
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Mark POLLICOTT & Richard SHARP

Linear actions of free groups
Tome 51, no 1 (2001), p. 131-150.

<http://aif.cedram.org/item?id=AIF_2001__51_1_131_0>

© Association des Annales de l’institut Fourier, 2001, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2001__51_1_131_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


131

LINEAR ACTIONS OF FREE GROUPS

by M. POLLICOTT and R. SHARP

0. Introduction.

Let SL(d,R) denote the d x d matrices with real entries and

determinant one. We shall consider the case d &#x3E; 3. There is a natural

linear action SL(d, R) x Rd --&#x3E; Rd given by matrix multiplication. Given a
discrete subgroup r C SL(d, R) and a fixed non-zero vector, it is interesting
to consider the orbit _ ~ Av : A E r) C 

When h is a uniform lattice ( z. e., SL (d, R)/r is compact) Greenberg [3]
showed that for a non-zero vector v E R d the set 0 (v) c R d is dense.

J. Dani [1] showed that providing v is irrational, the result extends to
the case that r - SL(d, Z). Under either of these hypotheses the set

{~4 E  T} has infinite cardinality. ( denotes the

standard euclidean 2-norm). However, for groups which are not lattices the
orbits need not be dense, and indeed may be quite sparse. For example,
# ~ A E r : IlAvll  T} may be finite for certain choices of v. To see that
some restriction is necessary, notice that if v is an eigenvector for A E F
then the same is also true for the matrices An, n E Z. In consequence,

T for infinitely many n. (A similar phenomenon occurs whenever
the projectivized vector v lies in the limit set.) Except in these cases, one
may ask how this counting function behaves as T - oo.

In this paper we shall consider the linear actions of a class of free

groups h c SL(d, R). Let r be freely generated by the (symmetric) set

~1~ The first author would like to thank the Leverhulme Trust for their support. The
second author was supported by an EPSRC Advanced Research Fellowship.
Keywords: Linear action - Free group - Projective space - Thermodynamic formalism
- Orbit counting.
Math. classification: 37C35 - 37C85 - 37D35 - 20G20.
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ro = {~4~ ~,..., A~ 1 ~. We call a generator A E ro pointed if it has a unique
eigenvalue of maximal modulus and the corresponding eigenspace VA is one-
dimensional. Denote by WA the direct sum of the (generalized) eigenspaces
of the other eigenvalues. We say that the generators are in general position
if for each A E Fo we have VA ct WB.

It is useful to make two hypotheses.

Hypothesis I. 2013 We shall assume that ro are generators for r which
are pointed and in general position.

Hypothesis II. - We shall assume that there are elements A2 E r
such that the logarithms of the maximal eigenvalues are not rationally
related. 0

These are generic conditions on the generators. The first hypothesis
plays a role in the proof of the beautiful result of Tits that a subgroup
G C is either virtually solvable or it contains a free group on two
generators as a subgroup (cf. [12], [4]). In the analogous setting of SL(2, R),
the second hypothsis is equivalent to the non-arithmeticity of the length
spectrum of the associated Riemann surface or mixing for the corresponding
geodesic flow.

Before we state our main result, we shall introduce two pieces of
notation. Given &#x3E; 1, we shall denote by r(i) c T the free subgroup
generated by the I-th powers, i. e., the elements A E r o}. We
denote by

the complement of hyperplanes WA, A E ro .

Our main result is the following.

THEOREM 1. - Let r C SL(d,R) be a free group with generators Fo
satisfying Hypotheses I and II. Let v E U. Then there exist .~ &#x3E; 1,
C = &#x3E; 0 and p = &#x3E; 0 such that

(In fact, the same conclusion is true for all sufficiently large f.)
As a consequence we have the following estimate on matrices counted

by their norms.



133

COROLLARY. - There exist constants Cl , C2 &#x3E; 0 such that

Proof. - Since we can write

On the other hand, a simple geometric argument shows that for each
v E U there exist D &#x3E; 0 such for all A E r. Hence,

, , .,

This completes the proof. D

The value p is precisely the abscissa of convergence of the Dirichlet
series defined by We can see that p &#x3E; 0 by
the following argument. First observe that there exist c &#x3E; 0 such that

where IAI denotes the word length of A, i. e., the number of

generators from Fo used to write A. Recalling that #ro = 2k, we then have
the inequality

where the Right Hand Side diverges for s  In particular, we
see that p &#x3E; log(2k - 1)/c &#x3E; 0.

It is also an easy observation that p is independent of the choice of v.
This follows since given any v, v’ E U there exist E &#x3E; 0 such that

Example. For A E r(£) write A = SL(d, R). For any
i - 1, ... , d we can take v to be the i-th basis vector. If we suppose
that v E U then there exist a constant Ci &#x3E; 0 such that

As motivation for the proof of Theorem 1, we should consider the
classical interpretation of SL(2,R) as isometries of the Poincaré disc ~2.
In this case, the corresponding action on the ideal boundary ,5’1 exhibits

hyperbolic-like behaviour. The natural analogue of this for d &#x3E; 3 is the
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projective action on This action on will have sources

corresponding to eigenvectors of eigenvalues of modulus smaller than unity.
There will also be sinks, corresponding to eigenvectors of eigenvalues of
modulus greater than unity.

We define the limit set A c Rpd-1 of IF(’) to be the closed set which
is the accumulation point of the set A E IF(’) 1, where we take any
point v E ~U~ in the projectivization of U. For each s &#x3E; p we can define a

probability measure ms on IlBPd-1 by

The next theorem describes the distribution of the orbit r(£)v
on and could be viewed as an analogue of the Patterson-Sullivan
measure for hyperbolic manifolds [8], [11].

THEOREM 2. - Let r C SL(d,R) be a free group with generators ro
satisfying Hypotheses I and II and &#x3E; 1 be such that the conclusions

of Theorem 1 hold. There exist a probability measure m such that we have
the convergence ms = m in the weak star topology. Furthermore, m
is an ergodic non-atomic measure supported on the limit set of r and

forallAEl,.

The authors would like to thank the referee for a number of helpful
comments.

1. Actions on projective spaces.

Assume that e SL(d,R) generate a free group h. Write
Fo = ~Al, ... , where Ak+i - Ai l, for i = 1,... k.

If A is a concatenation of n generators then we write IAI = n. Each
element /,

has the standard linear action A : Rd given by



135

Let Rpd-I = denote the real projective space, where
N is the equivalence relation (Zl"’" zd) - for A E 

We define a metric D on by

An element A E F induces a projective action A : Rod-1

given by

Let us denote by [VA] = (VA - {0}/ ~ and [WA] = (WA - 
the points and hyperplanes in Rpd-I corresponding to the eigenspaces VA
and hyperplanes WA in R~.

The contraction property. - There exist 0  8  1 and a family of
closed sets C(A), A E ro , such that

where DzA is the derivative of the projective action of A at the point z.

Moreover, for each A E ro and B E we have that AC(B) c C(A).
n

Example. - If we consider the free group generated by the matrices

then the contraction property holds. More generally consider for a &#x3E; 1 the

free group with the two generators
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where

The matrix Al has the standard bases as eigenvectors, and A2 has the
eigenvectors rotated by the matrix C.

There are natural co-ordinates (0, cjJ) on RP2 associated to sphe-
rical co-ordinates ( i. e. we write [x,y,z] = [sin § cos 0, cos § cos 0, sin 8~ ) .
Observe that the A1 image (x’, y’, 0) of (~,~/,0), for example, satisfies

= A simple calculation shows that the projective action
of A1 : JRp2 ---+ RP2 is contracting in the region corresponding to

cos 20 &#x3E; a~/(l + a4 ) . The image of this region (which we denote by 
is then contained in the region with tan 0 &#x3E; a2.

Considering (0, y, z), for example, with tana = z/y we see that
the projective action of All: Il~P2 -~ RP2 is contracting in the region
corresponding to cos 2a &#x3E; a/ ( 1 -~ a). The image of this region, denote
by C(Al 1) is contained in the region with tan a &#x3E; fl.

Since A2 is derived from A1 by a change in the orientation of the
eigenvectors, similar estimates hold.

To keep the four regions and (~4~) disjoint we can ask that
0, a  1 7r, which requires a &#x3E; 5.82843.... Thus, taking a = 10 suffices.

Figure l. The regions C(Ai) (i = 1, 2~

The next lemma shows that r contains a free subgroup with the above
property.
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LEMMA 1. - Let r be a free group with generating set ro, satisfying
Hypothesis 1. We can choose 0  8  1 and I &#x3E; 1 such that the free

group generated by the elements A£, A E ro, satisfies the contraction
property.

Proof. - For each A E ro we can choose disks

where E - Then the

union contained inside the basin of attraction of

A : In particular, for sufficiently large &#x3E; 1 we have

that

Set 90 and fix choices 80  81  8  1. Consider the

neighbourhood U = Iz E Oil of [VA]. We may choose lo
sufficiently large that lo we have that

Then for z E UBero- (A- 1 ) C(B) we have the bound

To complete the proof, we need only choose t sufficiently large that

OBi-fo  0.

We repeat this construction for each A E ro, and take 8 in the
statement of the lemma to be the maximum of the values above.

We can assume, without loss of generality, that I = 1 in the sequel.

We shall now describe the relation between Jac(A) and IlAvll.

PROPOSITION 1.

1) Suppose that v E then Jac(A) (v) = 

2) Suppose that v E U then converges to the maximal

eigenvalue for A, as m - +oo.
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Proof. - We begin with the proof of part 1). We can represent a
vector v E R d in terms of spherical co-ordinates c,~ _ (c,~l , ... , on the

sphere and its length llvll = r.

To perform the calculations we shall compare these spherical
co-ordinates with standard euclidean coordinates. Let us denote by
qbv : : U --~ V a chart from a neighbourhood U of the origin in euclidean
space to a neighbourhood V of v in spherical co-ordinates.

Let us denote by the Jacobian of A at v in terms of

spherical coordinates, and by the Jacobian of A at v in terms

of euclidean coordinates. It follows by the chain rule that we can write

Observe that 1, since A E SL(d,R). Moreover, by the
standard change of variable from spherical coordinates to euclidean

coordinates, we can write that In particular, the
above equality reduces to

Part 2) follows from the spectral radius theorem. D

Remark. - The linear action on projective space by matrices is also
familiar from the work of Birkhoff on the Hilbert metric. An interesting
interpretation of the weight for the projectivized action of positive matrices

GL(d,R) on the positive quadrant (relative to the Hilbert metric) appears
in a paper of Wojtkowski [13]. El

2. Subshifts of finite type.

A sequence is called admissible if

for i = 0,..., n - 2. Given an admissible sequence

) we shall write ,

Let " . be the

space of infinite admissible sequences and let a : X - X be the shift map

given by (ax)n = 0.

It is convenient to regard finite admissible sequences (xo, ... , 
as infinite sequences in the 21~~ U (0) by adjoining an
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infinite string of zeros to obtain (~o?? 0, 0, ... ) . For brevity we shall
write this as (xo, ... , xn-1, o) . We shall denote the set of finite sequences
completed in the above way by Xo and write X = X U Xo. Furthermore,
we adopt the convention that Ao, the group element associated to the
symbol 0, is equal to the identity.

We define a metric on the space X by

With this metric, Xo is a dense subset of X.

LEMMA 2. - Assume that (xo, ... is an admissible sequence
then

is a contraction. In particular, there exist C &#x3E; 0 and 0  0  1 such that

 

Proof. Let DA denote the derivative of the projective map
A : By the chain rule we can write

However, since we see that

Assume for the result of the section that v E is not on the

complementary planes associated to any of the generators from ro. We
need the following quantitative estimates.

LEMMA 3. - Let x - (xo,... x,,-,) and y = (yo , ... , ~n-1 ) be

admissible sequences. There exist C &#x3E; 0 such that if 0  m  n and

Proof. - Observe that

Thus, in particular,

as required.
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LEMMA 4. - The limit exists for any
x = X, and satisfies the estimate com.

Proof. - By Lemma 2, n &#x3E; 0, is a Cauchy sequence and
so exists. Letting n - in Lemma 2 gives

Using the above lemma, we may define a Holder continuous surjective
map 7r : X - A from X to the limit set, by 1r(x) == vx.

We define To = ~ f : X - R :  where

This is a Banach space with respect to the We

have the following two useful technical results.

LEMMA 5. - There exist C &#x3E; 0 such that for x, y E X , n &#x3E; 1, we have

Proof. Assume that xi = y2, for i = 0,..., m -1. If m &#x3E; n, then the

left hand side of (3.1) vanishes, since x ~--* Jac(Ax ) (v) is locally constant.
On the other hand if n &#x3E; m then by Lemma 3 we have that

However, since ; JRpd-l ---+ R is obviously Lipschitz, we see
that

Finally, since Ax,n = we can apply the chain rule to

write DAx,n(’) = Taking determinants and
logarithms and evaluating at v gives

Observe that xo = yo and the function log Jac(Axo)(’) is analytic. Thus it
suffices to observe that since (ay) i for i = 0,..., m - 2 then by
Lemma 3, Aay,n-l v) ::; 0
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We define a function r : Xo - R by

We can extend this to a function on X, by the following result.

PROPOSITION 2. - The function r: X - R given by

is both well-defined and an element of 

Proof. - From (2.1) and (2.2) this immediately follows. 0

The usefulness of the function r : X - R comes from the following
identity.

PROPOSITION 3. - Assume that x - -,~-i~0,0,...) G Xo,
where ~ 0, then we can identify

3. Transfer operators.

We write by = If : X - C :  where

This is a Banach space with respect to the norm Ilfllf) == If lo + if I.-
For f ~ we can define Ruelle transfer operators -

by

Remark. - This definition of the Ruelle transfer operator differs
from the usual definition in that in the summation over pre-images y
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of x we exclude the possibility y = 6. However, it agrees with the more

familiar definition for all x i- 6 and its only effect on the spectrum is to
exclude an eigenvalue (corresponding to the eigenvector which is the
characteristic function for the set ~0~). D

We can associate to each continuous function f : i -~ R the pressure
P ( f ) E R defined by

The pressure is also given by the equivalent variational identity

If f : X - R is Holder continuous, then the above supremum is attained
at a unique probability measure p called the equilibrium state for f.

PROPOSITION 4 (Ruelle Operator Theorem, [10], [7]).

1) For s E R, the spectral radius of the operator is equal
to and this is a simple eigenvalue of strictly maximal modulus.
Furthermore, associated to this eigenvalue, there is a strictly positive
eigenfunction hs, and an eigenmeasure vs . ( We adopt the normalization

2) For s E C, in a sufficiently small neighbourhood of R, the

operator L-sr. continues to have a simple eigenvalue of maximal modulus
denoted by . We shall again denote the associated eigenfunction
and eigenfunctional by hs and vs, respectively, with the corresponding
normalization.

Since, by the above proposition, e P(-sr) is an isolated eigenvalue we
know that s ~--~ P(-sr) is analytic for s in a neighbourhood of R. It is well
known that for to C R,

where J1to is the equilibrium state for -tor. Thus, in particular, the function
s H P(-sr) on R is strictly decreasing from +oo to -oo.

For a bounded linear operator T : B - B acting on a Banach space
B let p(T) denote the spectral radius. We define the essential spectrum
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ess(T) to be the subset of the spectrum spec(T) c C of T consisting of
those A E spec(T) such that at least one of the following is true:

1) Range(A - T) is not closed in B ;

2) A is a limit point of spec(T);

3) U-1 ker(À - T)- is infinite dimensional.

We define the essential spectral radius to be

The operator T : B - B is quasi-compact if the essential spectral radius is
strictly smaller than the spectral radius.

PROPOSITION 5 (see [7]). - For s E C, the spectral radius of

) and essential spectral
radius satisfies Pe(L-sr)  Op (L - Re(s)r) ·

Proposition 5 implies that for any E &#x3E; 0 we may write

where the summation is over eigenvalues À for satisfying

is the eigenprojection associated to À and Q is the projection associated
to the part of the spectrum in ~z : Izl  + e) so that, in
particular, : ’,

4. Poincare series.

An important tool that is useful in the proofs of Theorems 1 and 2 is
a complex function analogous to the classical Poincaré series in hyperbolic
geometry. We define a complex function 77(s) by

The Dirichlet series (4.1 ) converges to an analytic function provided
Re(s) is sufficiently large. We shall denote its abscissa of convergence by p,
which we recall from the introduction, is strictly positive.
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We can use Proposition 1,1) and Proposition 3 to rewrite i7(s) in terms
of the transfer operator. More precisely,

where 1 denotes the constant function taking the value 1.

In order to obtain estimates on 1r v (T) we require that has an

extension to a larger domain than its half-plane of convergence. This is
provided by the next proposition.

PROPOSITION 6. - The function has a meromorphic extension to
some strip Re(s) &#x3E; p - E, with a simple pole at s = p.

Proof. - Substituting (3.1) into (4.2) gives that

where LC!lr is the restriction of L-sr to the finite dimensional generalized
eigenspace associated to À.

The final term in (4.3) converges to an analytic function when

Pe (L- Re(s)r)  1, which will be satisfied provided Re(s) &#x3E; p - E, for

some choice of c &#x3E; 0, by Proposition 5. Moreover, the other term in in (4.3)
is meromorphic since (I - can be written in the form

where are analytic operator valued functions and, furthermore, it is
well known that det (I - are analytic [5].



145

Finally, when s = p the operator has 1 as a simple maximal
eigenvalue, by Proposition 4. In particular, in a neighbourhood of p the
expression (4.4) implies that

where 0(s) is analytic and 0. However,

which does not vanish since . From this we

deduce that the pole is simple.

D

The next proposition gives us more information on the location of

poles.

PROPOSITION 7. - The pole at s = p is the only pole on Re(s) = p

Proof. If the Poincar6 series q(s) has a pole at s = p + it then L-sr
has unity as an eigenvalue. It then follows by standard arguments based on
convexity arguments for finite sums that there exist M E C° (X, 27rZ) and
u E CO (X, R) such that t - r (x) - M(x) + u (ax) - u(x) [7]. Let us assume
for a contradiction that such an identity holds.

For a free group there is a natural bijection between conjugacy classes
and periodic orbits for the shift map a : X - X. In particular, given
a periodic orbit we associate the unique conjugacy
class (A) in r, where A E r corresponds to the concatenation of the edge
labelling around the closed path in the graph corresponding to x.

It is easy to see that Moreover, by
Lemma 4, this limit is equal to AA, where AA is the maximal eigenvalue
of A.

By assumption, = E E ZI. However, it is

clear that ~~A : A E r~ is not contained in such a multiplicative subgroup
of R+ by virtue of Hypothesis II. 0

5. Proof of Theorem 1.

We now explain how to complete the proof of Theorem 1. Let
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Observe that can be represented by the Stieltjes integral

The analytical properties of q(s) described in Proposition 7 imply
asymptotic estimates on 1r v (T) using the following classical result.

PROPOSITION 8 (Ikehara-Wiener Tauberian Theorem, see [2], p. 54).

Suppose that F(s) has the following properties:

1) In the half-plane Re(s) &#x3E; 6 the function has the representation

where A(T) is a positive, monotone increasing function and 6 &#x3E; 0.

2) In the region Re(s) &#x3E; 1, s ~ 1, the function F has the representation

where G(s) is continuous on the half-plane Re(s) &#x3E; 6 and C &#x3E; 0.

Applying Proposition 8 to the identity (5.1 ) we see that CTP,
where C is the residue of the simple pole for q(s) at s = p.

6. Proof of Theorem 2.

In order to prove Theorem 2 we shall modify the analysis in the
preceding sections. We shall consider a Dirichlet series associated to certain
cylinder sets, and then employ an approximation argument. More precisely,
let [i] ] - ~x 0  j  n - 1 ~ denote a cylinder, where
i = (io, ... , For Re(s) &#x3E; p, we may write
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PROPOSITION 9. - The function is analytic in a neighbourhood
of Re(s) &#x3E; p, except for a simple pole at s - p with residue

, In particular,

Proof. By Proposition 4 there exist a neighbourhood of

in which we have the bound  1. In particular,
qz (s) converges uniformly to an analytic function.

For s in a neighbourhood of p, we can use Proposition 4 to write

where lim sup, We then observe that

Clearly, the series in the last line converges to an analytic function. The
first term can be written

where 0(s) is analytic in a neighbourhood of p. 0

We shall use this result, together with an approximation argument, to
prove the first part of Theorem 2. Given a string i we define an associated

geometric cylinder C(i) = For n &#x3E; 1, we define two
functions
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Given E &#x3E; 0, we can choose n sufficiently large  E.

We may then choose mo sufficiently large such that whenever m &#x3E; mo we

have that Clearly,

Observe that

where the last equality follows from Proposition 9 by writing Gn as a linear
combination of indicator functions of cylinders. Similarly

Also we see that

Since E &#x3E; 0 was arbitrary, we
deduce that

where we set m = 7r*Vp’

To complete the proof of Theorem 2 we shall show how m behaves
under the action of A E r.

PROPOSITION 10. - For all B E r
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Proof. Give a Holder continuous function f : and

B E r we can write

where This completes the proof of the proposition. 0
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