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DYNAMICS OF WAVE PROPAGATION AND
CURVATURE OF DISCRIMINANTS

by Victor P. PALAMODOV

1. Introduction.

The dynamical characteristics of wave propagation like intensity,
energy-impulse tensor, density of 4-tensor are special Hermitian forms of
solutions of the wave, Maxwell and Dirac equation respectively. For a
generic Lagrange distribution solution the value of the Hermitian form is
a singular density that diverges fast at the locus (front) of the Lagrange
manifold. Meantime for an arbitrary Lagrange distribution of order zero the
divergence of the intensity integral is of logarithmic rate. We call residue
of the intensity integral the coefficient at the logarithmic term (Section 3).
The residue is a positive measure supported in the locus. To evaluate
this measure we choose an appropriate barrier function that vanishes on
the locus (Section 4). We calculate the residue in terms of the symbol
of the distribution (Sections 2 and 5). A substantial point of our proof is
inspired by an observation due to J.J. Duistermaat that concerns oscillatory
integrals [I], Section 1.3.

For any solution of the wave equation the residue of the intensity
integral is preserved by the corresponding Hamiltonian flow. This property
extends the classical conservation law of geometrical optics to singular
solutions and to rays passing through caustics. We state that the singular
energy-impulse tensor obeys the similar conservation law (Section 7).

The residue of an arbitrary Lagrange distribution of order zero is
equal to the delta-density of the Lagrange locus times a factor which is

Keywords: Fourier integral - Lagrange manifold - Contact bundle - Symbol -
Discriminant — Residue — Curvature — Conservation law.
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1946 VICTOR P. PALAMODOV

unbounded near any singular point of the Lagrange locus. This factor can be
represented in a purely geometrical form that does not depend directly on
a singular stratification of the locus (Section 8). It is essentialy equal to the
maximal minor of the curvature form of the locus. This gives an approach
to a uniform of asymptotics of a Lagrange distribution. We consider an
example in Section 9.

2. Lagrange distributions and symbols.

We write a Fourier integral in a smooth manifold X in the form

(2.1) I(^A) = / exp(2m(t)(x,0))A(x,0)d0.
Je

The integral is taken over an open cone © C M^ \ 0. The space R^
(ancillary space) is endowed with a coordinate system 6\,..., ON (d0 is the
corresponding Euclidean volume form) and with the action of the group M+
of positive numbers t : 0 \—> t0. Any coordinate system in the ancillary space
possessing the last property is called homogeneous. The phase 0 is a real
smooth homogeneous function in X x Q of degree 1, i.e.^ 0(rr, t0) = t(f)(x^ 0)
for t > 0. We assume that the phase is non-degenerate, that is, rank of the
Jacobian matrix of the functions <% , . . . , <% is equal N in any point of
the critical set C((f)) = {d^0 = 0}. The amplitude A is a smooth complex-
valued halfdensity in X depending on the ancillary variables 0 € 6. We
suppose that the amplitude is supported by the set X x F where F is a closed
cone in Q and A is asymptotically homogeneous of certain degree m. The
last condition means that A = Am + R where Am is a smooth halfdensity
that is homogeneous in 0 of degree m and the remainder satisfies for some
positive e and for any compact set K C X

[ I^^I^GKd^l+l)2^"6^, z + j ^ m + T V .
JK

These conditions imply that (2.1) converges to a continuous functional
on the space of smooth halfdensities % with compact support:

J(^,A)(x)= I ( f exp(2m(f>(x^))A(x^)d0)x-
Jx ^Je /

We call v = m+ | N the order of the Fourier integral. Consider the mapping

(2.2) 4> : C{(f>) —— To*(X), (x,0) —— (x,d^(x,0))

where T^(X) denotes for the bundle of non-zero cotangent vectors in X.
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DYNAMICS OF WAVE PROPAGATION 1947

This mapping is an immersion and commutes with the action of the
group R+ hence its image A(0) is a conic Lagrange variety.

Take another copy Q° of the cone 6. There are three differentials
d^, de and d^o in the de Rham complex f^*(X x 9 x 0°). Set

d = da; + d<9 and d° = dgo.

Take the function 00° = E<?A0- The form {ddo000)^N = /\N(ddo000) will
be considered as a density in 6 x 6°. The product

a = (Am)2 A (ddo000)^N

is a smooth density in X x 6 x 9°. Introduce the phase function in this
manifold

<S>(x,0,0°)=(l)(x,0+0°)

and consider the submanifolds

C°W = {d°<S> =0}, Z = {0° = 0}.

We have the natural isomorphism C°(^) D Z ^ C{(f)). Choose the
coorientation of the manifold (7°(<I>) H Z by means of the frame of 1-forms

(2.3) d^...^, d^...,d^, ^=9^/90°^ z = l , . . . , 7 V .

These forms are independent since the phase (f) is non-degenerate. Note
that this coorientation does not depend on the choice of the coordinates in
the ancillary space 6. Consider the 2-form dd°<l>; the quotient

a
/3=' (-zdd0^)^

is defined as a form of degree dim X up to a form f3' that satisfies

{3' A (dd0^)^ = 0.

The term ft' belongs to the ideal in Q,*(X x 6 x Q') generated by the
forms (2.3) since these forms are independent in any point of C(<I>) H Z.
The restriction of ft' to the manifold (7°($) D Z vanishes consequently the
restriction of /? to this manifold is a well-defined smooth density. Define the
halfdensity

a(J(^A))=y^ \CWHZ.

TOME 50 (2000), FASCICULE 6



1948 VICTOR P. PALAMODOV

This is a homogeneous halfdensity in C((/)) of degree v = m-\- - N. Choosing
a smooth nonvanishing density dV in X we can write Am = amVdV
where dm is a homogeneoues amplitude function. This implies the equivalent
formula

(2.4) <r(/(^A))
IdV /\ddo(000)A•N

(-tdd0^)^ cw

Suppose that the mapping (f) : C(4>) —>• A(<^) is injective and hence is
a diffeomorphism. The direct image (f)^(a{I)) is called the symbol of the
Fourier integral I = I{(f), A). There is an ambiguity in the choice of the root
in (2.4). Take a local coordinate system A o , . . . , \n m A and consider the
density | dAo A ... A d\n\ in A(<^>). Compare two densities:

dYAdd0^0)^ ^ ,.3, , , ^ i-F^^—=^).|dAoA...AdA,|.

Here s((f)) ̂  0 is a function with real or imaginary values. The square root
of the left-hand side is equal to

(2.5) S(^) = exp (Jarg^z) . \s((t>)d\o A ... A dA^172

where the argument ^ args((^) is multiple of ^TT and is well-defined up
to multiple of TT. Therefore the halfdensity S(0) is defined up to the
factor ± and we have a{I) = dm^W by (2.4). The symbol is transformed
as a homogeneous density in A((^>) if we execute an arbitrary coordinate
change (x, 6, 0°) ^—> (x, C, C°) by means of smooth homogeneous functions
^ = Cj(^ 0), j = 1,..., N in X x 6 of degree 1 and set ^ = ̂ (x, 0°).

Dimension descent. — Suppose that the phase function can be written
in the form (f){x,0) = H"1^) + ^>(x,rj) in a neighbourhood of a point
(xo, 0o) where ^ = ($1,..., $fc), rj = (771, . . . , rfN-k) are new homogeneous
coordinates in the ancillary space such that ^ vanishes in (rco^o) and q
is a non-singular quadratic form of the variables ^. The function ^ is
again a non-degenerate phase and by the stationary phase method we have
J(0,A) = J(^,B) (mod C°°) where B is an asymptotically homogeneous
amplitude of order m' = m + ^k such that

/ m \ AmW^2

Bm' = exp ( sgn(q) — \ .———
\ 4 ) ^\detq\

where sgn(g) is the signature of the quadratic form.
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DYNAMICS OF WAVE PROPAGATION 1949

Lagrange distributions. — Let A be a closed conic Lagrange manifold
in T^(X). We call any generalized halfdensity in X of the form

(2.6) U=^I(^A^) (modG00)

A-distribution (or Lagrange-distribution) if the sum the Fourier integrals is
locally finite in X , A(^) C A for each i and the amplitudes A(^) satisfy the
above conditions. This is in fact a special case of the general definition due
to Hormander [6].

We say that U is of order < v for a real number v if U can be written
in the form (2.6) where each term is of order < y.

Denote by P'^A) the space of A-distributions in X of zero order.

Symbol. — Let TT : A —> X be the natural projection. Denote by A^
the open subset of A where the dimension of the kernel of the tangent
mapping dpr : T(A) —^ T(X) is less or equal to k, k = 1,... ,dimX. For
any point A € A^ there exists a generating phase function -0 that depends
on k ancillary variables. Fix a family of non-degenerate phase functions '0^
a € A such that for any k = 1,..., dim X

A^I^AQ/^); N(^)<k}.

For each a we fix a choice of - args(0c0 in (2.5). Take an arbitrary non-
degenerate phase function (j) such that A(<^) C A. We can choose a locally
finite covering 0 = (J Oj by some open cones 9j such that for each j the
equation

(2.7) ^O) = |^r^(0+^(^(a))

holds in 6j for a non-singular quadratic form qj and a homogeneous
coordinate system ^,6^), a == a(j) in the ancillary space. This equation
implies that the image of Uj under the mapping </> is contained in A(^a).
Choose a smooth partition of unity {hj} in 0 such that supp/ij C Qj for
each j. Take an amplitude A as above, write J((^,A) = ^/(0,/ijA) and
apply the dimension descent to each term:

( 7T? \
I(^h,A)= exp sgn(^)^-)J(^,5,), (mod C°°)

where Bj is a new asymptotically homogeneous amplitude which satisfies
the above conditions. Set

(2.8) a(J(<A,^A)) = exp (sgn(g)^-)a(J(^,B,)).

TOME 50 (2000), FASCICULE 6



1950 VICTOR P. PALAMODOV

The right-hand side is defined as a local section T(^) of homogeneous
halfdensities in A of degree v.

To globalize this construction we consider the Keller-Maslov line
bundle C in A. In the atlas {A((^o;)} this bundle is defined by the transition
mappings exp(sgn(^^) \^z) where g^/3 is the quadratic form that joins the
phase functions c/)a and ̂  as in (2.7). The group of this bundle is reduced
to Z4 C U(l).

The halfdensities e^ = S(<^a) are local sections of the bundle C.
Another choice of j arg('0o) corresponds to the generator —CQ. Therefore
the right-hand side of (2.8) is well-defined as a section of the bundle T(^)0£.
We set

a(l(^A))=^a(l(^h,A)).
3

We define symbol of an arbitrary Lagrange distribution U of order v by the
equation

a(U)=^a(l(^A,))
where the sum ranges over the terms I ((pi, Ai) of order v. We have proved
in this way

PROPOSITION 2.1. — The symbol o'(U) of an arbitrary A-distri-
bution U of order <_ v is well-defined as a section of the bundle Y(^) 0 C.

Remark. — The absolute value of the halfdensity (2.4) coincides with
the principal symbol in the sense of [5], [2], up to the factor (27^)N/2.

Contact bundle. — The manifold C*(X) = To*(X)/R+ is the variety
of all cooriented contact elements in X. This manifold has the canonical
contact structure. For a conic Lagrange manifold A in T^(X) we set
Ac == A/]R-(-. This is an integral manifold of dimension dim Ac = dimX — 1.
We call it contact Lagrange manifold. For a Fourier integral I = J(<^, A) of
order 0 we define formally the halfdensity

(2.9) .c(J) = ̂ .W

in X x 9/R+. The right-hand side is homogeneous of order zero hence
this halfdensity is well-defined. Take the direct image of this form by the
mapping (f). The image is a halfdensity in Ac (</>); it is equal to the symbol
cr(U) considered as a section of the bundle T(0) 0 C if we push forward
both bundles to the manifold Ac. We call this image contact symbol of U.

ANNALES DE L'lNSTITUT FOURIER



DYNAMICS OF WAVE PROPAGATION 1951

Remark. — For arbitrary zero order A-distributions U, V the product
a(U)a(V) = a(U)a(V) is a density in Ac. It does not depend on the choice
of ^ arg5 in (2.5).

3. Residue in regular points.

DEFINITIONS. — Let again X be a smooth manifold and A be a closed
conic Lagrange manifold in T^(X). Consider the corresponding contact
Lagrange manifold Ac and denote by p:Ac —> X the natural projection.

We call the image L = p(Ac) locus of the Lagrange manifold. The
locus is a closed set since the mapping p is proper.

We shall say that Ac is univalent at a point A and over the point
x = p(A) € X if A is the only point of the set p'1^).

We call a point x € L regular if Ac is univalent over x and the tangent
mapping dp:7\(Ac) -^ T^(X) is injective. Let Lr denote the set of regular
points; it is a smooth open manifold of dimension n == dimX — 1. The
complement Ls = L \ Lr is a closed subset of X.

Take a regular point y e L and a smooth function / defined in a
neighbourhood Y of y that has no critical points and vanishes in L H V. We
call it regular barrier for L.

For an arbitrary A-distribution U the square \U\2 is a distribution
in X which is smooth in the compliment to the locus of A.

Denote by V°(X) the space of continuous functions in X with compact
support.

PROPOSITION 3.1. — Let y G Lr and f be a regular barrier function
in a neighbourhood Y ofy. For any U € P^A) we have

(3.1) f p\U\2=^Y{p)^ogl^O(l), pCV°(Y)
J/2>g e

as e —^ 0 for a distribution Ey € P'^V). This distribution is positive and
supported by Y D L. It does not depend on the choice of the regular barrier
function.

We call the left-hand side the peripheral integral.

Proof. — The manifold Ac coincides with a connected component of
the conormal bundle 7V*(L) over a neighbourhood of the point y . Therefore

TOME 50 (2000), FASCICULE 6
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<f)(x,0) = Of(x), 0 € G is a generating function for Ac where Q is the
positive or negative ray in R \ {0}. Suppose that 6 = R+. We can write

/•oo
(3.2) U(x) = \ exp(2m0f{x))A(x, 0) d0 (mod C°°)

Jo

and the amplitude A(x,0) = a{x)0~1/2 + O^-1/2-6) where e > 0 and a
is a smooth halfdensity in V. Calculating this integral we get the explicit
formula

(3.3) U = (/ + z0)-1/2^) + Od/1-1/2^)

where 6 = \j\za. Hence

/ ^12=:/' ^+0(1)=2/pl^logl+Od).
-Af2^ </'2^ I / I ^L, <V ^

In the last term we use the coorientation of the manifold Lr by the
form d/. This proves (3.1) with the coefficient

(3.4) S y ^ ^ ^ ^ / ^ l ^
J L d./ J L d/

We have C((/>) = {f(x) = 0,0 > 0} and the manifold A is given by the
equation ^ == Odf. Calculate the symbols

^ (u\ ^^de^d6Q a jdff . . a(3l5) ^'V -d/Ad^o -T-^VT- ^^T-T
Consequently the right-hand side of (3.4) can be written in the form

(3.6) Ey(p)= / |^a/)|V(p)
JA,

where p* means the pullback operation. Obviously this form does not
depend on the barrier function. The local distributions Ey glue together to
a unique distribution defined in an arbitrary open Y such that the inter-
section V D L contains only regular points. This follows from (3.6).

ANNALES DE L'lNSTITUT FOURIER
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4. Locus and barriers.

DEFINITION. — For a contact Lagrange manifold Ac and a point A € Ac
we denote by r(A) the multiplicity of the natural projection p: Ac —> X in A
(cf. (10.2)). Take an arbitrary point A where Ac has finite multiplicity. This
point is isolated in the fibre p~l(y) hence there exists a neighbourhood A'
of A in Ac which is univalent at this point. We call the set L' = p(A') fold
of the Lagrange locus at y.

For an arbitrary point y in the locus L = p(Ac) the number

r(y)=^{rW^p{X)=y}

is called the multiplicity of Ac over y . If Ac is closed and has finite
multiplicity over y , the locus is equal to a finite union of folds in a
neighbourhood of y.

Take an arbitrary point A = (y,^) e Ac of finite multiplicity r(A),
choose a neighbourhood A' of A and a submanifold H C X such that
Ty(H) == Ker^. Choose a smooth retraction q:Y —> H where Y is a
small neighbourhood of y . Denote by /^(A) the local multiplicity of the
composition qp:Ac —> H in the point A. For an arbitrary point y € X such
that Ac has finite multiplicity over y we set

/^/)=^MA);p(A)=2/}.

We call p,(y) the multiplicity of the locus L = p(Ac) at y.

PROPOSITION 4.1. — If the multiplicity r(A) is finite, the number /^(A)
does not depend on the choice ofH and q. We have r(A) < /^(A) < oo.

THEOREM 4.2. — Let Ac be a closed contact Lagrange manifold over
a manifold X that has finite multiplicity and is univalent over a point y.

(i) There exists a real smooth function f defined in a neighbourhood Y
ofy that vanishes in L and satisfies the conditions

(4.1) d7Q/)=0, z = 0 , . . . , / i - l , d^/Q/)/0, ^ = /.(A)

where <f means the i-th total differential of a function.

(ii) There exists a set G C X of n-dimensional measure zero where
n = dim L = dim X - 1 such that f does not vanish in X \ (L U G) and is
a regular barrier at any point of L\G.

TOME 50 (2000), FASCICULE 6
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Proof of Proposition 4.1. — Choose a non-degenerate phase function
(p : Y x Cl —> M for the germ of the contact Lagrange manifold Ac at A by
means of Proposition 10.2. We can assume that Q C R^ is a neighbourhood
of the origin. We have ^ : C{(p) ̂  Ac, Q/,0) ^-> X. Therefore

(4.2) ^(Ac)/(p*(m,)) - 0,,o(C(^))/(m,)
^Oy^xxe)/((^^)+(my))
^-4/(^€)

where my stands for the maximal ideal of the point y in 0(X), A denotes
the algebra of germs in the point uj == 0 of real smooth functions in f2 and
'0(-) = (p(y^ -). If B is an algebra and G is a subset of B, we denote by (G) the
ideal generated in B by this subset. The quotient (4.2) is of finite dimension
T = r(A) by the assumption. By Tougeron's Theorem [11] there exists a
local coordinate system uj near the origin such that ^ is a polynomial in uj.
Choose coordinates x\^x' in a neighbourhood of y such that (y^dx\) = X.
The retraction q is given by g(a*i, x ' ) = x ' -\- q^ where q^ G m^. We have

/.(A) = dimOy^X x 9)/((^) +^*(ni/0),

where m/i denotes the maximal ideal of the point h = q(y) G H
and r = pq. At the other hand drci == da;y?(^/,0) and the point (^/,0)
belongs to C[(p). Therefore (p(x,uj) = x\ (mod m'y) consequently we have
(ip) + (r*(m/J) = r*(m^)) hence

(4.3) ^X)=dimA/^J.

This proves the inequality r(A) < f^(X). At the other hand the inequality
r(A) < oo implies that ^ = 0 is an isolated zero of the system ̂  = 0 in f2c.
It follows that 11 < oo. D

Proof of Theorem 4.2. — Take the generating function '0 as in the
previous proof. Denote by 6' the right-hand side of (4.2) and by Sc its
complexification. Consider the mapping TT : Z —>- Sc where Z C Sc x f^c
is the hypersurface given by a polynomial equation ^(5,0;) = 0 and f^c
is a complexification of fl,. This is a minimal versal deformation of the
germ (Zo? 0) if the polynomial is taken in the form (c/. for ex. [9], Chap. 5):

T

(4.4) ^(s,^)=^(o;)+si+^Sie,((x;)

ANNALES DE L'lNSTITUT FOURIER



DYNAMICS OF WAVE PROPAGATION 1955

where ei = 1, 6 2 , , . . . , Or are arbitrary real monomials whose images in (4.2)
form a linear basis. The discriminant set A of the deformation TT is the
projection to Sc of the set

cw={^=^ <=o}

in Sc x ^c- According to [7] there exists a holomorphic pseudo-polynomial

^^+^(^^1+-+U^)

in Sc whose zero set coincides with A; here we denote sf = (s^ , . . . , s^-).
This pseudo-polynomial satisfies (4.1). By the Malgrange's Preparation
Theorem [8] there exists a smooth mapping of real germs < : (X, y) —> (S, 0)
such that C(?/) = 0 and a smooth positive function \(x,u) such that

(4.5) ^(^) = x(x^)^(^x)^).

This means that the deformation defined by the function y? is induced
from TT. It follows that the function

^{x,uj)=^(C(x)^)

generates a neighbourhood of the point A in the contact Lagrange variety Ac.

Set f{x) == 6{(^(x)). Take a point x e L and show that / vanishes in x.
The point (x,uj) belongs to C((p) for some uj e ̂  hence (({x)^) e C'(^) in
virtue of (4.5). Therefore f(x) = 6(^(x)) = 0. From (4.5) and the condition
d^lc^) 7^ ° w^ conclude that d^ ̂  0 in C{^). At the other hand by (4.4)

d^i(C(rr)) = d^(s,uj) + 0(o;) ̂  0

hence dxS-t(y) ̂  0. This implies (4.1) for the function /.

Now we check the statement (ii). The function ^(x,cj) can be
continued at Y x ̂  as a polynomial in uj. The set of real critical points of
this function with zero critical values coincides with <7(</?). The latter is the
real part of the critical set C(^) in Y x ^c-

LEMMA 4.3. — The set C(^) is a smooth real manifold of dimension
n if the fl,c is sufficiently small neighbourhood of^c-

TOME 50 (2000), FASCICULE 6
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Proof of lemma. — The differentials of the functions '0, ̂  , . . . , ̂
are independent in C{(f)) since the phase (p is non-degenerate. Therefore
these differentials are C-independent in C('0) if the neighbourhood fl,c is
sufficiently small. D

Denote by J the set of critical values of the mapping P : C(i^) —> X
and by D C Y the set of points x such that P~l(x) contains more
than one point. The set J has n-dimensional measure zero by the Sard's
Theorem. Show that this is true for the set D too. It is sufficient to
prove this statement for the set D \ J . Take a point x in this set and
two points (x^uj^) € C(^>). We have det^^(a;,L<;±) ^ 0 hence there are
smooth C-valued local solutions uj = c^±(z) of the system ^{z.cj) = 0 such
that c<;±(rr) == o;±. Take the functions g±(z) = ̂ (z^±(z))' The equations
g^(z} = g-(z) = 0 defines a manifold D C Y of dimension < n in a
neighbourhood of y since the differentials dg^. and dg- are independent.
To check the last fact we note that the differential of the mapping (2.2) is
injective for the phase ^. The mapping d^ : C{^) D Y x f2 —> C*{X) is
an immersion too because of (4.5) provided the neighbourhoods Y and fl,
are sufficiently small. This property holds also in the domain Y x Q.c ^OT

sufficiently small complex neighbourhood f^c of ^2.

Let I be the set of real points y such that there exists a point
(y^) 6 C(^) with 1m uj ^ 0. It is of n-measure zero too. Really we have
(^/, a)) 6 C(^) hence y 6 D and consequently I C D.

Set G = J U D and take an arbitrary point x € L \ G. According
to (4.5) the function ^(rc, •) has only one critical point (x,u) 6 C(^\
the point uj is real and the form ^^(x,u}) is non-singular. There is a
local smooth solution uj = uj[x) of the system ^(x,uj) == 0. The similar
statements are true for the function ^ in the point (s, a;) where s = ̂ {x).
According to [7] we have

m(4.6) ^i,^=n^(5^'))j=i
where c^i^'),... ,o^(s') are critical points of the function ^(s, •). All the
factors are linear with respect to 5i and one of them vanishes at the point
s == C(^)- Let ^(s,^!^')) be a vanishing factor; all other factors do not
vanish since x ^ D.

At the other hand we conclude from (4.5) that

d^(x,u;(x)) =%{x)d^(x,u;(x)) =^(x)d^(s^i(s/))

ANNALES DE L'lNSTITUT FOURIER
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where s == CO^)' The left-hand side does not vanish since y? is non-
degenerate. It follows d^(5,a;i(s')) ̂  0. We conclude from (4.6) that

m

^f{x) = d^(s)=Y[^(s^,(s/))d^(s^,(s/))^0.
2

This implies that / is a regular barrier at a;. D

COROLLARY 4.4. — The barrier has the following representation:

(4.7) f(x) == i^(x^)(p(x^)^^^i(x,uj)(p^(x,u})

where ^ is an arbitrary generating function of the germ Ac and AC, ̂  are
some smooth functions.

Really, the barrier vanishes in the set C(^). At the other hand by (4.5)
the functions ^, ̂  are generators of the ideal of this set.

Remark. — Note that the barrier / is not uniquely defined because
of the mapping C is not unique. According to Theorem 4.7 the zero set of /
coincides with the locus L up to the subset I C G of measure zero. The
set I is empty if r{x) < 2 and, moreover, any two local barriers /, / are
equivalent: f = hf where h -^ 0 is a smooth function in a neighbourhood
of x. This is not the case even for r = 3, since the real "swallow tail" (see
Fig. 1) A H S does have 1-dimensional piece I (half of a parabola). This
piece is not covered by real points of C7(-0) hence another barrier function
need not to vanish in I .

Suppose that a closed contact manifold p : Ac —> X has finite
multiplicity over a point y e X. The fibre p~l{y) is a finite set of points
A i , . . . , \q each of which has finite multiplicity. Take a neighbourhood Y
of y such that the manifold Ac ^}p~l(Y) is the union of disjoint pieces Kj
such that Aj; € Aj, j = 1,... , q. Each piece is univalent over y and we can
construct a function fj which vanishes in the fold Lj = p(Aj) by means of
Theorem 4.2 (i). The function / == /i • • • fq vanishes in the locus L = \J Lj
and satisfies 4.1. We call it barrier for the locus L in the point y .

THEOREM 4.5. — Let Ac be a closed contact Lagrange manifold of
finite multiplicity r over a point y € X. There exists a neighbourhood Y
ofy such that Ac has finite multiplicity r{x) <, r over any point x € Y.

Proof. — The multiplicity is additive with respect to the fibre hence
we may suppose that the fibre p"^) contains only one point A. Take a
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generating function ̂ (x^) of the germ A, A as in the proof of Theorem 4.2.
Set (f)(uj) == ^(y^) and choose a coordinate system uj such that (p is a
polynomial. Take a closed ball B in C^ centered in the origin that does not
contain any common zero of the functions <^, 0^ except for the origin. Let A
be the Banach space of bounded functions in B that are holomorphic inside
the ball. Consider the sequence of continuous linear mappings

(4.8) A^1 -^ A -^ ^/(<^, ̂ F -^ 0

where ̂  denotes the algebra of formal power series in uj, the mapping a is
generated by the mapping A —> T that transforms a function to its Taylor
series at the origin and P(ao,.. . , Ok) = ao0 + ̂  a^. The composition of
these mappings vanishes.

LEMMA 4.6. — The sequence (4.8) is exact.

Proof of lemma. — Consider the algebra Q of rational functions in Ck

that are holomorphic in B. Let m the maximal ideal of the origin and I be
the ideal generated by the polynomials (f), (j)' in Q. We have m71 C I for some
natural h by the Hilbert's theorem. Therefore mhy C I T . Any series / C F
can written in the form / = a + g where a 6 A, ^ e m^. This implies
that a is surjective.

Take an arbitrary element a 6 Kera. We have again a == ao + g
where ao is a polynomial and g € m^A. We have m^A C JA = P(Afc+l)
hence ^ belongs to the image of the first mapping in (4.8). This implies the
equation OCLQ == 0 consequently CLQ = bo(f) + ̂  b^ for some formal power
series bo , . . . , bjc. Cutting out the terms of degree > h in these series we get
the representation ao = b -h g ' where b G J and ^' 6 m^. We have again
g ' G J hence ao € J. This implies the inclusion Kera C P(AA;+1). D

It follows that the cokernel of the mapping P is of finite dimension r.
Choose a point s € S and consider the mapping Px similar to P
constructed by means of the function '0(^, •) instead of (p. We have the
continuous family of bounded operators Pc : A^4'1 —> A such that Py = P.
According to Lemma 4.6 the space Cok Py is of dimension r. It follows that
dim Cok Px < r for any point x close to y. At the other hand we have the
equation

dimCokP, = ̂ dimJ^/(^(a:, -),<^ •))

where T^ denotes the algebra of formal power series at the point uj and the
sum is taken over all common zeros uj of the functions ̂ (x^ •), ̂ (rc, •). It can
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be checked by the the above arguments. For any real common zero uj of the
above functions we have dim^/(-0,^) == r(A') where A' = ^(x,uj) e A.
Therefore r(x) < dimCokPa; and the theorem follows. D

Remark. — It is easy to show that the number of folds in a point x
does not in fact exceed r — 1 for any point x close to y.

Remark. — Suppose that the manifold Ac is univalent over a
point y and (^) € Ac. The hyperplane My = {^(t) = 0, t € Ty(X)}
is a metric tangent to the locus L = p(Ac) in y in the sense that
dist{x,H) = o(dist(x,y)) as x € L, x -» y for some (and hence for any)
submanifold H through y whose tangent space in y coincides with My.

DEFINITION. — Two points A± e (7*(X) will be termed opposite
if A± = {x, ± ^). We say that a subset 6' in G*(X) is symmetric if for
arbitrary point s G S the opposite point is also contained in S. Consider
the projection (7*(X) -> C*(Z)/Z2 which identifies opposite points. The
image is the manifold of non-cooriented contact elements. Let Ac be a
closed symmetric contact Lagrange manifold; its image Ag in (7*(X)/Z2
is a manifold too. We define the symmetric multiplicity Ts(y) of Ag and
the symmetric multiplicity fis(y) of the locus as above taking the sums
for all points of Ag over y . This gives the numbers Ts(y) = -r(y) and
jis(y) = i P'(y)- Note that above results hold for any symmetric manifold Ac
and with the multiplicities Tg and p,s instead of r and JJL.

5. Main result.

THEOREM 5.1. — Let Ac be a closed contact Lagrange manifold of
finite multiplicity over each point of X. There exists a positive Hermitian
form S( y) defined in P'^A) with values in (P°(X))' such that

(5.1) / pUV = [Sy(^y)(p) +o(l)] log ̂  p G P°(X)
J f2>£ ^//2>£ L ' - - £

where

(5.2) S([/,V)(p)= / ac(£/)ac(V)p*(p)
^AC

DEFINITION. — We call S( • , • ) the residue form.
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COROLLARY 5.2. — For any U ,V € P'°(A) there exists a integrable
complex-valued measure m(U ,V) supported in L such that

(5.3) Y.(uy)(p}= f pm(uy), pev°(x).
J L

Proof of corollary. — For any A-distribution U of order zero the local
density E(<7, U) is positive. According to the Schwartz's Theorem [10] this
density is a non-negative measure m(|?7|2) supported by the locus. The
complex-valued measure m(£7, V) = ̂ OtQsm(\sU + tV\2) satisfies (5.3). D

Remark. — Suppose that a contact Lagrange manifold Ac is symmetric
and decomposed in two opposite pieces Ac = A-(- U A-. The corresponding
folds coincide: p(A+) == p(A-) but any A+ distribution U+ is orthogonal to
arbitrary A_-distribution U- with respect to the Hermitian form S.

6. Logarithmic asymptotics.

Proof Theorem 5.1. — It is sufficient to prove the theorem for the
case V = U\ the Hermitian form S(L^ V) is reconstructed uniquely by
means of the standard method. We construct the distribution S locally.
The local constructions are locally uniquely defined and therefore they
will glue together in a global quadratic mapping Ti(U,U) satisfying (5.1)
and (5.2).

It suffices to prove (5.1) and (5.2) for an arbitrary smooth non-negative
functions p. Really, arbitrary function p e V°(Y) can be represented in the
form p\ — p2 where p\ ̂  € T>°(Y) are non-negative. For arbitrary continuous
function p >_ 0 with compact support we can find non-negative functions
p-^p-\- € ^(Y) that are close to p and satisfies p- < p < p+. The peripheral
integral of p\U\2 is monotone with respect to p. Therefore it is bounded
by the product [f p^\ac(U)\2 + o(l)] log 1/e from above and by the similar
product with p- from below. We can make the integrals jprbl^c^)!2 as
close one to another as we like by choosing the approximations in such
a way that max(p+ — /?-.) —^ 0. This proves (5.1) and (5.2) for arbitrary
p € V°(Y). From now on we assume that the function p is non-negative
and smooth.

Suppose first that Ac is univalent over a point y . Choose a barrier /
of the locus L = p(Ac) defined in a neighbourhood Y of y . If this
neighbourhood is sufficiently small, we can write U = J((/),A) in Y
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where A = Am + R is an asymptotically homogeneous amplitude of
order m = — ^ N . We suppose that the amplitude A vanishes for \6\ < 1-
and is homogeneous of degree m for \0\ > 1. Fix a continuous function h,
0 < /i < 1 in R that is equal to 1 in 1-neighbourhood of the origin. Compare
the integral (3.1) with another intensity-type integral

(6.1) J(r) = ( p\ (exp(2m^)hrAd0 \ hr(0) = ̂ (r-1^).
JA. J

The integral (6.1) diverges as r —^ oo because the density \A\2d0d00 is
homogeneous of order 0. It can be written in the form

I{r) = { pexp(27^^<S>(x^,00))hr(0)A(x^)hr(00)A(x^o)d0d00

JxxOxe0

where <!>{x',0,0°) = (f)(x,0) - 0(^°).

We assume that X is an open set in a coordinate space R77'4'1 and
calculate the integral by the method of [I], Section 1.3. By the method of
dimension descent we can transform the integral (2.1) modulo C°°(X) to
another Fourier integral with a phase function of the form (j)(x, 0) = x0—^(0)
where 7 is a homogeneous function of degree 1 and the dimension of the
ancillary space is equal to N = n -h 1. We write

^ ̂  0) = y^ - -r(0) + ̂ (0) + 7(^ - 0
by means of new coordinates 0^ $ = 0 — 0°^ y = x — Y(0) where 7' = 9^/00.
The critical set for the integral (6.1) is given by the equations

^ =0, ^ =0.

These equations are equivalent to ^ == 0, y = 0, the second differential
of $ in any point of this variety is equal to yS, and the signature of the
differential is equal to (n,n). Write the amplitude in the form A == aVdx
where da; is the volume form M7^1 and a is a homogeneous function of
degree — j {n 4-1). The stationary phase method yields

J(r)= /'pl/i^yW^I'de+OO)
Je

as r —> oo. This integral diverges as O(logr) since the form \a\2d0 is of
order 0 for \0\ > 1. Therefore

J(r)= / p(7/W)|a(yW^)|2(e,Vd0)•logr+0(l)
Js{e)
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where S(0) is the unit sphere in the ancillary space 9, CQ is the Euler field
in 6 and V denotes the contraction operation. We have

d\0\ A (ee V d0) = \0\ d0

hence |a(y, O^ee V d0 = \(Tc{I)\2 and

(6-2) I(r) = ( p*(p)|a(J)|2 . logr + 0(1).
J\c

For a positive e we denote

X{e) = {x e X ; |/(a;)| ^ £}, L(£) = X \ X(^), A, = ^A,

B(,/, 6^ 0°) = A{x^ 0)A^ 0°)^ Br^ 0,0°) = A,(^ 0)A^ 0°)

and estimate the integral

(6.3) J(e)= [ [ pexp{2m<S>)Bd0d0°
JX{e) JQ

r \ r 2
= / p \'exp(2m^)Ad0 > 0.

JX{e) U

Write
J(^)=J(r^)+J(r)-J(r^),

^^ = / /lpexp(27^^$)(B - B^)d(9d(9°
^X(£) J

where the last integral is non-negative too and

(6.4) I(r,e)= { [ pexp(2m^)Brd0d0°
JL{£} J

= p\ exp(27n^)A
2

exp{2m^)Ard0\ ^0.
JL(e) U/L(£)

To estimate J(r, e) we need the following

LEMMA 6.1. — For an arbitrary compact set K C X there exists a
positive number c such that the inclusion x e K n X(e) implies |<%| > ce
for any 0 € Q.

Proof. — The function (j)(x, 0) restricted to the unit sphere S(0) in
the ancillary space is the phase function of the contact manifold Ac. We
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can apply the equation (4.7) to this function. Taking in account the Euler
equation (f) = ̂  QI^'Q. we get

f{x)=^^xM^6)

for some smooth homogeneous functions K,i(x,0) of order 0 in X x 9.
This equation implies Lemma 6.1 for the constant c such that c~2 ^
^ M^6>)|2 for x e K, 0 e 9.

LEMMA 6.2. — We have

(6-5) l^)!^^' \^e)\^^,

for odd and even N respectively with some constant C.

Proof. — Take the field t = (27^^)-1|^|-2 ̂ . ̂ o/QOj. We have
t{27rz^) = 1, consequently

(6.6) J(r,e)= { [ pt(exp{2m<S>))grBd0d0°
Jx{e) J

where gr(0,0°) = 1 - hr{0)hr(0°). Integrating partially yields

(6.7) J(r,e) =- ( f pexp(27rz$)(t(a^) + divtar)ad0d0° dx
Jx{e) J

where Or = g^ a = a(x, (9°). By Lemma 6.1 we have ̂  \t{6j)\ < C / e . The
function divt = ̂ 9t{0j)/90j is homogeneous of order —1 and again by
Lemma 6.1 we conclude | div^| ^ Ce'2^'1 hence

\t{ar)\ ̂  \t{gr)a\ + \t(a)\ <, Ce-1^-1

where the constant C does not depend on r. We have used here the estimate

|W| = {Wr-'h^r-1^ < C{e\0\Y1

which follows from

r-1!^-1^)!^^^-1, \t(\0\)\^(ce)-1.

Therefore \t(dr) +div^a^| < C^"1!^"1. Repeating this transformation
[ - N + 1] times we obtain the equation

J(r,£)= f [ pexp{27^^^)ar(x,0,00)d0d00dx
Jx{e} J
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where the amplitude function satisfies the estimate

,, ( Ce^-1^-1/2 for TV odd,
a,(:r,M°) < <

' '"[C^-2!^-1 for TV even.

This implies that the integral over 0 converges absolutely. Then we integrate
partially with respect to the field t° which stems from t by the substitution
0 —^ 0°. Then we get a representation like (6.6) with an amplitude function
br that satisfies

\br(x,e,0°)\ ̂  Ce-^-2^ • j^D-^-172

for N odd which yields

^•^-^L^Lw^'^- ws

The case of even TV is similar. D

By (6.5) for odd TV

0 < J(s) ^ J(r) + J(r^) < [ p|a(a)|2.1ogr+-^^
JAc re

since of (6.2) and (6.4). Now we tie the parameters by the equation
r = ̂ -2N-2 and conclude that

(6.8) / p\U\2 = J(e) ^ (2TV + 2) / p\a(U)\2 . log 1 + 0
Jx(e) JK^} ^

This inequality is valid for even TV as well.

Now we prove the asymptotics (5.1). Let G be the set of critical
values of the mapping p : Ac —^ X and T be the set of points x such that
cardp"1^) >, 3. The set GUT C L is closed and of n-dimensional measure
zero. Really, it is true for the set G since of the Sard theorem. For any point
x e T\ G there are at least two points {x, $1^2) € Ac such that the covectors
$1 and $2 are not collinear. The corresponding folds Li, L^ has transversal
intersection in x hence T is contained in the finite union of transversal
intersections Li D Lj. Each of these sets is a n — 1-dimensional manifold.
This implies that n-dimensional measure of T is equal to zero too.
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For a number T] > 0 we denote by G{rj) the ^-neighbourhood of the
set GUT. Choose a smooth function ^yp 0 < g^ < 1 that is equal to 1
in G(rj) and 0 in X \ G(2ri)) and write

(6.9) / pl^ l2^/1 ^P|^|2+/> Pr,\U\2
Jx{e) Jx(e) Jx(e)

where we set prj == (1 — Qr]}p'

The first term can be estimated by means of (6.8):

(6.10) / g^p\U\2 ^ (27V+2) ( g^(U)\2 . log 1 + 0(1).
Jx{e} J\c e

Here and below we write p instead ofp*(p).

The support of the density g^p\(r(U)\2 is contained in the set
p'^G^)). The measure of this set tends to the measure of the set p'^G)
as rj •—> 0. By the Sard theorem mes G = 0 hence mes p~l(G) = 0 by
Proposition 10.4. Therefore mes p~l(G{r])) —^ 0 as r] —> 0 and consequently

(6.11) / 9^(U)\2 -0 as ry-.0.
J^c

By Proposition 3.1 the second term of (6.9) has the asymptotics

/ ^M2^ L^a^l'.log^+Oa) a^5-0 .
Jx{e) J e

By (6.8) this yields

f p^U)\^o(V)

<: Q{e) < f p^(U)\2 + (27V + 2) [g^p\a(U)\2 + o(l)

where

Q(e)= -(log ̂ )-1 /' p|^|2
JX{e)

and o ( l ) — ^ 0 a s £ ^ 0 . This helps to conclude

I P^(U)\2 ̂  Inn Q{e) < iim 0(£)

^ylp^|a(^)|2+(27V+2)yl^p|a(l/)|2.

The left-hand side and the right-hand sides have the same limit f p\a(U)\
as T] —^ 0 which follows from (6.11). This proves (5.1) and (5.2) for the case
when Ac is univalent over y .
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In the general case we have p~l(y) = { A i , . . . , A g } . For a small
neighbourhood Y of y the manifold Ac(V) == p~l(Y) consists of q disjoint
pieces Ai , . . . ,Ag . We apply Theorem 4.2 to each piece Aj and get the
corresponding set Gj C Y which has n-dimensional measure zero.

We assume that the above set G contains the union |j Gj. Write

I^-EI^I^E^
w

where Ui is a A^-distribution for i = 1,... ̂ q. The peripheral integral of
the first sum fulfils (5.1), (5.2) and the density |(7c(^)|2 is equal to the
sum of the densities \ac(Ui)\2, i = 1,.. . ,g. We show that the peripheral
integral of the density prjUiUj brings no contribution to the logarithmic
asymptotics if i ^ j. Really we have Ui = 0(\fi\~1^2) according the
calculation of Proposition 3.1 and

^^-od/r^+i/.r^2).
The right-hand side is locally integrable in the set X \ (Li D Lj) and also
in a neighbourhood of an arbitrary point y € Li D Lj such that the forms
dfi(y) and dfj(y) are independent.

Suppose now that the forms d/i(i/), df^y) are dependent in a point
y € L \ (G U T)). The point belongs to L\ D L^ and the corresponding
points of the fibre C*{X) are opposite. This means that the relation
df^{y) = cdft(y) holds for some c < 0. No fold L^ j > 2 contains the
point y since y ^ T. We have

(6.12) p^U^ = ̂ ala2(/l4-0^)-l/2(/2-0^)-l/2+0(|/l|-l/2+|/2|-l/2).

The remainder is locally integrable. Show that the integral of the main
term in (6.12) is bounded as e —>• 0 for an arbitrary test function p supported
in a neighbourhood Y of the point y. Choose a coordinate system x\,x' in Y
such that x\ = /i. We have /2(^) == {u(x/) ~ Xi)^(x) where the factor h^
is smooth and positive in Y. According to the construction of Section 4 we
can write the barrier function in the form / = hq, q{x) == x\(x-^ — u{x'})
where h is a smooth function. It does not vanish in y since y € L \ (G U T)
hence h~1 is bounded in a neighbourhood Y of y.

Consider the manifold C+ x M71 where C+ is the closed upper
half-plane in the complex plane of the variable z = x\ + yi and
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the pseudopolynomial q ( z ^ x ' ) = z(z — u{x')) in this manifold. The
function g~1/2 has analytic continuation to this manifold from the
domain x\ > \u(xf)\. The key point of our arguments is that boundary
value q~l^'2(x-i +01,^') of this continuation coincides with the product
^(A+oz)-1/2^-^)-1/2.

Represent the above integral as follows:

/ Pr,ala^f^0^)-l/2(f^-0^)-l/2= / q-^adx-^- [ q-^adx
Jx{e) JY{e) JZ{e)

where

Y{e) = {q2 ̂  e}^ Z{e) = X(e) - Y(e)^ adx = ip^h^a^.

The last term is bounded by a constant C that does not depend on e.
Really, we have the following inequality for the line integral as x ' is fixed:

\t \q\-^a^\^Ce-^\R(e)\
'J^e) 1

where |-R(^)| is the length of the real 1-chain

R(e) = {h-^e >q>e}.

The function h~1 is bounded hence by Lemma 6.3 (i) we have R(e) < Ce1/2

and our statement follows.

To estimate the integral over Y(e) we define in C+ x R^ the function

/ / \ . / \ 9aa(x^+yz,x) =a(x)-\-y——z.

It coincides with a and satisfies Qa/Qz = 0 at y = 0. Consider the n-chain

C(E)={\q2^xf)\=E^y>0}

in C+ x M71 and set r(e) = Y{e) U C(e). We have

( aq-1/2 dx= [ ag-1/2 dz A drr' - / ag-1/2 dz A d^.
JY{e} Jr{e) JC{e)

The integral over C{e) is bounded as e —» 0 since the n- volume of
C{e) is equal to 0(£1/2). This follows again from the 1-dimensional estimate
given in Lemma 6.3 (ii).
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At the other hand the chain r(&) is closed and by the Cauchy-Green
formula

[ aq-1/2 dz A dx' = ( aq-112 dz A dx' - ( q-^2 8a dz A dz A d^
Jr(e) Jr J^ 9^

where T is the union of semi-circles \z\ = 1, y > 0 and A is the open set
in C+ x M71 such that <9A = F - T(e). The integral over A is uniformly
bounded in virtue of the estimate \9a/9z\ < Cy, whereas the integral over F
does not depend of e.

Now to complete the proof it remains to take in account

LEMMA 6.3. — Let a,b be arbitrary complex numbers and q(z) =
z2 4- az 4- b.

(i) The curve

M(e)={zeC^\q(z)\=e}
satisfies the inequality \M(e)\ < Ce1/2 holds for 0 < e < 1 with a constant C
that does depend on a^b.

(ii) For an arbitrary a e [0,27r) the curve

A{a,e) = {0 < \q{x)\ < e, argg == a}

satisfies the similar inequality \A(a^e)\ < Ce1/2 for 0 < e < 1 with a
constant C that does depend on a^b^a.

Here |M| stands for the length of a curve M. A proof is elementary. D

Remark. — The last lemma can be generalized for an arbitrary
polynomial q(z) = z^'-^-a^z71-1-}-'•• m the form \M(e)\-\-\A{a,e)\ < CnC1^.

Remark. — Comparing (6.2) and (5.1) we conclude that the
asymptotics (5.1) of the intensity integral in the configuration space
coincides with the asymptotics of the similar integral (6.1) in the frequency
domain if we tie the parameters by the equation re == 1.

7. Conservation laws for Lagrange solutions.

Consider the wave equation in the space-time X x R where X is a
Riemannian manifold. Write it by means of local coordinates a:1,... ̂ n

inX:

Q^u-G-^Oi^OjGu)^^
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Here u is a function, 9i = 9/ftz^, i = 1,...,n, the tensor (f'3 is inverse to
the metric tensor g^ and G = ^/det gij; the summation in i,j is assumed.
Set

I/ = Guvdx, dx = da:i A ... A dxn

and write the wave equation for the halfdensity U:

(7.1) 9^U-WW=0

where 9i, i = 1,..., n are the corresponding Lie derivatives. The symbol of
the wave equation (7.1) is equal to p^ + pi where

(7.2) p2{x'^r) = g'^x)^ - r2, pi = -2^T^(^)^ .

Consider the Hamiltonian system defined by the function p2:

1^=2^,, ^=-2.,
(7.3) ^ ds ds

i ̂  = -^<7tJ(a;)^' -£ = °' s € R'
with the initial data

(7.4) (a;(OU(0)) 6 Ao, *=0, T^O)^^))^)^),

where Ao is a Lagrange manifold in T*(X). Let A C T*(X x R) be the
union of the trajectories of (7.3). This is a Lagrange manifold. The system
(7.3) defines the Hamiltonian flow P in the cotangent space. Its projection
Bs to the space-time is called bicharacteristic flow; the trajectories of this
flow are bicharacteristic rays. The locus L = p(A) of the Lagrange manifold
A is the union of bicharacteristic rays with the initial data (7.4). The
bicharacteristic flow in L has focal points in singular points of L.

If the Lagrange manifold Ao is symmetric (see Section 3), then the
manifold A generated by the flow (7.3) is also symmetric. This follows from
the property that the system (7.3) preserves its form if we change x^ ̂  r, s
to x, -^ -T, -s.

Remark. — Consider the Cauchy problem for (7.1) with some initial
data UQ,U\ for t = 0 that are Ao-distributions in the sense of Section 2.
This problem has unique solution U and this solution is a A-distribution.
This follows from the general theory [3], [6] under certain loose assumptions.
Moreover the order of U does not exceed v if HO? ̂ i are of order v and v + 1
respectively.
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THEOREM 7.1. — Let Ac be a closed contact Lagrange manifold over
X that is invariant with respect to the flow P and has finite multiplicity.
For_arbitrary solutions U^,U^ € P'(A) of (7.1) the residue of the density
UiU'2 is preserved by the bicharacteristic flow B, i.e.,

fw^)B^g)=Const

for an arbitrary continuous function g with compact support in Y.

Proof. — According to Theorem 5.1 it is sufficient to check that for an
arbitrary solution U e P'(A) of the wave equation any local symbol a(U) is
conserved by the flow. The symbol satisfies the transport equation [3], [6]:

(7.5) L^(<7)+^(£/)=0, q = V^lp, - ̂  9 2 ^ .
2 ̂  QxkQ^k

Here Lp^ means the Lie derivative with respect to the Hamiltonian
field (7.3). By (7.2)

^w^-^^^^
^ 9xk9^

and hence Lp^a(U) = 0. This implies that the density Oc((7i) 0-0(^2) (which
is globally defined) is constant along any trajectory of the system (7.3). n

Energy. — Let U be a A-distribution U of order -1 that satisfies (7.1).
Define the energy density

E{U)=^(\Ui\2+g^9iU9,U).

This density has residue T,(E(U)) since the derivatives of the distribution U
are A-distributions of order 0. We call it singular energy. The conservation
law in geometrical optics can be generalized to the singular energy:

PROPOSITION 7.2. — Suppose that the conditions of Theorem 7.1
fulfilled. Let U be an arbitrary A-solution of (7.1) of order -1. The singular
energy ofU is preserved by the ^characteristic now and we have

a{E{U))=^(\Ui\2).
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Proof. — We can suppose that the manifold A is symmetric:
A = A+ U A_. Take a point y e Lr and choose a small neighbourhood Y
of this point. The function / = t - (f)(x) is a regular barrier if (f> is an
eikonal function, that is, a solution of the equation g^Q^Q^ == 1. Write
the solution in the form U = £7+ + U- where

U± = A±(rr)(/ ± (h)1/2 + OO/I1/2^)

and A± are smooth halfdensities in Y {cf. Proposition 3.1). This equation
can be differentiated by terms. This yields

,.W^A»I^^+O(I)»^<W

Therefore ^S(^£/+,^[/+) = |A+|2/4d(< - <^) where E is the residue
form. We can change the index + to — in this formula, whereas
E(<9^+,^-£/-) = 0. Finally

^(WW^^,

For the time-derivative we have

_ |A^+|A_|^ww- ^_^
which implies the equation

2E(£) = g^OiU, 9,U) + S(^, U[)
_ |A+p+|A_|2

~^d(^)~=2p^ac(ut)^•

The density \^(U^)\2 is kept constant by the flow P according to
Theorem 7.1. This implies conservation of S(£1).

8. Residue and geometry of locus.

DEFINITION. — Let X be a smooth manifold of dimension, Ac
be a contact Lagrange manifold over X, L be its locus. Take a point
^ = (y^) ^ Ac and consider the tangent mapping dp\:T\(Ac) —^ Ty(X).
We call the image T\(L) of this mapping singular tangent space to the
corresponding fold tl of the locus. The singular tangent space is contained in
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the tangent hyperplane Ker^ C Ty(X); its codimension in this hyperplane
is equal to the number k = dimKer dp\. We call the number k defect of Ac
in A (over y ) .

Choose a local coordinate system XQ, ... ,Xn in a neighbourhood Y
of y and consider the local Euclidean metric g = ^dx^. Calculate the
curvature form Q{x) of the locus at a point x C Lr. For this we take a
regular barrier function / for a fold L1 of the locus at this point such that
g(df(x')) =14- 0(x - x ' ) and set

Q{x) = d2/^),^).

Choosing an orthonormal basis in Ta;(Z/) we write the quadratic form
Q(x) in a normal form where the diagonal elements / ^ i , . . . , Kn are main
curvatures of the hypersurface Z/. It is shown in [9] that k largest main
curvatures /^ i , . . . , /^ tend to ±00 as x —>• y. The sign of the product
K{x) = K,]_ • ' • Hk changes when the point x crosses the stratum Z/2 in the
locus of points of multiplicity 2. This sign relates to the sharpness of the
singularity of an arbitrary A -distribution [9]. Other n — k curvatures are
small comparing with the first k of them: /^//^ —> 0 for any i < k < j.

We show in this section that the singular function \K\ is a common
factor of residue densities of A-distributions of order 0. We shall use the
quantity Qk = ^(A Q)\ T?^leT than K. It follows from the aforesaid that
the quotient Qk/\K\ tends to 1 as x —> y. Now we specify the choice of
coordinates XQ , . . . , Xn in Y by imposing the condition

(8.1) A = (y.dxo) and the forms p*(da;i),... , p * ( d x k ) vanish in Ty{L).

We show that for any fold L1 of the locus L and any point x € L1 the
function Qk(x) is equivalent to the Gaussian curvature of the intersection
of V with the subspace x/c-^-i == Xk+1(^),..., Xn == Xn{x).

Denote by SL the delta-distribution SL^P) = f^pdx/dxo. Note that
the restriction of the form dx/dxo to the variety Lr is equal to (1 -ho(l)) dS
as x —^ y where d5' is the Euclidean hypersurface density in the coordinate
system a*o, . . . , ^n- This follows from the fact that the contact element
(0,Kerda;o) belongs to Ac.

THEOREM 8.1. — Let p:Ac —> X be a closed contact Lagrange
manifold of finite multiplicity over a point y such that the set p"^)
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consists of one point A. There exists a neighbourhood Yofy such that for
any A-distri bution U in Y of order 0 the following relation holds:

(8.2) W|2)^ bQk6^

where k is the defect of Ac in \ and b is a non-negative continuous function
in Ac.

We write here and later a w b if a/b —> 1 as x —>• y .

The factor Q^ is unbounded as x tends to a non-regular point of
the locus and is multivalued in the intersection of folds of the locus. The
factor b is considered here as a function in the locus Lr and is multivalued
too. To calculate the coefficient b we compare the symbol of U with a
special halfdensity. According to (8.1) the coordinate projection pk shown
in Proposition 10.1 is a bijection in a neighbourhood A' of A. Therefore the
form

TTfc = p^(dxk-{-i A ... A dxn A do;i A ... A dujk)

does not vanish in A'. Therefore we can write \o-c(U)\2 = b\7Tk\ for a smooth
non-negative function b in A'.

COMPLEMENT 8.2. — The equation (8.2) holds for the function b as
above.

Proof of Theorem 8.1. — We apply Theorem 5.1 and calculate the
contact symbol o-c{U). For this we choose a contact generating function

y : Y xfl—>R

for the germ Ac at the point A as in Proposition 10.2 where fl,
be a neighbourhood of the origin in Rk. Take an arbitrary point
(z, ujz) ^ C((p) where the quadratic form (p^ is non-singular. There exist
a neighbourhood Z of z and a unique smooth solution u = uj{x) of the
system

^(^)=0

in Z such that uj[z} == ujz' Set

f(x) =(p(x,uj{x)).

The function / is a barrier for a fold L' of the locus L at the point z. We
have

df= d^= d^o+0(K^)|).
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This implies that g{df) w 1. Taking derivatives of the identity
^{x,uj{x}) = 0 we get the equations

(8.3) ^--^L^

(8-4) ]C<-A(^) = -^«)^ ^9 = 1,... .k
3

where ^(x,uj(x)) -^ (^Q/,0) = 0 as x -^ y. By (8.3) we obtain

(8.5) /// = ̂  + 2^o4 + ̂ ^X = -^)^L^ + ̂ .

Take arbitrary smooth tangent fields v\,...,Vk in V such that
Vi(f) = 0, i = 1,..., k and apply the equation (8.5) to these fields:

(8.6) F^={d2f^v,)}^=-ty^)^y^)^di^v,)^ z,j=l,...,A;.

The notation v(cj) stands here for the matrix {vi(^j(x))}^. The
left-hand side is equal to the restriction of the curvature form of L to the
subspace V in T^ (L) spanned by the fields v ^ , . . . , vj,. The second term in the
right-hand side is smooth in C((p) and hence is bounded. Calculate the first
term. By (8.4) we have v{uj) = -((^J-M^L) where v(^J = {vj{^)}.
Substitute this equation to (8.6):

F. = -^D^L)"1^.) + o(i)
and find detF^ w (det^^^det^J-1. We specify the fields v, = t, to
maximize the determinant of Fy:

t =A-^(^^JL - ^ 1
1 9x, ^(x^{x))9xo' ' '-"^

where the choice of coordinates is subjected to (8.1).

These fields are independent continuous and tangent to L' since
ti(f) = 0. Moreover ti —^ 9/9xi as x —> y. Really we have y?^ = 1,
^xi =^i —^0 according to (8.1). Consider the vectors tz(^), i = 1,..., n.
They span the space T^(L) and g(ti,tj) -> ̂  as x -^ y. By (10.1) we find

(8.7) t^L,) = ̂  + o(l), i = 1,..., ̂  j = 1,.. . , ̂

hence the first k vectors are independent at the point (^/,0), while the
last n - k vectors vanish at this point. Therefore the function | detv(^)|
is equal to 1 4- o(l).

ANNALES DE L'lNSTITUT FOURIER



DYNAMICS OF WAVE PROPAGATION 1975

This is the maximal value of this function up to the factor 1 -h o(l).
Therefore

(8.8) Qk(x) ̂  |detF,(.r)| ^ |det^J-1

for this choice of the fields Vi.

Calculate the contact symbol of U by means of (2.9):

\rr (m\2 iJ l̂̂ ddWy^ ^ ,
rca/)! =wd\0\^dd^-^^^ c^

where ̂ , 0,0°) = ̂ (x, 0 + 0°) and <^ 0) = \0\^x, |^|-1^,..., |^|-1^)
is a generating function for a neighbourhood of the point A in A. We choose
ancillary coordinates 0 = (OQ, ( 9 i , . . . , 0k) so that (f>(y;l, 0 , . . . , 0) = X. Write
Am = avdx where

da; = dxo A dx' A dx, dx/ = dx^ A ... A dxk, dx = dx^i A ... A dxn-

The form (dd0^)^^) factorizes m Y through the product

^(^o^)^ ̂ o A dx' A d(9g A . . . A d6^.

We have (^^)^o = (^^a;/)^ when 0° = 0. At the other hand

det«,J,=^det^,^.

The right-hand side is equal to 1 + o(l) according to (8.7). Therefore

d^dd0^0)^^) ,
d|g|A(-zdd<4)A(^l) ^ ^ A d ^ A . . . A d ^ ^ | ^ d ^ A d ^

as a; = (l^l-^i, . . . , l^l"1^) -^ 0, consequently

\ac(U)\2 ^ l a l^ l^ l^^ ld^Ad^ l .

The factor |a(.r,0)|2 • l^]^4'1) is a homogeneous amplitude of order zero. It
is equal to the pull back of b under the projection pk.

At the other hand the product (dd0^)^"^ contains the term
d^o d^ A (dedeo^Y^. For the first factor we have the equation

d^d^ w dxo r\ d0^
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because of (10.1). Therefore

d^d^$ A (dod^)^ w det{<^. }^da;o A d(9i A ... A d0k A d6»g A ... A d^.

We have {<%^ }^ w \e\-1^ hence det ̂  » l^ det y^,. In this way we
obtain

, ,2 ^ |o|2 • l^d^o da;
' v / 1 ~ Idet^J d^o

Applying (8.8) we get

1^(< - -^ K< - 1"12 • W^Q^ = bQ^a\u\ dxQ dxo

since d\0\ w d0Q. Q

Remark. — The above theorem can be applied to A-distribution U
of arbitrary order v of singularity. Take an arbitrary pseudo-differential
operator P of order -v in X. It is easy to check that the PU is a
A-distribution of order 0. Whence the its local structure of PU can be
described by (8.2).

9. Examples.

Take an arbitrary point A of a Lagrange manifold Ac where the defect
is equal to 1 and find out a barrier / at this point by the method of
Section 4. The barrier is equal to f(x) = <^(C(^)) where 6 is the discriminant
of the generating function ^ and < is a smooth mapping C(p(A)) = 0. The
generating function can be given by the following simple formula:

^(s,o;) = ̂ 1 + s^-i^-1 -h • • . + s^uj + so

where r = r(A) < oo. Consider the simplest cases:

Case r = 1. — We have ^ == 4«o and the discriminant set is the
origin. The pullback C'^O) is the regular part of the locus L.

Case r = 2. — We have 6^ = 27s^ 4- 4s^; the discriminant curve
^2(^0, «i) = 0 has the cuspidal point at the origin. Calculating the curvature
near the cusp we obtain

Oi( î) ̂  (-si)-1/2

where a x b means that both quotients a/6, b/a are bounded.
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Case r = 3. — The discriminant set A is given by the equation

63 = 256sg - 128^s| + 16sos^ + 144so^2 - 27^ - 4^s| == 0

or in the parametric form

so = 3V4 - uv2, si = 8v3 — 2uv, s^ = 6v2 - u, u, v € M.

It is shown in Figure 1. The locus A has two folds in any point of the curve
M given by the equations 4so = <s|, si = 0, «2 < 0. For any point s G M
there are two points of the manifold Ac of local multiplicity r = 1 whose
projection is equal to s. The continuation of M to the half-space s^ > 0 is
the half-parabola denoted J. For each point s € I there are two complex
conjugated points of C(^) over s. The tangent plane Ker dso in the origin
belongs to Ac(^) and the s^-axis is the singular tangent to the locus A.
The cusp curve C = Lg \ M can be given in the parametric form

SQ = 3v4, si = 8v3, S2 = 6v2, v € R.

We have r(s) == 2 for any point s € C.

According to Section 8 the function Qi is equal to the curvature of
the intersection of A with the plane s^ = Const. To estimate the quantity
Qi we note that u2 ••= sj — 12so and the parameter u vanishes in (7. We
take u and s^ as parameters in the piece s-z < —e\s\ of the discriminant
surface and find

Ql(5o,5i,S2) X 92So/9s'i ̂  \US2\~1/2.

This estimate is uniform for any e > 0. In the opposite piece s^ > e\s\ the
estimate Qi x s^1 holds.

TOME 50 (2000), FASCICULE 6



1978 VICTOR P. PALAMODOV

10. Generating functions and multiplicities.

Let X be a smooth manifold, ^ C M^ be an open set and y? :
X x n —> R be a smooth function such that the forms dy?, dy?^,. . . , dy?^
are independent at any point of the set

c^) = {(^) e x x ^; ̂ ,^) = o, ^L(^) = o}-

This condition implies that <7(<^) is a manifold of dimension dimX — 1.
Consider the mapping

(p : C{^>) —> C*(X), (x,^) ̂  (.r.Kerd^Or,^)).

The differential of the mapping (p is injective at each point. Denote
by Ac(y?) the image of this mapping. This is a contact Lagrange variety,
possibly, with self-intersections. We say that the phase function (p generates
the contact Lagrange manifold Ac((^).

Given a phase function (f) == (f)(x, 0) in Y x 0 that generates a conic
Lagrange manifold A, the phase function (f){x^)^ uj € f2 generates the
contact manifold Ac where fl, is the intersection of the unit sphere in
the ancillary space with the cone 0. Vice versa, let y? == ^(x^uj) be a
phase function for the contact Lagrange manifold Ac. Then the function
(/){x, 0) = 0o^p(x, 0Q16l,..., O^Ok) defined in Y x Q generates the Lagrange
manifold A where 9 is the cone in R^4"1 spanned by the set {(1, a;); uj C f^}.

Take an arbitrary point A € Ac; let A; be defect at this point, i.e., the
dimension of the kernel of dp\ : T\(Ac) —> Ty{X), y = p(A). Choose a local
coordinate system XQ^ ... ,Xn centered at the point y = p(\) such that the
condition (8.1) is satisfied. Recall some known facts:

PROPOSITION 10.1. — The coordinate projection

pk:Ac——ffr-^xM^, (x^)——(^+i,...,^;o;i,...,^), A — — ( 0 , 0 )

is a local coordinate system in Ac.

The manifold Ac satisfies the equations Xj = xj(x^uj) in this
coordinate system where Xj{x,u), j == 0 , . . . , A ; are smooth functions in
an open set W C W1-1' x Rk.
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PROPOSITION 10.2. — The function
k

(10.1) ^(x^)=Xo-Xo(x^)-^^^(Xj-Xj(x,U;)), X={Xk^l,...,Xn)
1

defined in R^1 x W generates the germ of Ac at \ and fulfils the condition
^M=0.

Proof. — The form a = dxo + E? ̂  d^ + E^+i ̂  d^ defines the
canonical contact structure of the manifold C*(X) in a neighbourhood of A
consequently it vanishes in Ac, that is,

9xo . \-^ 9xj .
^+I>^=°' z=^-,k,

9xQ ^-^ 9xj
^+2>^+^=0' 9=A;+1,...,n.

By means of these equations it is easy to check that the function (p{x,uj)
generates the germ of Ac. Calculate the second derivatives:

„ ( r ^ ( o , o ) ^
'^^ / I 9^ J i '

These derivatives are equal to zero since the forms da- i , . . . , dxk vanish
inT^Ac). D

Mappings of finite multiplicity. — Let / : X —> Y be a mapping of
smooth manifolds. The multiplicity of the mapping / in a point XQ e X is
the number

(10.2) m(^o) = dimR(9^(X)/r(m(2/o))0.o(X), y^ = f{xo)

where 0{X) stands for the sheaf of smooth functions in X and m(y) means
the maximal ideal of 2/0 in the algebra Oy^ (Y). In particular, the multiplicity
in a point XQ is equal to 1 if and only if the differential df(xo) is injective.
The multiplicity of f over a point yo € Y is by definition the sum

'^(2/0) = Y^{m(x), f(x) = yo}.

PROPOSITION 10.3. — For an arbitrary proper mapping f:X —> Y of
smooth manifolds the set of points y G Y where f is of finite multiplicity is
open. The multiplicity function m(y) is upper semi-continuous.

It can proved by means of arguments of Theorem 4.1.

TOME 50 (2000), FASCICULE 6



1980 VICTOR P. PALAMODOV

PROPOSITION 10.4. — Let f:X —» y be a proper mapping of smooth
manifolds of equal dimensions that has finite multiplicity over each point
ofY and YQ C Y be a set of measure zero. The pullback XQ = f~l(YQ) is
of measure zero too.

Proof. — Let C(f) C X be the set of critical points of /. The
function y i—> card/"1^) is locally bounded according to Proposition 10.3.
The mapping / is a local diffeomorphism in X \ C(f). Therefore the set
XQ \ C(f) is of measure zero. Now we show that the set C(f) is also of
measure zero. It is sufficient to check this statement locally. Take a point
XQ € X and a coordinate system x\^..., Xn centered at XQ . Let 2 /1 , . . . , yn
be a local coordinate system in Y centered at yo = f(xo) and yj = yj(x)
are local equations of the mapping /. The set C{f) is given by the equation
j{x) = 0 where j = dei{9yi/9xj} is the Jacobian of /. We show that the
function j is not flat at XQ. This will imply the conclusion mes C(f) = 0.
Suppose the opposite, that is, j C nm^.ro). Consider the ideal I generated
by the subspace f*(m(yo)) in the algebra Oxo(X). Its codimension is equal
by definition to the local multiplicity m{xo).

The codimension is finite since of inequality m{xo) < m{yo) < oo.
By Nakayama's lemma I contains the ideal m^o)^ tor some number k. At
the other hand the germ of j belongs to this ideal. Let Vi , . . . , Yn be some
polynomials of the coordinates a;i , . . . , Xn such that Yj — yj € m^o)^1 f01'
j = 1,... ,n. The ideal I(Y) generated by these polynomials is contained
in I and we have I C I(Y) + m(xo)I. By Nakayama's lemma these ideals
coincide. Take the Jacobian J = det9Y/9x. We have J — j € m^o)^
consequently J belongs to the ideal I = I(Y).

At the other hand we have

Res f 1 = m(yo)Lri.. .y^j

according to the property of the Cauchy-Poincare residue (see for ex. [4],
Ch.III). This implies that the function J does not belong to this ideal.
This contradiction completes the proof.
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