimension 6 distinguished by the condition (cv n (dw)k-l )(0) == 0, see
[Mal].

The set ,S’1 is equal to the pullback of Zl under the 2-jet extension
of the map defined by w. This implies, in the holomorphic category,
that codim codim Zi = 3 if ,5’1 is nonempty. We will show that

codim 81 = codim Zl - 3 except of degenerations of infinite codimension.
In the following section we introduce an algebraic version of the condition
codim ,S’1 = 3 which works in all categories.

3.3. Determination by the restriction.

We will use certain notions from commutative algebra (for an account
of basic facts concerning these notions see Appendix 1). We recall that a
sequence of elements a 1, ... , ar of a proper ideal I C R is called regular if
it satisfies the following condition:

ai is a nonzerodivisor on the quotient ring R/ (aI, ... , 
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(in particular, al is a nonzerodivisor in R). Here (a1, ... , ai) denotes the
ideal generated by a 1, ... , ai.

By the depth of a proper ideal I C R, denoted by depth(I), we
mean the supremum of lenghts of regular sequences in I. We also define

depth(I) = oo, if I = R.

Given a local singular contact structure P, we introduce the following
condition:

on the characteristic ideal I~h = I (H, It follows from the properties
of regular sequences in Noetherian rings (cf. Appendix 1) that in the
holomorphic and real-analytic categories condition (A) is equivalent to the
condition

Clearly, (A) implies (A) in any category. Note that the set Sl is the set of
zeros of the ideal I (H, 7/). The following proposition explains why condition
(A) is natural.

PROPOSITION 3.4. - (a) In the holomorphic category Ch condition
(A) is equivalent to the condition that the set S1 is of codimension 3 (as
the germ of an analytic subset of C’), if it is nonempty.

(b) In the real-analytic and holomorphic categories the inequality
2 holds for any local singular contact structure P = (w) such

that r~(o) = 0.

(c) Condition (A) excludes a subset of infinite codimension in the
space of germs of 1-forms Lù of category C = Ch or C = C‘~ . More precisely,
for any fixed 2-jet ~ of a 1-form cD E C, there exists an algebraic provariety

E of infinite codimension, in the space of infinite jets of 1-forms with the
initial 2 jet equal to ~, such that if the infinite jet of a 1-form w E C does not
belong to E~ , then either P = (w) is a local contact structure, or P = 
is a local singular contact structure and (A) holds.

Statement (b) means that inequality in condition (A) may be replaced
by equality for P satisfying 77(0) = 0. Note that depth(Ich) = oo, if q(0) 7~ 0.
We refer the reader to Appendix 2 for the proof of the proposition and for
the definition of algebraic provariety of infinite codimension.
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We are ready for stating our first main result.

THEOREM 3.1. - Let P = (cv) and P = be local singular contact
structures of category C which have the property (PZ), and let P satisfy
condition (A). Then equivalence of the pairs and implies
equivalence of P and P.

In dimension 3 condition (A) can be changed for a simpler condition.

COROLLARY 3.1. For n = 3 condition (A) in Theorem 3.1 can be
replaced by the following condition implying (A) : the 2-form TJ = w A dH
does not vanish at the origin, or the origin is an algebraically isolated zero
for the ideal I(H, 17).

Remark. - If S is structurally smooth then the condition that the
origin is an algebraically isolated zero holds for the ideal I (H, q) if and only
if it holds for the ideal of function germs on ,5’ generated by the coefficients
of the 1-form a = wls. Therefore Corollary 3.1 generalizes Theorem 2.2.

Our result may be stated more explicitely in the case of structurally
smooth S. In this case the condition (PZ) is automatically satisfied and
the characteristic ideal is isomorphic to the 2-generated ideal I( fi, f2)
defined in Proposition 3.2. In the holomorphic and real-analytic categories
the condition depth(I ( f 1, f 2 ) ) = 2 is equivalent to any of the following
conditions:

(A1) The sequence fl, f2 is a regular sequence.

(A2) The function germs fi and f 2 do not have a common noninvertible
factor.

(A3) The origin is an algebraically isolated zero for the ideal I ( f 1, f 2 ) on S.

Therefore, we obtain the following version of Theorem 3.1 concerning
the case where S’ is structurally smooth and the Martinet condition (MC)
does not hold.

COROLLARY 3.2. - Theorem 3.1 remains valid, in the holomorphic
and real-analytic categories, if the condition (PZ) is replaced by structural
smoothness of the Martinet hypersurface and the condition (A) is replaced
by any of the conditions (Al), (A2~, or (A3).
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Equivalence of the conditions depth(I( fi, f2)) = 2 and (Al) fol-

lows from the following general fact in local Noetherian rings: if depth
(ai , ... , ar) = r, then a 1, ... , ar is a regular sequence. Proving equivalence
of (Al) and (A2) is an easy exercise which uses the fact that the ring of
function germs R is factorial in the analytic categories. Equivalence of the
conditions depth( f l , f 2 ) = 2 and condition (A3) is a well known fact.

Remark. - In the holomorphic category condition (A) implies condi-
tion (PZ). This will follow from Proposition 3.6 in the following subsection.

3.4. Determination by the restriction and orientations.

In this subsection we introduce a canonical orientation C~ that is

invariantly related to P and state a theorem on the determinacy of P
by the pair Pis, 0 under a condition that is weaker than (A). Namely, we
introduce the condition

where gen(I) denotes the minimal number of generators of an ideal I. Since
depth(I)  gen(I) for any ideal I, it follows that (A) implies (B).

For the case where ,5’ is not structurally smooth we need one more
condition that is an algebraic analogon of the condition (in the holomorphic
category) that the singular part of ,S’ has codimension at least two in S. The
singular part of ,5’ is defined by the equalities H = 0, dH = 0, therefore it is
natural to consider the ideal, in the ring R of function germs, generated by
H and the coefficients of the 1-form dH. We denote this ideal by I(H, dH),
and define the ideal IH(dH) of the quotient ring R/(H) by

The algebraic analogon of the condition codim is the condition

The condition (C) always holds if S is structurally smooth. In general
case, it is also implied by (A). Namely, it follows from the definition of

the characteristic form q that C I (H, dH) and so Ich C IH (dH),
consequently, depth(Ich) x depth(IH(dH)).
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Now we introduce a canonical orientation. For n = 21~ + 1 with k odd
we use the same method as in dimension 3 to introduce an orientation on S

(more precisely, on the regular part of S). Namely, assume that K = R and
consider a 1-form c,~ defined in a neighborhood of 0 E R n which generates
a local singular contact structure P. Consider a point p E sreg together
with a small ball U C containing p such that ,S’ f1 U C and

the n-form w A (dw)k is nondegenerate on U B S. Then U B s has two
connected components U+ and U- with well defined orientations C~+ and
0 - given by the n-form (note that multiplying w by an invertible
function § changes the n-form by the factor which is positive since
we assume k to be odd). The orientations 0+ and C~- have "different signs"
when compared to a fixed orientation of the whole U, which follows from
the condition 0. Therefore, they induce a unique orientation of
U n ,S’reg . In this way we obtain a canonical orientation Os of sreg which

depends on P only.

In order to extend our definition to the case of 1~ even we introduce

the distribution E by intersecting D = kerw with the tangent bundle of
,S’reg . More precisely, E is given by

and it is defined on the open subset ,S’E of S"9, where

The following proposition is proved at the end of this subsection.

PROPOSITION 3.5. - 2 and (P) satisfies conditions (PZ) and
(C) then SE is nonempty.

The above construction of the orientation Os, repeated for k even,
gives an orientation Os(w) of ,S’reg which depends on the choice of the

generator w. Consider this orientation on the set (TpS)+ consisting of
tangent vectors ~ C Tp S such that w (g) &#x3E; 0. By the condition 
0 the set (TpS)+ is a half-space in TpS. The orientation Os(w) on TpS
induces the orientation of the boundary of (TpS)+, i.e., on the space
E(p). This orientation will be denoted Multiplying w by a negative
function § reverses the orientation Os(w) and it reverses the direction of
the covector W(p)ITpS, thus changing the half-space (TpS)+ for the opposite
one. This means that the induced orientation on E(p) is the same as earlier
and so defined orientation of E(p) is independent of the choice of w.
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The orientation on the distribution E obtained in this way is invariantly
related to P, for k even, and is called canonical orientation OE .

THEOREM 3.2. - (a) Let P and P be local singular contact structures
which have the property (PZ). If P satisfies conditions (B) and (C) then
eq ui valence of the pairs (S, Pis) and (S, implies equivalence of P and
P, in the holomorphic category.

(b) The same holds in the smooth and real-analytic categories with
the pairs (8,Pls) and replaced by the triples (8,Pls,O) and
(S, 0), where 0 denotes the canonical orientation Os, if k is odd,
and the canonical orientation OE, if k is even.

Remarks. - (a) It follows from Proposition 3.2 that if (w A 
(0) ~ 0, then the characteristic ideal is generated by two functions,

where f = Xi (H) and Xi, X 2 are vector fields such that
K(p) - for p E S. Then condition (B) means that
neither of these two functions is divisible over the other one.

(b) If (cv n (dw)k-l )(0) = 0 then the characteristic ideal might be
complicated (in particular, not 2-generated), but in this case our proof
of Theorem 3.2 shows that the condition (B) is not needed, i.e., the

determinacy by the restriction and the orientation holds under condition

(C) only.

(c) In the holomorphic category the condition (PZ) in Proposition
3.5 is not needed, and it is not needed in Theorem 3.2 if we require that
both P and P satisfy condition (C). This is because, in this category,
condition (PZ) is implied by (C), and even by the weaker condition
depth(IH (dH) ) &#x3E; 1 as the following proposition says.

PROPOSITION 3.6. - For an arbitrary local singular contact structure
P the condition depth(IH (dH) ) &#x3E; 1 implies that H does not have a
nontrivial double factor, i.e., there is no function germ 0, §(0) = 0, such
that H - for some function germ ~. In particular, the condition

(C) (and consequently condition (A)) implies the property (PZ) in the
holomorphic category.

Proof. - Assume that the contrary holds, i.e., H = ~2~, §(0) = 0.
Then dH = Odft, where dH - 2qbd§ + Odo. We have that 

= 0 mod (H). The condition depth(IH(dH)) &#x3E; 1 implies that
the ideal generated by the coefficients of dH in the quotient ring 
contains a nonzerodivisor. This fact together with the equality 0
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mod (H) implies that 00 = 0 mod (H), i.e., there exists a function germ
h such that cjJ1/J == hH. It follows that H = cjJ2’Ø == cjJhH = ~77, where
§(0) = 0. We conclude that H - 0 which contradicts our assumption. The
second statement follows from the first one and the fact that the ring of

holomorphic function germs is factorial. Q.E.D.

Proof of Proposition 3.5. - Assume that ,S’E is empty. Then (w A
dH) (p) - 0 for p G 6" and from the property of zeros of (H) we get
w n dH = 0 modulo (H). It follows from (C) and Corollary 1 in Appendix
1 that dH has 1-division property modulo (H) (i.e., in the module Rn,
where R is the quotient ring R = R/ (H) ) . Therefore, w = f dH + H7 and
so dw _ (df - 7) n dH + Hd-y, for some f and 1-form 7. Computing now
cv n and taking into account that k &#x3E; 2 we see that the Martinet
ideal (H) of P = (c~) is contained in (H2). We conclude that H - 0 which
contradicts condition (C). Q.E.D.

3.5. Division of exterior forms and orientations.

The orientations C7s and C~E can be defined by volume forms. The
definitions below, based on the division of exterior forms, are convenient
for their evaluations. For further use we introduce the following notation.

PROPOSITION 3.7. - r~2, and q3 are exterior forms on a vector

space V such that

then the form qi restricted to the kernel ker 772 - i =0} is
uniquely determined by this equation and will be denoted

Proof.. - Let ih be another exterior form satisfying the equation
7/1 A T/2 = ~3. Subtracting one equation from the other we obtain that
q A 7/2 = 0, where q = fii . Given that 77, is a p-form and 7/2 is a q-form,
we take collections of vectors Xl, ... , Xp E ker 7/2 and Yl,..., Yq such that
7/2(~1,..., Yq ) 7~ 0. Then we have

Since the second factor does not vanish, we deduce that ’Y (X 1, ... , X p ) = 0
for any vectors X 1, ... , XP E ker 772 - It follows that q = ~2 vanishes on
the kernel of ~2. Q.E.D.
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Note that the division of r~3 over 7/2 makes sense only when q2 7~ 0
and there exists a form qi such that q3 A ’q2- We distinguish between
two equal forms defined on different kernels, for example

Using this notation we can easily construct the volume forms defining
the orientations Os and OE. The orientation Os is defined by the following
nondegenerate differential (n-1)-form on 

The orientation C7E is defined be the following nondegenerate exterior

(n-2)-form on E:

, , ,- , ,

Here w is any generator of P, and H is any generator of the Martinet ideal.
It is easy to check that the choice of w and H is irrelevant for Os and 

3.6. Proof of Proposition 3.1.

Suppose that sreg is empty. We will prove that this assumption
implies that H - 0, which will contradict our assumption that P is a
local singular contact structure.

The equality Sr,g = o means that dH(p) - 0 for any p E S. From
the property (PZ) it follows that any coefficient of the 1-form dH belongs
to the ideal (H), in particular

where f is a function germ. Solving this linear differential equation of order
1 we get

-. ,

where ~(~i,..., ~-i, 0) represents the initial condi-
tion on the hypersurface xn = 0. As the first function in the above product
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is nonvanishing, we obtain equality of ideals (H) = (Hi), where H1 depends
on n - 1 variables only. Repeating this procedure n - 1 times (eliminating
one variable each time) we will get that the ideal (H) is generated by a
function of zero variables, i.e., a constant. As H(0) = 0, this constant must
be zero and we obtain that H - 0.

In the holomorphic category the ring Rh is a unique factorization
domain, therefore H can be written as a product of irreducible factors
H = h, ... h,. From the property (PZ) it follows that the same factor can
not be repeated twice. Then ,S’ = U ... U ,S’r, where Si = = 01, and
the ideals (hi ) generated by hi also have the property of zeros (as hi are
irreducible). Applying the same argument (as in the first part of the proof)
to the ideals (hi) we see that the regular parts Sireg - {p E S : hi(p) -
0, dhi(p) # 01 are nonempty. As the smooth part of an irreducible germ
of a complex analytic set is connected and dense in this set (cf. [Lo]), it

follows that is dense in Si (its complement is a proper analytic subset
of ,S’i and so it is nowhere dense). In order to conclude that ,S’reg is dense

in S it is enough to take into account the equality

(hi means that this factor is absent in the product) and the property that
the set is nowhere dense in Si for i # j. This last property follows
from the fact that hi and hj are mutually prime. We obtain that the set
where dH(p) # 0 is dense in each Si, and so it is dense in S.

If (Hj does not have the property of zeros then, in the holomorphic
category, H has a multiple factor in its prime decomposition. Writing

with il &#x3E; 1 we have that dH = hlcx, with a a holomorphic 1-form, and so
dH vanishes on = ~h1 = 0}. It follows that 8reg C rS’2 U ... U 8r and so
it is not dense in S. Q.E.D.

4. Complete invariants for structurally smooth S.

In this section we assume that the Martinet hypersurface S is struc-

turally smooth. We introduce three new invariants: a line bundle L over
S (which is an invariant stronger then the restriction a canonical

orientation OL of L, and a partial connection on L. Under no a priori as-

sumptions this triple of invariants forms a complete set of invariants for
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local singular contact structures (Section 4.2). We show relations between
the invariants (Section 4.3).

4.1. The line bundle L and orientation C~L.

Let P = (w) be a local singular contact structure of category C on
M = K’, n = 2k + 1. Consider the field of lines p G S - Lp, where Lp
is the punctured line in the cotangent space spanned by w(p), i.e.,
LP - K,,w(p), where = K B {0}. We denote by L the subset of the
cotangent bundle defined by

which will be called the canonical line bundle or simply the line bundle
associated to P. The name comes from the fact that, with the canonical

projection L - S, the subset L C T*M is a (multiplicative) line bundle
over the set germ S.

Note that while the line bundle L is determined by the covectors
E T * M, p E ~S’, the restriction Pis = used in the earlier sections

is determined by the restrictions of w(p) to TpS. Therefore, the line bundle
L determines the pair of invariants We will show in Section 4.3

that the pair (S, PI s) determines L, up to equivalence, and so it is not

a stronger invariant when considered separately. Its role becomes more

transparent when we define two other invariants which live on L.

When k is even and K = R we can define a canonical orientation on L

using a construction analogous to Section 3.4. Namely, given a point p e 9
and its small neighbourhood U in M, the differential n-form w A 
defines two orientations C~+ and C~- of the half-neighbourhoods U+ and
U- obtained from U by removing S n U. Both orientations induce the same
orientation C7 on ,S’ n U (C7+ and C~- are reverse when compared to a fixed
orientation of U which follows from dH(p) =~ 0, p e 9). This orientation
depends on the choice of the generator w. Consider the line bundle L which
is, locally, the product of ,S’ and a real line. Having the orientation C~ on S
and the natural orientation on the fiber Lp defined by the covector w(p),
we have the product orientation C7L defined locally on L. This orientation
does not depend on the choice of the generator w since reversing the sign
of w changes the signs of the orientation C~ on ,S (since k is even) and of
the orientation of the fiber. The orientation OL on L defined in this way,
for k even, is called the canonical orientation on L associated to P.
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Note that OL is well defined even if the set of points p E ~S’ such that
0 is empty, contrary to the orientation OE defined in Section

3.4. However, in order to compare two orientations OL corresponding to
two different local singular contact structures we have to make their line
bundles equal, while for comparing the orientations OE it is enough to have
their restrictions to ,S‘ equal.

4.2. The partial connection and complete invariants.

In order to introduce our last invariant, the connection, let us consider
a generator cv of a local singular contact structure P. Since we assume that

0, for we have (cv A (dc,~) ~-1 ) (p) ~ 0 (Lemma 3.1 ) . We
define the field of kernels K by

which is invariantly related to P. Changing the generator w for (D 
does not change K since We also have

and so

This transformation rule implies the following property.

LEMMA 4.1. - If S is structurally smooth, then there exists a gener-
ator w of P such that ØLV is another generator with
this property, then _. o.

Proof. From Lemma 3.1 we have (LV A # 0, which

together with the equality (w n 0, implies, by the algebraic
Darboux lemma, that P is equivalent to P = (cD), where the 1-jet of Co
coincides with the 1-jet of dz + x2dY2 + ... + xkdYk’ Clearly, this implies
the first statement. The second statement follows from the tranformation

rule for (dW)k. Q.E.D.

Using Lemma 4.1 we introduce the following invariant. Take a gen-
erator cv of P which satisfies the condition (dw)k (0) = 0. We will call such
generators good generators. Any generator w defines a section of the cotan-
gent bundle T*M. Two good generators differ by a function ø such that

= 0. This means that the sections passing through a given point
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q = cv(o) E T) M which correspond to the good generators are all tangent
to a 2-dimensional subspace

such that 7r*(A(q)) = K(O), where 7r : T*M -~ M is the natural

projection and 7r* is the tangent map to 7r. Multiplying q by a constant
a E = K B {0} and a good generator w by the same constant we see
that acv is also good. This shows that the subspace A(q) defines a unique
subspace A(q’) at the point q’ = aq E TO*M, and vice versa (multiplication
by a E can be treated as a map 4Da : T*M ~ T*M and A(q’) is the
image of A(q) by the tangent map We get the family of subspaces

This family is determined by any of the subspaces A(q) and it is invariantly
defined by our Pfaffian equation P. We will call it the partial connection
at 0 of P or the canonical partial connection at 0. Note that our definition
implies that Ao determines the kernel I~(o). Further properties of this
invariant will be discussed later.

Our main result in this section says that the line bundle L, the
orientations Os of ~S’ or OL of L, and the partial connection Ao at the
origin form a complete set of invariants of local sigular contact structures.

THEOREM 4.1. Let P and P be local singular contact structures
with structurally smooth Martinet hypersurfaces. Then equivalence of
the pairs (L, Ao) and (L, Ao) in the holomorphic category (respectively,
equivalence of the triples (L, Ao, C7) and (L, Ao, C7) in the real-analytic
and smooth categories) implies equivalence of P and P. Here 0 denotes
the orientation Os, when k is odd, and the orientation OL when k is even.

By definition Ao determines K (0). If the kernel ker w (0) is not tangent
to S, then also determines Ao. Moreover, the following proposition is
proved in Section 4.3.

PROPOSITION 4.1. - Let P and P have the same structurally smooth
S, the same line bundle L, and the kernels K(O), K(0) tangent to S. Let w
and w be generators of P and P which are equal at any point of S. Then
the following holds:

(i) ker&#x26;(0) are not tangent to S, then K(o) - k(o) if and
only if ao = Ao.



269

(ii) If ker w (0), kerw(O) are tangent to ,S’ _ ,S’, then the equality K(0) =
k(0) holds and the equality Ao is equivalent to the equality

The first statement of the proposition implies that in the case of
nontangency of to S’ the kernel and the partial connection
are equivalent invariants. This is not so in the tangency case as the following
example shows.

Example 4.1. - We present nonequivalent Coo local singular contact
structures on with different connections Ao, but with the same struc-
turally smooth Martinet surface S, the same restriction to S, the same line
bundle L, and the same orientation Os.

Consider the local Pfaffian equation Pa on JR3 generated by the germ
at 0 of the 1-form

where a E R is a parameter. Let f be a Coo function on R, flat at 0, with the
set of zeros Z = {0} U f 1/n : n E N~ ~, where N is the set of positive integers.
One can easily check that all Pa, a E R, have the same Martinet surface
S = ~z = 0} which is structurally smooth, they have the same restriction

= a = f (x) dx, the same line bundle L, the same orientation Os of S,
and the same kernel = ker Wa (0) = ker dz. We have dwa (o) = adz A dx
and = 0, where r~ = 1 + ax. Thus (1 + is a good generator
of Pa and its partial connection Ao is determined by the tangent space to
the section (1--f- ax) (dz + f (x)dx) of L. It is clear that Aa = Ag if and only

Now we will prove that Pa is not equivalent to Pa if a ~ a;
by Theorem 4.1 this means that Ao can not be transformed to Ao
preserving the other invariants. Consider two constants a ~ a and let
P = Pa - (wa) and P Assume that Pa can be transformed
to Pa by the germ of a diffeomorphism IF. = Owa,
where 0 is a nonvanishing function. This diffeomorphism preserves the
line bundle L and its restriction + to ,5 is a symmetry of the restriction

Pals - (a) - where a = Below we will show that the

symmetries of (a) are of the form (x, y) -~ (x -~ g(x), 02 (X, y)), with g
a smooth function which is flat at zero. Thus the diffeomorphism is

of the form (x, y, z) ---+ (x + g(x) + zttl, 02 (X, y) + zh2, zh3), where hi,
h2 and h3 are functions of (x, y, z) . At the points where z = 0 we have
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This implies that §(0) = h3(0). Comparing the terms at dx we get
1 + g’ = 0. Therefore, /Jls - 1 is a flat function on ,S’ and so 0

and d§(0) 0. From our assumption - owr, it

follows that Computing both sides at the origin we get

Since h3 (0) ~4 0 and a ~ d, these 2-forms are not equal. This contradicts
our assumption that wa = Owa and implies that Pa and Pa are
not equivalent.

Let us prove that any symmetry + of the Pfaffian equation (a) on I~2
has the form

and 9 is the germ of a flat at 0 function. We first observe that any

symmetry (D preserves the germ of the foliation of the (x, y)-plane by the
lines x - const (since this is the integral foliation of a), therefore the
first component ~1 of ~ depends on the variable x, only. Additionally, ~
preserves the set Z of zeros of a and so we get ~1 = id on Z. This implies
that 9(x) - Øl (x) - x is a flat function at 0.

Remark. - Example 4.1 shows that, in dimension 3, the connection
Ao is independent of the other invariants L and C7 and Theorem 4.1 does
not hold if Ao is omitted. The following example shows that the same holds
in higher dimensions and, moreover, the kernel K(o) is independent of L
and C~. These examples also show that condition (A) in Theorem 3.1 and
condition (B) in Theorem 3.2 (violated in the examples) are essential.

Example 4.2. - Let k &#x3E; 2 and P = (w), P = (cD), where

Then P and P have the same structurally smooth Martinet hypersurface
S = ~z = 01, the same restriction to S, the same line bundle L, and the
same orientations Os, or OL, depending on parity of k.

Note that = ~z = x, - 01 for both P and P. On the other hand,
computing the kernels
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we see that K(o) is transversal to ,S1 whereas K(0) is not. Therefore P and
P are not equivalent. The invariant distinguishing the equivalence classes
of P and P is the space 

Remark. - The canonical orientation is also independent of the other
invariants and can not be omitted in Theorems 3.2 and 4.1, in the smooth
and real-analytic categories. Namely, in Example 2.1 we have two Pfaffian
equations P+ and P-, with the generators w± - 
where a = xdy-+ They have the same Martinet hypersurface
S’ _ Iz = 0} and the same line bundle L with the fibers Lp generated by
(dz -f- x2 a) (p) . They also have the same kernel K(0) = ker dz tangent to S.
Both w+ and w- are good generators and they are tangent to each other at
the origin, when considered as sections of the bundle L. Therefore, P+ and
P- define the same partial connection Ao. We have shown in Example 2.1
that P+ and P- define different orientations C~s and they are nonequivalent.
This means that Os is independent of the pair of invariants L and Ao.

4.3. Relations between the invariants.

If condition (A) introduced in Section 3.3 holds then the partial
connection and the orientation are determined by L or even by the pair

Recall that when S is structuraly smooth and r~(o) - 0, then
condition (A) is equivalent to the condition

where I( fi , f2 ) is the ideal generated by the functions f i = Xi (H), i = 1, 2,
where X, and X2 are germs of vector fields on K’ which span K(p), for
p E ~S’ (cf. Proposition 3.2).

THEOREM 4.2. - Let P and P be local singular contact structures
with structurally smooth Martinet hypersurfaces and the characteristic
forms vanishing at 0 E K’. If P and P satisfy condition (A’) or (A) then
we have the following implications:

When ,S’ is structuraly smooth and q(0) = 0, then condition (B) in
Section 3.4, gen(Ich) &#x3E; 2, is equivalent to the condition

where gen(I) denotes the minimal number of generators of I.
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THEOREM 4.3. - Let P and P be local singular contact structures
with structurally smooth Martinet hypersurface and the characteristic
forms vanishing at 0 E K’. If P and P satisfy condition (B’ ) (or equivalent
condition (B)) then the following implication holds:

The following proposition (proved in Section 6.2) explains the relation
between the restriction and the line bundle.

PROPOSITION 4.2. - If P and P are local singular contact structures
with the same Martinet ideal (H) having the property of zeros and
satisfying condition (C) from Section 3.4, then equality of the restrictions
Pis and implies existence of a local diffeomorphism, equal identity on
S, which transforms the line bundle L into L.

The assumptions in this proposition are satisfied when S is struc-

turally smooth which means that in this case the line bundle L is not a
stronger invariant then the pair (S, Pis).

Dealing with the canonical partial connection defined as in Section
4.2 may be troublesome. Therefore we will also use an equivalent invariant,
a connection 1-form defined on the kernel K(0) = The

definition will use the following property.

LEMMA 4.2. - Let w be a generator of a Pfaffian equation P with
S structurally smooth. There exists an exterior 1-form /3(0) on ToM such
that

This form is unique when restricted to K(0). Changing the generator w for
lll = §w transforms 0(0) into

Proof. - By Lemma 4.1 we can choose a generator cD = cpw of P
so that (d(D)k (0) = 0. Then it follows from the transformation rule (4.1)
for (dW)k that the first property holds with 13 = Uniqueness of

is obvious (cf. Proposition 3.7). The transformation rule for $(0)
follows from

which is a consequence of the transformation rule for (dCv)’. Q.E.D.
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Lemma 4.2 says that the exterior form (dw)k(O) is divisible over

(w n (dúJ) k -1 ) (0) in the sense of Proposition 3.7. This allows us to define
the unique 1-form at 0

called the connection 1-form at 0.

Let us show that the connection 1-form c(O) and the partial con-
nection Ao are equivalent invariants (see [JZh2] for interpretation of this
invariant as covariant derivative).

PROPOSITION 4.3. - Let P and P have the same structurally smooth
S, the same line bundle L, and the kernels K(O), k(o) tangent to S. Let w
and cD be generators of P and P such that c,~ (p) = i5 (p) for all p E ~S’. Then
AO = Ago if and only if c(O) = ë(O).

Proof. - Our generators define the same section in L. Assume that

Ao = Do. Then K(o) = k(o). Let w be good, i.e., defining a section

tangent to Ao. Then lll defines the same section which is tangent to Ago.
This means that cD is good, too. Thus we have 0 = 

and so c(0) = ~(0)- If w is not good, then we can find a function
0 such that §w is good (Lemma 4.1). Then equality of the connection 1-
forms corresponding to the good generators §w and §11 implies equality of
the connection 1-forms corresponding to wand (D (they are changed by the
same term Lemma 4.2).

Vice versa, let c(O) = ~(0). Then K(0) = k(o). Let w be good.
Then (dw) ~ (o) - 0 and c(0) = Z(0). The latter equality and
the displayed formula in Lemma 4.2 imply (dW)k(O) = 0, and so c~ is good.
Since both good generators wand lll define the same section in L, they
define the same tangent spaces A(q) = A(g), where q = = and

so the same connections. Q.E.D.

Consider two local singular contact structures P and P with the same

structurally smooth ,S’ and Martinet ideal (H), and the same line bundle
L. Then there exist generators w of P and lll of P such that

where q is a 1-form. In the main proofs we will need the equality
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PROPOSITION 4.4. - For generators wand cD of P and P satisfying
(4.2), with ,5’ _ ,S’ structurally smooth and 0 E Sl, the following statements
hold:

(i) The equality Ao = 0o holds if and only if (4.3) holds.

(ii) Let (w n dH) (0) ~4 0. Then = if and only if (4.3) holds.

Proof. From (4.2) it follows that the line bundles L and L coincide,
and both forms (~ and i5 define the same section of L = L. The conditions

0 and 0 imply that w n {dw)~-1 (o) ~ 0 and lll A

(dc;~)~-1 (o) ~ 0. Consequently, these forms have 2-dimensional kernels 
and k(o). Proposition 4.3 says that Ao = Ao if and only if c(0) = c(0),
i.e.,

With no loss of generality (Lemma 4.1) we assume that (dw)k(0) = 0. Let
cD = then = Computing the denominator
in the right hand side of (4.4) gives
W n (d,c;~)k-1 (o) = W n (0) + (1~ - A A dH A -y) (0)

and equality of kernels and is equivalent to the condition (empty,
when k = 1)

Similarly, computing the nominator we obtain

and the canonical connections are equal if and only if (4.5) holds along with
the condition

Assume that (w A dH)(0) # 0. Then either k = 1, or k &#x3E; 1 and the

(2k-2)-form

is nonzero, decomposable, and has 3-dimensional kernel (this follows from
the conditions (w n n dH) (o) - 0, (cv A (dc,~) ~-1 ) (o) ~ 0). In
both cases the subspace K(o) is contained in the 3-dimensional vector

space V which is TOK 3, if k = 1, or otherwise V is the kernel of the

differential form (cv n A dH)(0). Therefore, the condition (4.5)
implies that q]Ko&#x3E; = 0 and, consequently, (4.5) implies (4.3). Vice versa,
if (4.3) holds then q) Ko&#x3E; = 0 and the condition (4.5) is valid. Since (4.5)
is equivalent to the equality of the kernels K(O) and K(o), we obtain the
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proof of the statement (ii). In order to prove the statement (i) in the case
(w n dH) (0) # 0 it remains to show that the condition (4.3) implies (4.6).
Note that is contained in ker dH(0) (since 0 E S’1 ) and in the kernel
of the form (due to the condition (dw)k(o) = 0). Since the
condition (4.3) implies that = 0, we conclude that (4.3) implies (4.6).
It remains to consider the case (w n dH)(0) = 0, :,Z= 0, 0. In

this case (4.5) holds automatically, whereas (4.6) is still equivalent to the
condition (4.3) since the forms n dH)(0) and w A are

the same up to a nonzero numerical factor. It follows that statement (i)
holds in this case as well. Q.E.D.

Proof of Proposition 4.1. (i) From the definition of Ao it follows
that Ao implies = K(o). If (w A d7:f)(0) ~ 0, then the converse
implication follows from Proposition 4.4. Namely, K(0) = K(0) implies
(4.3) and this condition implies that Ao = Ao.

To prove the statement (ii) note that if (w n dH)(0) = 0, then
we have the equality (c.v A (dw)k-l)(O) == (cD A which follows

from = lll(0), (since w(p) = w(p) on S), and
ker(D(0) = To,S’. Thus K(0) = ~(0). Using the above equality

and the formula (dw)k(O) = k c(O) A (w A (dw)k-l )(0) (which follows from
the definition of the connection 1-form) we see that (ii) follows from Propo-
sition 4.3. Q.E.D.

5. A realization theorem.

We complete our analysis of local singular contact structures with a
theorem which describes all local Pfaffian equations on which can be

obtained as the restrictions Pis, or the restriction to a smooth component
of S, when S’ is not smooth.

We call a local Pfaffian equation (c~) on realizable (respectively,
realizable with structurally smooth S) if there exists a nonvanishing 1-form
w on such that C ~S’ = S(w) and (a) - (respectively,

= S, ,S‘ is structurally smooth, and (a) _ (w) Is). Here we treat as

a subspace of 

THEOREM 5.1. - (a) A local Pfaffian equation (a) on is realizable

if and only if the ideal in the exterior algebra of germs of differential forms
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on JK2k generated by the form a n a differential ideal (i. e., it is
closed under differentiation).

(b) A local Pfafhan equation (a) on JK2k is realizable with structurally
smooth S if and only if there exists a local differential 1-form /3 such that
the following equalities hold:

(when k = 1, these conditions take the form dcx = a A {3, and d,~(o) ~ 0).

Proof. (a) Assume that a is a realizable 1-form on = S, i.e.,
there is a Pfaffian equation P on generated by a nonvanishing
1-form, such that 9 C ,5’ = S(P), and Pis = (a). Let w be a generator of
P such that wi s == a. Since c,~ (o) ~ 0 there exists a nonvanishing vector
field V which is transversal to 6’ and such that - 1. We can choose

coordinates (~i,’’’,~2A;~) such that ,S’ is given by the equation z - 0
and V = 8/ 8z. In these coordinates a + ~ ~ ~ + a2k and

w = dz + cx + z,3 for some 1-form /3 = bl (x, z)dxl -t-’’’ + z) dX2k on
We compute

(we omit the term (da)k which vanishes as product of 21~ ~-1 terms of
the form dxl, ... , dX2k)’ Since w A = 0 modulo (z), comparing both
sides on the hypersurface Iz = 0} we obtain that

The latter relation means that the ideal generated by a A (da)k-l is

a differential ideal which completes the proof of the "only if’ part of
statement (a).

In order to prove the "if’ part of statement (a) consider cx =

al (x)dx1 + ... + and assume that the ideal generated by
a A is a differential ideal, i.e., = a n A 0 for some 1-
..... -1

form Computing
w A (dw)k we obtain Iz = 01 C S(w), a, and it follows that (a)
is realizable.

(b) The proof of realizability criteria with S structurally smooth goes
along the same lines. Let us assume that (a A (da) ~-1 ) (o) = 0 (otherwise
we can bring a to the normal form dx2 + x3dx4 ~ ~ ~ ~ + X2k-ldx2k and the
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proof is trivial). If (a) is realizable on 6’ = JI(2k, with structurally smooth
Martinet hypersurface ,S’, then S = S. We choose coordinates as before
and compute w 1B The first term vanishes by the first realizability
criterion. The second and the third term give the expression

and 6 is the 2k-form which appears in condition (ii). Since a(0) = 0, it

follows that condition (ii) is necessary for the Martinet hypersurface to be

structurally smooth.

Vice versa, if conditions (i) and (ii) hold then the construction of
P = (w) proposed in the proof of statement (a) leads to a local Pfaffian
equation (w), w = dz + a + k-l z/3, which has the Martinet hypersurface
S = Iz = 0} structurally smooth. Q.E.D.

Remark. - Condition (i) in statement (b) coincides with the condi-
tion that the ideal generated by a A is a differential ideal. This

condition is equivalent to the condition div(Z) E I(a n where

1(6) denotes the ideal of function germs generated by the coefficients of the
differential form 6 = a A Z denotes the characteristic vector field

Z on ,S’ (see Section 3.2), and div(Z) is the divergence of Z defined by the
equality div(Z)v where v is a nondegenerate 2k-form on 

Writing a A = aidxi, where dxi = dxl A ... A with

dxi omitted, we see that our realizability condition (i) is equivalent to

6. Main proofs.

In Section 6.1 we prove the results of Sections 3 and 4 (Theorems
3.1, 3.2, 4.1, 4.2, and 4.3) using the same scheme. Proposition 6.1 plays
the central role in the proofs. In Section 6.2 we prove lemmas used in the

proof. The results of Section 2 are proved in Section 6.3. Throughout the

proofs all objects are germs at the origin of category C and all paths (of
1-forms, functions, etc.) are smooth with respect to the parameter t.

6.1. Proofs of results in Sections 3 and 4.

Theorems 3.1, 3.2, and 4.1 will be proved by the reduction to

Proposition 6.1 below. Theorems 4.2 and 4.3 will be proved using lemmas
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realizing this reduction. To formulate Proposition 6.1 we need the following
simple statement.

LEMMA 6.1. - Assume that nonvanishing 1-forms w and cD define the
same Martinet ideal (H) and w - i5 mod (H). Then, for the path of 1-forms

we have

where Q is a nondegenerated volume form and Rt is a family of functions
such that Rt(0) depends quadratically on t and 0, Rl (o) ~ 0.

- - 

Proof. Since ca = i5 mod (H), there exists a 1-form -y such that

and + tHq and dwt = dw + tdH n q + tHdq. Expressing
wt n (dwt)k in terms of w and -y we see that wt A = Qi +tQ2 + 
mod (H2), where and Qi’s are n-forms. Since (H) is the Martinet ideal of
(wo) = (w) and (wi) = (cD), the forms wo n = SZ1 and cvl n 
Qi + Q2 are divisible over H. Therefore, Q2 is also divisible over H. It

follows that (6.1) holds with the family Rt depending quadratically on t
mod (H) and a nondegenerated volume form S2. Using again the condition
that (H) is the Martinet ideal of cvo and wi we conclude that 0

and Rl (0) ~ 0.
PROPOSITION 6.1. - Assume that two local singular contact struc-

tures P and P define the same Martinet ideal (H) and are generated by
cD that are equal modulo (H). Assume also that one of the

following two conditions holds:

(a) the Martinet hypersurface 8 is structurally smooth and P and P
define the same canonical partial connection ~o;

(b) P satisfies the condition (B) in Section 3, (H) has the property
(PZ), 

Then in the holomorphic case P and P are equivalent. The same
is true in real cases (COO and real-analytic categories) provided that the
function t -~ Rt(0) has no zeros on the segment ~0,1~ . Here Rt is the path
of functions in (6.1).

Recall that the condition 0 E Si means that the Martinet condition

(MC) is violated. If (MC) is valid then Proposition 6.1 is a trivial corollary
of the Martinet theorem.

Proof of Proposition 6.1. Define a function f (t) on the interval
~0,1J as follows: in the real cases f (t) = t, and in the holomorphic category
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f (t) is a complex-valued function such that f (o) - 0, f (1) - 1 and

R f(t~ (o) ~ 0 as t E [0, ], where Rt is the path of functions in (6.1).
Such a function exists since Ro (o) ~ 0, R1 (o) ~ 0, and t -~ Rt(0) is

quadratic. Let q be the 1-form satisfying the relation (6.2). Consider the
path wt = w + f (t)H~y, t E ~0,1~ joining w to cD. Then by Lemma 6.1

The construction of the function f (t) and the assumption Rt(0) # 0 for
t E ~0, l~ , in the real cases, imply that Qt(0) # 0, t E ~0,1~ . This means
that the Martinet ideal of úJt is constant along the path and is equal to (H).
We will use this property of the path to prove that there exists a family of
diffeomorphisms ~t, (Dt(O) - 0, such that = (wo) and in particular

We use the homotopy method (cf. [Ro] or the existence of

the required family 4)t is obtained by solving the differential equation
= (Do = id. It suffices to prove that the "homological"

equation

obtained by differentiating with respect to t the equation = Otwo, is
solvable with respect to a path Xt of vector fields satisfying the condition

0. Here LXt is the Lie derivative along Xt. An explicit solution of
the homological equation is the family Xt defined by the relation

To check that Xt is a solution of the homological equation note that (6.4)
implies that Xtlwt = 0 and consequently Lxtwt = Xtjdwt. Then (6.4) and
(6.3) imply that

This relation implies that Xt is a solution of the homological equation
by the following observations: (i) if a 1-form w is contact at a point
p and a is another 1-form such that 0 then

a(p) = 0 mod Therefore if the set of contact points of w is dense
and w does not vanish then the relation a A w n = 0 implies that
a = 0 mod w ; (ii) the set of contact points of cvt coincides with that of
wo = w since these forms have the same Martinet ideal (H). This set
is dense since H is a nonzero divisor. The forms wt do not vanish since

Lot (0) = w (0) # 0.

To complete the proof it remains to show that +t(0) = 0, i.e.,
the vector fields Xt defined by (6.4) satisfy Xt(0) = 0. Note that
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Therefore to

prove that Xt(0) = 0 it suffices to prove that

We will prove that (6.5) follows from any of the assumptions (a) or (b) in
Proposition 6.1. Actually, the fact that the asumption (a) implies (6.5) is
already proved - it is one of the statements of Proposition 4.4 in Section 4.
Therefore to complete the proof we need the following statement.

LEMMA 6.2. - Assume that u) satisfies the condition (B) and 0 E 61.
If lll and w have the same Martinet ideal (H) satisfying (PZ) and i5 =
w + then (6.5) holds.

Proposition 6.1 is proved modulo Lemma 6.2. Note that Lemma 6.2

immediately implies Theorem 4.3.

Proof of Theorem 4.3. - The equality of the line bundles allows to
choose generators and cD that are equal modulo (H), where (H) is the
Martinet ideal. Then we have (6.2), and by Lemma 6.2 the condition (B)
implies (6.5). The relations (6.2) and (6.5) imply the equality of the partial
connections by Proposition 4.4 in Section 4.

Now we will prove Theorems 3.1, 3.2, and 4.1 by the reduction
to Proposition 6.1. In each of these theorems we have to prove the

equivalence of P and P satisfying certain assumptions. The assumption on
the equivalence of invariants will be replaced (without loss of generality)
by the assumption of their equality. Therefore in each of the theorems
we assume that the Martinet hypersurfaces are equal: 8 == 8. Then, by
the condition (PZ), which is an assumption in each of our theorems, we
also have the equality of the Martinet ideals: (H) = (H) . If 0 ~ then

Theorems 3.1, 3.2, and 4.1 are trivial corollaries of the Martinet theorem.
Therefore we will assume that 0 E 61.

We begin with the proof of Theorem 4.1 in the holomorphic category
since in this case the reduction to Proposition 6.1 is straightforward.

Proof of Theorem 4.1 - Holomorphic case. - The equality of the line
bundles defined by P and P allows to choose generators w and cD that
are equal modulo (H). The equivalence of P and P follows from Propo-
sition 6.1 since the condition (a) in this proposition is an assumption in
Theorem 4.1.
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Now we pass to the holomorphic case in Theorems 3.1 and 3.2.

The reduction to Proposition 6.1 requires the following statement, slightly
stronger then Proposition 4.2.

LEMMA 6.3. - Let P and P be local singular contact structures, with
the same Martinet ideal (H) satisfying (PZ) and the condition (C), and the
same restriction to the regular part Sreg of the Martinet hypersurface S.
Then there exists a diffeomorphism 4b, equal identity on S, and a generator
i5 of ~* P such that cD = w mod (H).

Proof of Theorems 3.1 and 3.2 - Holomorphic case. - The condition

(C) is implied by the condition (A) (assumption in Theorem 3.1) and
it is assumed in Theorem 3.2. Therefore we can apply Lemma 6.3. A

diffeomorphism equal to identity on ,S’ does not change the Martinet ideal

(H), therefore by Lemma 6.3 we can assume that P and P have the
same Martinet ideal (H) and are generated by 1-forms c~ and i5 equal
modulo (H). Since the condition (A) implies (B) then the assumption (b)
of Proposition 6.1 is valid, and by this proposition P is equivalent to P.

Now we reduce the real cases in Theorems 3.1, 3.2, and 4.1 to

Proposition 6.1. The reduction is more difficult than in the holomorphic
case since it requires analizing the quadratic function t 2013&#x3E; Rt (o) in (6.1),

, . - ,

LEMMA 6.4. - Assume that w and cD have the same Martinet ideal

(H) satisfying (PZ) and (D = w mod (H). Assume also that 0 E S1 and w
satisfies the condition (A). Let Rt be the path of functions in (6.1). Then
b = c = 0, i. e., Rt (o) - Ro(O), for t E [0,1 .

Proof of Theorem 3.1 - Real cases. - Repeating the arguments in
the proof of Theorem 3.1 in the holomorphic case, we see that there is no
loss of generality to assume that P and P have the same Martinet ideal (H)
and are generated by 1-forms w and i5 equal modulo (H). Using Lemma
6.4 and the fact that (A) =~ (B) we see the validity of the assumptions of
Proposition 6.1, and by this proposition P is equivalent to P.

To prove Theorems 3.2 and 4.1 in real cases, we first show that the

function t - Rt(0) can be made affine, i.e., c = 0.

LEMMA 6.5. - Let w and i5 be 1-forms which are equal modulo (H),
they have the same Martinet ideal (H) satisfying (PZ) and Ao = Do.
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(i) 0, then the path Rt in (6.1) is affines at the
origin: Rt (0) - a + bt.

(ii) Assume that 1~ &#x3E; 2, S is structurally smooth, and 0 E 81. Then there
exists a diffeomorphism (D preserving the invariants (H), 6 = C7s, 
and 0o and bringing i5 to a 1-form 16 = V*i5 such that 16 mod (H)
and, after the replacement by 16, the path Rt in (6.1) is amne at the
origin, Rt (0) = a + bt.

Proof of Theorems 3.2 and 4.1 - Real cases. - Repeating the argu-
ments used in the proofs of the holomorphic case we see that there is no
loss of generality to assume that P and P have the same Martinet ideal
(H), they are generated by 1-forms wand i5 equal modulo (H) (we use
Lemma 6.3 in the case of Theorem 3.2), and they satisfy all the assump-
tions of Proposition 6.1 except the last one: the assumption that Rt (o) ~ 0
as t E ~0,1~ . Using Lemma 6.5 we see that, without loosing generality, we
can additionally assume that the function t ~ Rt(0) is affine. This assump-
tion implies that, in order to prove Theorems 3.2 and 4.1, it is enough to
show that the numbers Rio (0) and Ri(0) have the same sign (we know,
from Lemma 6. l, that these numbers are not equal to 0), then Rt (0) # 0
as t E ~0, l~ . The proof is completed by the fact that the requirement that
Ro (0) and R1 (0) have the same sign follows from equality of canonical orien-
tations (assumed in Theorems 3.2 and 4.1). Namely, we have the following
lemma.

LEMMA 6.6. - Let wand (D be 1-forms with the same Martinet

ideal (H), i.e., w n = R7M and lll n (dc;~)’~ = RHQ, where Q is a
nondegenerated volume form, and R and Rare nonvanishing functions.
Then any of the canonical orientations or OL defined by (w)
coincides with the same orientation defined by (Co) if and only if the numbers
R(O) and R(0) have the same sign.

Proof of Lemma 6.6. - This lemma easily follows from our formulas
for the volume forms defining the canonical orientations (Section
3.5) and C~L (Section 4.1), and Propositions 3.1 and 3.5 stating that the
sets and SE (on which the orientations Os, OL and, respectively, OE
are defined) are not empty.

We have completed the proofs of Theorems 3.1, 3.2, 4.1 and 4.3

modulo the lemmas used in the proofs. Now we will prove Theorem 4.2
as a consequence of some of these results.
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Proof of Theorem 4.2. - The condition 0 E 5i, meaning that the

origin is not a Martinet point, will be essentially used. At first let us prove
the second statement, that under condition (A) the equality of the line
bundles implies the equality of the orientations OL = 6L. Since the line
bundles are equal, we can choose generators w and i5 to be equal modulo

(H), where (H) is the Martinet ideal of (w) and (cD). By Lemma 6.4 we
have Ri(0) = Ro (0), where Rt is the path of functions in (6.1). Now we
use Lemma 6.6 implying that OL = 6L-

To prove the first statement of Theorem 4.2, that under condition (A)
the equality of the restrictions of P and P to S implies the equality of the
orientations Os or OE, we first use Lemma 6.3. It is important to note that
any diffeomorphism equal to identity on S preserves the orientations Os
and OE. This follows from the fact that Os is defined on S and OE - on the

subspaces E(p) = ker w (p) n Tp8 which are contained in Tp8, p E C S.

This observation allows us to assume, without loss of generality, that P and
P are generated by w and 11, equal modulo (H), where (H) is the Martinet
ideal of P and P. The end of the proof is the same as in the proof of the
second statement of Theorem 4.2: the equality of the orientations follows
from Lemmas 6.4 and 6.6.

6.2. Proofs of the lemmas.

Lemmas 6.2 and 6.4 will be proved using similar arguments, based
on the following properties of the characteristic vector field X, defined in
Section 3.2, under the conditions (A) and (B): if X(0) = 0 (which means
that 0 E and Y is another vector field such that

then

where F is some function. The first implication follows from the definition
of the condition (B). The second one follows from the fact that the condition
(A) implies the 1-division property of X, see Appendix 1.

In the proof of Lemmas 6.2 and 6.4 the following calculation will be
used. We consider the path wt - w+tH1, then dwt = dw + tdH !B1+tHd1.
Denoting Q1 = w n we have

where
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and

Proof of Lemma 6.2. - Taking t = 1 in the above formulas and using
the fact that (H) is the Martinet ideal of (w) = (wo) and of (cD) = (wl) we
see that as well as wl A are divisible over H. Therefore Q2 and
so kw A (dw)k- 1 A dH A y are divisible over H. This means that

for some function Q and a volume form Q. Introduce vector fields X and
Y by the relations

Recall that X is the characteristic vector field introduced in Section 3.2.

Let p E S. If X(p) # 0 then K(p) = ker(w A is 2-dimensional

and (6.6) implies that the covectors and are colinear, and
so the vector Y(p) is proportional to X(p). Therefore (X n Y)(p) = 0 for
such p and so for any p E S. Using the property (PZ) we see that (6.6)
holds. By the first implication in (6.7) we obtain that Y(0) = 0, i.e., the
condition (6.5) holds. Lemma 6.2 is proved.

Proof of Lemma 6.4. - From the equality of the Martinet ideals of
P and P it follows, as in first part of the proof of Lemma 6.2, that (6.6)
and (6.8) hold. Since the condition (A) implies the condition (B), it follows
by Lemma 6.2 that (6.5) also holds.

From the formula for wt A calculated at the beginning of this
subsection and the assumption that t -~ Rt (0) == a + bt + ct2 we see that it
is enough to prove the equalities

and the equality

Note that (6.10) is implied by (6.5) and the middle relation in (6.9). In
fact, if 0 and k &#x3E; 2, then it is easy to see from the relations

(w n (0) ~ 0 (follows from 0) and (cv n A dH) (0)
= 0 that the form (w n A dH) (0) 7~ 0 has a 3-dimensional kernel
V(0). The 2-dimensional kernel of the form (0) is a

subspace of V(0). The relation (6.5) and the middle relation in (6.9) mean
that the forms q and dq are zero, when restricted to K(0). Therefore (6.5)
and (6.9) imply (6.10).
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So, it is enough to prove the equalities in (6.9). We first show that (6.5)
implies that Q(O) = 0 if ,5’ is structurally smooth, i.e., if 0. In this

case (6.5) means that the form q(0) vanishes on the 2-space K(o). The same
is true for the form dH(O) since 0 E Si . (&#x26;,)) k -1 = 0,
where j6 denotes the 1-jet at 0. Then by (6.8) 0 and since

0 we obtain Q(0) = 0.

To prove that Q(O) = 0 if dH(o) = 0 and to prove the other equalities
in (6.9) we use the second implication in (6.7) which implies that

for some 2k-form W. Multiplying this equality by dH and taking into
account (6.8) we obtain

We see that if dH(O) = 0, then Q(O) = 0. As we have proved that Q(O) = 0
in the other case, we have Q(O) = 0 in all cases.

The third equality in (6.9) follows from (6.5) and the fact that 0 E 31,

To show the middle equality in (6.9) we take the differentials

at the origin of the 2k-forms in (6.11). Using the third equality in

(6.9), the equality (cv n (dc~)’~-1 n dH) (o) - 0 (equivalent to 0 E 31)
and ( (dc.~)’~ (o) n dH) (0) = 0 (again, since 0 E S’1 ) we obtain that
(w A (0) = (dH A W)(o). Since Q(0) = 0 then by (6.12)
(dH A W)(0) = 0 and the second relation in (6.9) follows. The proof is
complete.

Proof of Lemma 6.3. - Take any generators (j and i5 of P and P. At
first we show that there is no loss of generality to assume that

for some function g and 1-form ~y. After this we prove that the term g dH
can be killed by a diffeomorphism equal to identity on S.

The condition that P = (w) and P = (w) have the same restriction
to ,S’reg and our definition of the restriction imply that = Wlsreg
for some nonvanishing function f on K~. It follows that there is no loss of
generality to assume that W and w have the same pullback to sreg. Then

(w - (D) n dH(p) = 0 for any p E and since dH vanishes at singular
points of ,S’ we obtain that the latter relation is valid for all p E ~S’ (we
use Proposition 3.1 stating that o.) By the property (PZ) of the
Martinet ideal this relation implies that 0 mod (H). Now
we use the condition (C) which implies the 1-division property of the form
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dH (see Appendix 1 ) . The 1-division property says that if 0 is a 1-form

such that 0 A dH = 0 mod (H) then 0 = g dH + Hq for some function g
and 1-form ~y. Therefore the latter relation implies (6.13).

Now we will kill the term g dH in (6.13) by a diffeomorphism equal
identity on S. At first consider the case where S’ is structurally smooth.
In this case we take vector fields Z and Z which are transversal to Sand
such that Zjw = 1, and a diffeomorphism -D equal identy on S and
bringing Z to Z. Then the 1-forms wand are equal at any point of S
and by the property (PZ) = w mod (H).

If S is not structurally smooth, i.e., dH(0) - 0, then to kill the

term g dH we use the homotopy method. We join w to i5 by the path
wt = w + t(w - cv) and prove that the form Wt can be reduced to the form
wo modulo (H) by a path of diffeomorphisms satisfying the differential
equation d = HYt( .pt) and the initial condition ~o == id, where Yt is a
path of vector fields. It is clear that for any family Yt the diffeomorphism 4Dt
preserves (H) and is identical on S. The requirement 4D*wt = wo mod (H)
is equivalent to the equation LHYT + (w - W) = 0 mod (H), where LHYT is
the Lie derivative along HYt. Note that LHyt CJt = (YtJwt)dH mod (H) and

dH mod (H). Therefore to solve this equation it suffices to solve
the equation + g = 0. The latter equation is solvable since in the
case under consideration dH(0) = 0 and consequently = w(0) ~ 0.

Proof of Lemma 6.5. - Let q be 1-form satisfying (6.2). From the
formula for wt A obtained at the beginning of this subsection we
easily see that the condition that the function t -~ Rt(0) in (6.1) has no
quadratic term is equivalent to the condition (6.10) and always holds if

k = 1. The equality (6.10) holds trivially, if dH(0) - 0, i.e., if ,S’ is not

structurally smooth. This proves the statement (i) of the lemma.

Now we prove the statement (ii). The structural smoothness of S
implies that the forms (cv n (0) and (w A (0) have two-
dimensional kernels K(0) and K(0) , see Section 3.2. The equality of the
partial connections implies that these kernels are equal: K(0) = K(0). We
will prove a stronger relation

Taking into account that (D = w + H7 and so cD (0) = w(0), dh(0) =
dw(0) + (dH A -y)(0), we see that this relation and (6.2) imply that

(w n n dH A q) (0) = 0 which is stronger than (6.10). Therefore to
prove the statement (ii) it suffices to find a diffeomorphism + satisfying the
following requirements: (a) is equal to w modulo (H) ; (b) ~ preserves
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the invariants (H), ð, and ~o; (c) the relation (6.14) holds when replacing

Constructing such a diffeomorphism we can restrict ourselves to the
case (w n dH) (0) ~ 0, otherwise (6.10) holds automatically. This means
that ker w(0) = ker(D(0) is transversal to S. This condition, the condition
K(0) = K(0), and the comparison of the dimensions 21~ = dim ker &#x3E;

dim K(0) - 2 following from the assumption k &#x3E; 2 allow us to take

tangent vectors b, b E ker w(0) that are transversal to S and such that
b~ (w n (0) - ~J (01B (0). Take vector fields Y E ker w
and Y E ker w such that Y(0) = b and Y(0) = b. Take any diffeomorphism
~ which is equal to identity on S and brings Y to Y. Let 16 == +*i5. Since
0 E S’1 then K(0) C TOS, therefore ~ preserves the space K(0). On the
other hand, (D brings the vector b to the vector b. This implies the validity
of the requirement (c) above.

To complete the proof we have to show that + also satisfies the

requirements (a) and (b). The fact that q&#x3E; preserves the Martinet ideal

(H) follows from the fact that (8) = S’. Note that by the construction +
preserves at any point p E S. Since (D is identity on S and ker is
is transversal to S we conclude that + also preserves at any point
p E S. Therefore, W*11 == 0 mod (H) and so +*lll = c,~ mod (H), i.e. (a)
holds. The equality (D*cD - lll mod (H) means that ~ preserves the section
p E S - w (p) of the line bundle L = L, therefore it preserves all the

sections. Since our invariants Os and OE are defined on S’, and OL, Ao are
defined on L, the fact that 4D acts trivially on S and L implies that they
are preserved. Thus the statement (b) holds and the proof is complete.

6.3. Proofs of results in Section 2.

Since Theorem 2.4 follows from the general realization theorem (The-
orem 5.1), it remains to prove Theorems 2.1, 2.2 and 2.3. We begin with
the easiest proof.

Let cx = 01 (x, y)dx-f-a2(x, y)dy be the restriction of w to 8 = Iz - Of.
The characteristic ideal Ich is isomorphic to the ideal generated by the
functions a1, a2.

Proof of Theorem 2.2. - If a(0) ~ 0, then depth(Ich) = oo. If a(0)
has an algebraically isolated singularity at the origin, then depth(Ich) = 2.
In the holomorphic and real-analytic category this is a well known fact.
The same can be proved in the smooth category using the preparation
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theorem (we leave the proof to the reader). It follows that the condition
(A) is satisfied and the result follows from Theorem 3.1.

The proofs of Theorems 2.1 and 2.3 use the same scheme. Under
condition (B) these theorems follow from Theorem 3.2. If (B) is violated,
i.e., Ich is 1-generated or zero, then the restriction of P and P to ,S’ has a big
set of symmetries. These symmetries can be used to make the connections
Ao and Ao equal. After that Theorem 4.1 can be used. We realize this idea
in two steps.

LEMMA 6.7. - If the ideal Ich is exactly 1-generated and not flat,
then a is equivalent to a 1-form where m &#x3E; 1.

In the second step, using the symmetries of such a we normalize the
connection Ao preserving the orientation Os.

LEMMA 6.8. - Any singular contact structure with structurally
smooth S = ~z = 01 and the restriction to S generated by the 1-form
a = m &#x3E; 1, or 0152 = 0, is equivalent to a Pfaffian equation

), where via a diffeomorphism preserving S
and preserving an orientation on b’.

Proof of Theorems 2.1 and 2.3. - Assume that condition (B) does
not hold (otherwise both results follow from Theorem 3.2). Then the ideal
Ich is not 2-generated and, by Lemma 6.7, we can assume that ,S’ = {2; = 0}
and either a - 0 (when I~h is 0-generated) or a = xmdx, where m ~ 1.

By Lemma 6.8 this allows us to assume that P and P are generated by
1-forms w = dz + a + z/3 and cD = dz + a + z¡3, and (/318 )(0) == (~3 ~ s ) (o) = 0.
The latter relation implies the equality of the connections Ao = Ago, since

= 0 = d0(0). Now the equivalence of P and P follows from Theorem
4.1. The proof is complete.

Proof of Lemma 6. 7. - If the ideal generated by al and a2 is exactly
1-generated and c~ ~ 0 then a has the form g(x, y)&#x26;, where g is some

function and a is a nonvanishing 1-form. There is no loss of generality to
assume that 6z = dx, i.e. a = g(x, y)dx. By the realization Theorem 2.4
there exists a 1-form ~3 = 13, (x, y)dx + /32 (x, y)dy such that da = a A /3.
We obtain that 2-9- = -go2. Solving this differential equation and taking
T(x) = g(x, 0) we see that g(x, y) = Q(x, y)T(x), where Q(O) :,,~ 0.

Thus, changing the generator, we may assume that a - T(x)dx. The
function T(x) is not zero and not flat, which follows from our assumptions.
Any 1-form T(x)dx with nonflat T(x) is equivalent to a 1-form xmdx for
some m.
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Proof of Lemma 6.8. - At first we assume that a = x"2dx. Then P

is equivalent to the Pfaffian equation generated by w = Cdz + + z/3
with some 1-form /3 and some function C and defining the Martinet surface
S = ~z = 01. There is no loss of generality to assume that C = 1 (since
w(0) # 0 then C(o) ~ 0 and we can change z by z/C). The fact that ,S’ is

given by the equation z = 0 implies that /~(0) = rldx-I-r2dz for some scalars
rl, r2. Make a change of the coordinates x and
where r = -rl /m and E (x) - (1 -f- rx) m . Then, in new coordinates _
E(x)(dz + xmdx + z(3), where ~(0) = + dE(O) -- + mrdx = r2dz.
Then (fils)(0) = 0.

Now assume that cx = 0. Then P is equivalent to the Pfaffian equation
generated by w = Let 0(0) - Let us change the
coordinate z so that z 2013~ zG(x, y), where G(x, y) = 1-rlx-r2Y’ In the new
coordinates we have ( where

r3dz. Then (/318)(0) = 0 and the proof is complete.

Appendix 1.

In this appendix we collect these basic definitions and facts related to
the notions of depth, the Koszul complex, and division properties, which
are used in the paper and in Appendix 2. For more details the reader may
consult [BJ] and [E].

Let R be a commutative ring with a unit. Given a proper ideal I of
R, we say that a sequence of elements ai , ... , aq of I is a regular sequence
if the following condition holds:

(*) ai is a nonzerodivisor on R/(~i,..., for i = 1,..., q,

(in particular, al is a nonzerodivisor in R). Here and thereafter we denote
by (aI, ... , ai ) the ideal in R generated by the elements aI, ... , ai.

The depth of a proper ideal I c R, denoted depth(I), is defined as the
supremum of lengths of regular sequences in I. Additionally, one defines

depth(R) = oo. The following properties follow from the definition:

(1) If h C I, then depth(I1)  depth(I).

(2) If ai, ... , aq E I is a regular sequence, then the element is a

nonzerodivisor on aq-2, aq ) .
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If R is Noetherian then regular sequences and depth have the following
properties:

(3) If al , ... , 6~ is a maximal (with respect to inclusion) sequence of
elements in I satisfying (*), then r = depth(I).

(4) Any regular sequence al, ... , aq of a proper ideal I C R can be

completed to a maximal regular sequence aI, ... , aq, ... , ar.

(5) If al, ... , aq C I is a regular sequence, then depth(1) - depth
(7/(~i,..., aq ) ) + q (without assuming that R is Noetherian we have
the inequality &#x3E; and the equality follows from (3) and (4) ).

(6) If R is local, then a permutation of a regular sequence is a regular
sequence.

Let M be a free module over R of finite rank m, with e1, ... , e. - a

free basis. Let AP(M) denote the p-th exterior power of M. Any element
E M defines the Koszul complex

with the differentiation 0 = 8a : APM - defined by

The p-th cohomology group is defined as

The following fact in commutative algebra is well known (usually the first
statement is proved in a more restrictive setting, with R Noetherian, but
it can be given an elementary proof without this assumption).

THEOREM A1. Let a = ale, + ... + be an element of

M and let the ideal I(a) C R generated by be proper. If

q  then

~(~)=0, for p = 0,1, ... , q.
The converse also holds when R is Noetherian. If R is Noetherian and local,
then the condition Hq (a) - 0 implies that = 0, for all p  q.

In analytic geometry the property 0 is called p-division
property of a, where M is either the module of (the germs of) differential
1-forms or the module of vector fields, cf. [Mou], [MZh]).

Namely, we say that o- E M has p-division property if for any

q G APM such = 0 there exists a 6 E AP-1 M such that -y = ~ l~ b.
When p = 1 we obtain the following immediate consequence.
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COROLLARY l. If depth(I(a)) &#x3E; 2 then o- has 1-division property.
If R is Noetherian and local, then the converse holds too.

Appendix 2.

In this appendix we adopt to our needs a result of Tougeron (Chapter
VII in [T]). Namely, we prove that the set of formal maps such that the
pullbacks defined by their finite jet extensions decrease the depth of a given
ideal, is of infinite codimension, and the same holds in the holomorphic and
real analytic category. The theorem is needed in order to show that one of
our main conditions, condition (A), is of infinite codimension in the formal,
holomorphic, and the real analytic categories (Proposition 3.4).

We denote by JT(En,Em) and Jo’(n, m) = 
the spaces of r-jets (respectively, of r-jets at 0 E of maps (we
take holomorphic maps when K = C). Let K[[r]] = Rf be the ring of formal
power series of n commuting variables and denote by m) - (K [ [x] ]) m
the space of formal maps For a map germ (or a formal map)
g : (En, 0) ---+ Em we denote by (II~n, 0) -~ its r-jet
extension.

denote the canonical projections. After Tougeron [T] we define an algebraic
provariety V in an infinite jets space to be a sequence of algebraic sets V r
in r-jets spaces such that C Vr, whenever r  r’. We define

codim ( V ) = sup,_,o codim 

Let ~ E m) be a fixed r-jet. We denote the space of formal maps
with the fixed initial jet ~ by

THEOREM A2. - (a) Let I~ be an ideal in the ring of germs at ~ of
holomorphic (respectively, real-analytic) functions on the space JT(n, m) .
The set E~ C of formal maps g : (K", 0) ~ K~ defined by

 

is contained in an algebraic provariety of infinite codimension (here (jr g) *
denotes the pullback homomorphism defined by jrg).

(b) Any holomorphic (respectively, real analytic) map germ g :
(II~n, 0) ~ K’ such that ( jT g) (0) - ~ and E~, with ( jg) (0)
the infinite jet of g at 0, satisfies the equality
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where R is the ring of holomorphic (or real analytic) function germs
- K.

Proof of statement (a). - The proof of this statement is analogous
to the proofs of Propositions 5.4 and 6.6 in Chapter VII of [T] and so it is
omitted.

Proof of statement (b). - Let g be the germ of an analytic map such
that (jg) (0) ~ E~. Denote I = and let al = (jrg)*(P1), ... , as =

be generators of I (where Pl , ... , Ps generate I~ ) . From the def-
inition of E~ it follows that 

d ~ s. It follows from Theorem Al in Appendix 1 that the exterior 1-form
a = + ..- + âsdxs in (Rf)s has i-division properties for all 0  i  d

(here ai denotes the Taylor series of ai). Thus we have the exact sequence

where R) denotes the space of i-th exterior forms on Rs (which can be
identified with Since the ring of formal power series Rf is faithfully
flat over the ring of converging power series R (cf. e.g. [Mlg], Section 3.4)
it follows that the same sequence with Rf replaced by R is exact:

This implies that a = aldxl + ’’’ + a,dx, has all i-division properties,
0  i  d. From Theorem Al in Appendix 1 and the fact that R is

Noetherian and local we conclude that depth(I) &#x3E; d. From the general
inequality (Proposition 5.4 in
Chapter II of [T]) and the equality depth(I) = height(I), which holds
for any ideal of R, we also get depth(I)  = d, which

completes the proof. Q.E.D.

Example. - For illustration of Theorem A2 let us consider germs
of analytic maps g : (JR2, 0) -~ (JR3, 0) and let f l, f 2, f 3 denote the 2 x 2
minors defined on the space of 2 x 3 It is easy to check that

f 2, = 2. Let J be the ideal in the ring of analytic function
germs at 0 C R2 generated by fi o g’, f 2 o g’, and f3 o g’, where g’ is the
Jacobi matrix of g. It follows from Theorem A2 that the set of infinite jets
of map germs g with a fixed 1-germ and such that depth(J)  2,
is of infinite codimension.

Proof of Proposition 3.4. - (a) Denote J = I(H, the set ,S’1 is the
set of zeros of J. In the holomorphic and real-analytic categories we have

depth(J) = depth(J/(H)) + 1 = depth(Ich) + 1 by the properties of depth
in Noetherian rings, (Appendix 1). Thus, condition (A) is equivalent to the
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condition depth(J) &#x3E; 3. The inequality depth(J)) = depth(Ich) + 1)  3,
which follows from statement (b), implies that (A) is equivalent to the
equality depth(J) = 3. Thus, statement (a) follows from general fact that,
in the holomorphic category, the depth of an ideal of function germs is
equal to the codimension of its set of zeros.

In order to prove (b) and (c) we will use Proposition 3.3 stating
that the algebraic subset Zl of 2-jets of 1-forms defined by the equalities
H(0) = 0 and q(0) = (w n dH) (0) = 0 is of codimension 3 [Mal]
(cf. also [Zhl] and [P]). Let ~ be an element of Zl and Jg be the ideal of
germs at ~ of holomorphic (respectively, real-analytic) functions vanishing
on Zl. Then, in the holomorphic category, we have by Proposition 3.3

where codim ç(Z1) is codimension of the germ of Zl at . The same equality
3 holds in the real-analytic category by complexification

argument (complexification does not change the depth, see Propositions
5.4 and 5.5 in Chapter II of [Ru]).

(b) It is enough to prove that depth(J) x 3. This inequality follows
from = 3 and depth(J)  depth(J~). The latter inequality
follows from the fact that J is generated by the homomorphic image of J~,
under the pullback homomorphism h = (j’w)*, from the general inequality
height(h(I)R) ~ height(I) ([T], Chapter II, Theorem 5.4), and equality of
depth and hight in our rings.

(c) We identify 1-forms on K’ with maps K’ and we use the

notation introduced earlier. Let be the 2-jet at 0 of a 1-form. Let Ii denote
the ideal of the ring of germs at ~ of analytic functions on Y = 

generated by the polynomial ?-~ such that H = 7~ o j2w. Set 1 2 Jç. We
define the set E~ = El U E~ , where

(here (jg)* denotes the pullback homomorphism and R the ring of germs
at 0). From Theorem A2 it follows that the sets El and E 2 are contained
in algebraic provarieties E§f and Eff of infinite codimension, and so is E~ :

It remains to show that if w is a 1-form such and

E~ then P = (w) has the property stated in Proposition 3.4 (c).
Assume Zl (otherwise P is local contact structure or
H(o) = 0 and 1](0) i- 0, so depth(lh) = oo). The condition (jw )(0) ~ E’
implies that H = H o j2w is a nonzerodivisor (since depth(I/ ) = 1) which
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means that P = (cv) is local singular contact structure. The condition
(jw) (0) ~ E~ implies that depth(J) = depth(Jg) = 3, where J = I(H, 77).
Therefore, depth(I~h) = depth(J) - 1 = 2. Q.E.D.
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