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ON THE GHOST CENTRE OF LIE SUPERALGEBRAS

by Maria GORELIK

1. Introduction.

1.1. — Let 0 be a complex finite dimensional Lie algebra and Z(g)
be the centre of its universal enveloping algebra. Then Z{o) acts on a
simple ^-module by an infinitesimal character. If Q is semisimple, Duflo
proved in [D], that the annihilator of a Verma module is generated by the
kernel of the corresponding infinitesimal character.

Let Q = QQ (B 0i be a complex finite dimensional Lie superalgebra
and Z(o) be the (super)centre of its universal enveloping algebra ^(fl). All
^-modules considered below are assumed to be Za-graded and "^-simple
module" means simple as graded module. The centre Z(o) acts on a simple
^-module by an infinitesimal character, but, even in the "nice" case Q =
osp(l, 2^), the annihilator of a Verma module is not always generated by the
kernel of the corresponding infinitesimal character. In [GL] we described,
for the case Q == osp(l,2^), a polynomial subalgebra Z(o) of U(o) which
acts on a simple module by "supercharacter". The annihilator of a Verma
module is generated by the kernel of the corresponding supercharacter.

In this paper we introduce a notion of ghost centre Z(^) (see 2.1.2).
This is a subalgebra of U(o) which contains both Z{o) and the centre of
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U(^) considered as an associative algebra. The algebra Z(g) acts on a simple
module by "supercharacter".

By definition, Z(o) is the sum of Z(o) and of the so-called anticentre
A(g). The last one is the set of invariants of U(o) with respect to a
"nonstandard adjoint action" ad's introduced in [ABF]. The anticentre
is a Zs-graded subspace ofU(g). The even part of the anticentre consists of
the even elements which anticommute with the odd elements of U{^) and
commute with the even ones. The odd part of the anticentre consists of the
odd elements which commute with all elements ofZ^(fl). Thus the product
of two elements from the anticentre belongs to the centre and the product
of an element from the centre and an element from the anticentre belongs
to the anticentre. Moreover, in the case when any non-zero central element
is a non-zero divisor, Z(o) H A(o) = {0} and so Z(o) = Z(o) ® A(o).

As well as Z(o) itself, Z(g) is not easy to describe and, in general, it
is not a noetherian algebra. However the anticentre can be described easily.
First of all, it is trivial if the dimension of 51 is infinite and it is pure even
(resp. odd) if the dimension offli is even (resp. odd) (see Corollary 3.1.3).
Moreover A(o) itself as well as its image in the symmetric algebra can be
described in terms of the adjoint action of QQ on its enveloping algebra ̂ (fio)
(see Theorem 3.3). In particular, in the case when the top external degree
A^^i of 0i is a trivial flo-module, this theorem gives a linear isomorphism
from the centre of U(Qo) onto A(o). The above condition on A^fli holds
for the simple finite-dimensional Lie superalgebras apart from the W (n)
type. For the simple Lie superalgebras of type W (n) the anticentre is zero.

The existence of non-zero anticentral elements implies two "negative"
results. The first one is that the direct generalization of the Gelfand-Kirillov
conjecture does not hold for a Lie superalgebra Q if dim 91 is a non-zero
even integer and A^^i is a trivial flo-module (see 3.5.2). In particular,
it does not hold for Q = osp(l,2Z); for osp(l,2) this was proven earlier
in [Mu2]. The second one is that Separation theorem does not hold for the
classical basic Lie superalgebras apart from the simple Lie algebras and the
superalgebras osp(l,2^) (see 4.5).

1.2. — In the case Q = osp(l, 21) Arnaudon, Bauer, Frappat ([ABF])
and Musson ([Mul]) constructed a remarkable even element T in the
enveloping algebra U(^). This element is ad'g-invariant and its Harish-
Chandra projection is the product of hyperplanes corresponding to the
positive odd roots. The element T has been called "Casimir's ghost"
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in [ABF], since its square belongs to the centre.

In 3.3 we construct such an element T (E A(o) fo1' anv 0 such that
dim^i is finite and A^gi is a trivial flo-module. The image of T in the
symmetric algebra belongs to A^gi. In Section 4 we show that in the case
when 0 is a basic classical Lie superalgebra, the Harish-Chandra projection
of T is also the product of hyperplanes corresponding to the positive odd
roots.

In [S2] A. Sergeev described the set of "anti-invariant polynomials"
which are the invariants of the dual algebra U{^Y with respect to the
nonstandard adjoint action ad'fl.

1.3. Content of the paper. — In Section 3 we define our main
objects: the anticentre A{g) and the ghost centre Z(s). We describe the
action of Z(Q) on the modules of finite length in the case when Q is finite
dimensional.

In Section 3 we show that A{o) is equal to zero if dim^i is infinite.
Moreover all elements of A(^) are either even (if dim 51 is even) or odd
(otherwise). We describe A(^) and its image in <?(g) in Theorem 3.3.

In Section 4 we consider the case when Q is a complex classical basic
Lie superalgebra. In this case, the Harish-Chandra projection of Z(o) is
described by Kac and Sergeev (see [Sl]). In Corollary 4.2.4, we describe
the Harish-Chandra projection of A{Q).

We say that an element u € U(s) acts on a module M by a
superconstant if it acts by the multiplication by a scalar on each graded
component Mi (i = 0,1). In the case when Q is finite dimensional and dim gi
is even, any element of Z(o) acts on a simple module M by a superconstant
(see 2.2). In Corollary 4.4.4 we show that if Q is a basic classical Lie
superalgebra then any element of U(^) acting by a superconstant on each
simple finite dimensional module belongs to Z(Q). Moreover Z(g) coincides
with the centre (and the centralizer) of the even part U(o)o of the universal
enveloping algebra. For the case Q = osp(l,2^) the last result was proven
in [GL].

Acknowledgement. — I wish to express my gratitude to V. Hinich
and A. Vaintrob for reading this paper and providing numerous useful
suggestions. I would like to thank V. Serganova who pointed out at an
error in an earlier version. I am very grateful to M. Duflo, A. Joseph and
E. Lanzmann for fruitful discussions. I would like to thank the referee and
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I. M. Musson for helpful remarks and references. It is finally a great pleasure
to thank my hosts in France, especially P. Littelmann and R. Rentschler,
whose hospitality and support are greatly appreciated.

2. Ghost centre.

In this paper the ground field is C. Let Q = 0o ^ Si be a Lie
superalgebra such that fli -^ 0. We consider Qo as a Lie subsuperalgebra of
0. All go-modules and g-modules are assumed to be Za-graded. We denote
by II the parity change functor: II(M)o := Mi, II(M)i := Mo. Denote by
U(Q) the enveloping superalgebra of Q and by Z{o) the (super)centre of
W

2.1. — For a homogeneous u € U{^) denote by d(u) its Z2-degree.
For a Z^(fii)-bimodule M one defines the adjoint action of Q on M by setting
(ad^)m := gm - {-lY^^mg where m € M,g e fl are homogeneous
elements and d(m) denotes the Z2-degree of m. Define a twisted adjoint
action ad' of Q on M as the adjoint action of g on the bimodule II(M). One
has

(ad'^n) = gm - (-l)^^^1)^.

Assume that M has a superalgebra structure such that g {m\ m^) =
g{m^)m-2, m^g^m^)) = ((^1)^)^2 and (m^m^)g = m^m^g for all
<7 6 0, 7ni,m2 C M. Then for any homogeneous mi, 7712 € M and g e 0
one has

(ad^)(7nim2) = ((ad^i^ + (-l^^m^d'g)m^
= ((ad'(7)mi)7n2 + (-l^^^+^miaad^).

Moreover if TTI is ad'0-invariant then

(1) (ad'^)(mim) = ((ad^)mi)m, (ad^)(mim) = ((ad'^)mi)m.

2.1.1. Example. — Let TV be a ̂ (fl)-module and End(TV) be the ring
of its C-linear endomorphisms. Then End(TV) admits a natural structure of
graded ^(5)-bimodule. Let 0 be the endomorphism of N which is equal to
id (resp. — id) on the even (resp. odd) component of N. Then 0 is an even
ad'^-invariant homomorphism which commutes with the even elements
of End(Ay) and anticommutes with the odd elements of End(TV). The
formulas (1) imply that the multiplication by 6 induces an isomorphism
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from End(TV) considered as ad^-module onto End(TV) considered as ad'g-
module. The similar assertion fails for U{^) (the structure ofL((g) as ad'^-
module is given in Lemma 3.1.2).

2.1.2. — Let us call anticentre A(o) the set of elements ofU(o) which
are invariant with respect to ad'. Remark that the anticentre is a Zs-
homogeneous subspace of Z^(s). The even part of the anticentre consists
of the even elements which anticommute with the odd elements of ^(s)
and commute with the even ones. The odd part of the anticentre consists
of the odd elements which commute with all elements ofZ^(fl). Clearly the
anticentre is a module over the centre and the product of any two elements
of the anticentre belongs to the centre. For example, for Q = osp(l,2Z),
A(o) is a free rank one module over ^(o) (see [GL], 4.4.1). This is not true
for a general Lie superalgebra.

Let us call ghost centre Z{o) the sum ofA(o) and ^(s)- It is clear that
Z(o) is a subalgebra ofZ^(^) which contains the centre ofZ^(fl) considered
as an associative algebra. Moreover 2(o) = Z(o) (B A(o) if any non-zero
element of ^(s) is a non-zero divisor.

In order to describe the action of ^(fl) on simple modules, note that
Schur's lemma for Lie superalgebras takes the following form (see [K2],
[BZ]).

2.1.3. LEMMA. — Let Q be a finite or countable dimensional Lie
superalgebra and M = MQ 0 M\ be a simple g-module. Then either
End(M)ad3 = kid or End(M)ad0 = kid^ka where the odd element a
provides a Q-isomorphism M ^—> II(M) and a2 == id.

2.1.4. — Using Example 2.1.1, we conclude that End(M)ad^ =
End(M)acl0^. This implies the following lemma describing the action of
^(o) on simple modules.

LEMMA. — Let Q be finite or countable dimensional Lie superalge-
bra, M = MQ 0 Mi be a simple Q-module and z be an element of Z(^).
Then the action of z on M is proportional to

id, ifz e ^(s) and z is even,
0, ifz C Z(o) and z is odd,
0, ifz e A(o) and z is even,
cr0, ifz C A(o) and z is odd.
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2.2. Case dimgi is even. — In this case all elements of A(o)
are even (see 3.1.3). Denote by C the algebra spanned by id and 0. Then
C = C[0}/(02 - 1). Denote by TT the algebra involution of C sending 0 to
-0.

DEFINITION. — An algebra homomorphism \: Z(o) —> C is called
a supercharacter if\(Z(g)) == C and x(^(o)) c C0.

By Lemma 2.1.4, Z(^) acts on a simple modules M by a superchar-
acter \M' Moreover ^n(M) = TI-XM.

2.2.1. — The standard consequence of Schur's lemma is the follow-
ing statement. Any finite length module M has a unique decomposition into
a direct sum of submodules Mi such that, for any fixed i, all simple sub-
quotients of Mi have the same infinitesimal character and these characters
are pairwise distinct for different %. Similarly, one can deduce from Lemma
2.1.4, that any finite length module M has a unique decomposition into a
direct sum of submodules Mj such that, for any fixed j, all simple subquo-
tients of Mj have the same supercharacter and these supercharacters are
pairwise distinct for different j. This new decomposition is a refinement of
the previous one. For example, let L be a simple module such that A(Q)
does not lie in AnnL. Then L and II(L) have different supercharacters.
This, for instance, implies that though they have the same infinitesimal
character, there are no non-trivial extensions of L by II(L).

2.3. Case dim 51 is odd. — In this case all elements of A(g) are
odd (see 3.1.3). Retain notation of 2.2. The algebra spanned by id and a0
(see Lemma 2.1.3) is isomorphic to C. However if L is a simple module
such that aL -^ 0 for some a € A(fl), then the product of 0 and the image
of a in EndL provides an isomorphism s : L -^ II(L). One can choose
a such that s2 = id. There are two possible choices of such s which differ
by sign. As a consequence, in this case, it is more natural to define an odd
supercharacter as a pair of homomorphism (^, 7r\) where \ satisfies the
conditions given in Definition 2.2 and TT is the involution of C sending a0
to -a0. Observe that if L ̂  II(L) then \ = TT\.

As in 2.2.1, odd supercharacters allow us to construct a decomposition
of any module of finite length, but, probably, it always coincides with the
decomposition coming from the infinitesimal characters.

2.3.1. Example. — Let 0i be generated by x and QQ be generated
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by [x,x\. Then U(^) = C[x}, Z(fl) = C[x2} and ^(g) = C^x is a cyclic
^(^)-module generated by x. The list of the simple representations of Q is
the following:

a) Two trivial representations (one is even and one is odd). The
corresponding odd supercharacter sends A(o) to zero.

b) Two-dimensional representations L ( A ) ( A e C \ { 0 } ) spanned by v
and xv where x2v = Xv. The corresponding odd supercharacter sends x to
±V\a0. The representations L{\) and II(L(A)) are isomorphic.

3. Anticentre A{o).

In this section we describe the anticentre A(o). The anticentre is
trivial if ^i is not finite dimensional (see Corollary 3.1.3), so starting
from 3.2 we assume that fli is finite dimensional.

3.1. — Denote by F the canonical filtration of^(^) given by Fk :=
Qk. Recall that this is an ad g-invariant filtration and that the associated
graded algebra gr^L((o) = S(o) is supercommutative. For u G U(o) denote
its image in S(o) by gru. Remark that (o.^ x)(u) = 2xu — (ada;)(u) for
x € fli and u € ^(fl). Therefore
(2) gT((a.dfx)(u))=2(gTx)(gTu), V^e^(fl), xCQi s.t. gr(xu)={gTx){gru).

3.1.1. — Let L be an even vector space endowed by a structure of
flo-module. Denote by Ind^ L the supervector space U{o) ^(go) ^ (here
Li(o) is considered as a right ^(flo)-module) equipped with the natural left
U(o)-mod\i\e structure.

Let L be a submodule oiU(^o) with respect to ad QQ-o^ction. Denote by
(ad'{()(!/) the ad'fl-submodule ofU(o) generated by L. Note that there is a
natural surjective map from Ind0 L to (ad7 Q)(L) given by u^)m ̂  (ad' u)m
for u C U(Q)^m € L.

3.1.2. LEMMA. — Let L be a submodule ofU{Qo) with respect to
ad Qo-action. The natural map Ind0 L —> (ad'^/(fl))(L) is an isomorphism.
Moreover U{o) == (ad'^(fl))^(flo) and thus as ad'Q-module L((Q) is isomor-
phic tolnd|^(5o).

Proof. — Let {xi}i^i be an ordered basis of 0i. For any finite
subset J C I set Xj := riicJ^5 where the product is taken with
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respect to the given order. Then the elements {gTXj}jci form a basis
of Afli c <S(s). Choose a basis {uj}j^s m L such that {gruj}j^s are
linearly independent in gr^(so). Since gr^(so) = A^i gr^(so) one has
gr(xjUj) = (grxj)(gruj) for any finite subset J C J and j € 5'. Using (2)
one concludes that gr(ad'rrj)^- = 2lJI(gr;rJ)(g^^^) for any finite subset
J C I and j € S. Therefore the elements {(ad' xj)uj}jcijes are linearly
independent. This proves the first assertion.

For the second assertion, note that grZ^(fl) is spanned by the el-
ements of the form (gra;j)(grit) with u e ^(flo)- Now (grxj)(gru) =
gr^ad^j)^)/^17! and so gr(ad'^(s))^(0o) = gr^(fl). Therefore ^(5) ==
(ad'Z^(0))^(9o) as required. D

The isomorphism U(o) ̂  Ind^^(so) is proven in [S2], 3.2.

3.1.3. COROLLARY. — If 5i has infinite dimension then A(e) = 0.
If dim 0i is even, all elements of A(^) are even and if dim 51 is odd, all
elements ofA{o) are odd.

Proof. — Retain notation of Lemma 3.1.2. Any element of U{o) can
be written in a form u = ̂ j(ad' xj)uj where uj € U(^o). Take u ^- 0 and
set m == max{[J| | uj ^ 0}. Assume that m < dim^i. Take J such that
|J| = m and uj ^ 0; take i € I \ J . Modulo Eij^m+^^^'Mflo) one
has

(8id/Xi)u= ^ (ad'^j/)nj/ /O.
1^1=7^

Thus if n € .4(0) then m = dim^i. Since A(o) is a Z2-graded subspace of
U{o)^ the assertion follows. D

In the rest of the paper ^i is assumed to be finite dimensional.

3.2. Ind and Coind. — Consider go as a (pure even) Lie superalge-
bra. Let L be a (graded) go-module. Denote by Coind0 L the supervector
space Hom^(^)(^(0),L) (here U(o) is considered as a left ^(go)-module)
equipped with the following left ^(fl)-module structure: (uf)(uf) := /(u'u)
for any / <E Hom^(^)(^(s),L), u,u1 G U(o).

The module Ind^ L is isomorphic to the module Coind0 ^L where
00-module ^L is obtained from L by a certain twist (see [BF], [Ch]). In this
subsection we give an explicit construction of this isomorphism.
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3.2.1. — Retain notation of Lemma 3.1.2. For k € N set

^= E ^(So)^.
JCI,\J\^k

One has x j x j ' = ±xjuj' modulo ^i71^17'1"1. This implies that F^T^ C
T^ and thus Fo is a filtration of U{s). In particular, T^ are ^(flo)-
bimodules and the nitration does not depend from the choice of {xi}i^i.

Consider U(o) and U(Qo) as left M(0o)-modules through the left
multiplication. Denote by i a flo-homomorphism from U(Q) to U(Qo) such
that ken = F\ and i(xi) = 1. Recall that ken does not depend
from the choice of basis in fli. Modulo .F^"1 for any g e So one has
gxi = xig + c(g)xi where c(^) stands for the eigenvalue of g in the one-
dimensional go-module A^^i. Thus

(3) i(ug) = i{u){g - c(g)), i(gu) = gi{u\ ^g € Qo,u € ^(fl).

Define a map (.|.) from U(o) ^>u{Qo) ̂ (s) to ^(So) by setting (n|H') =
L^UU'). For any subsets J , J ' of J set ^j^j/ = 1 if J = J ' and <5^j/ = 0
otherwise.

3.2.2. LEMMA. — For any J C J there exist ZAj,z>j e Z^(g) such
that (uj\xj') = (^j'|vj) = <^7,j/.

Proof. — We prove the existence of vj by induction on r = |J \ «7|.
For r == 0, J = I and vi = 1 satisfies the conditions.

Fix J C I . For any J ' C I such that |J7! < |J[, one has xj'xi\j =
^xi\juj' modulo ken = ^l7*"1. Thus {xj' \ Xi\j) = 0 for J -^ J ' and
{xj | a;j\j) = ±1. Set

v ''= xj\j - ^ v j ' ( x j > \ xi\j).
IJ'MJI

Then (xj'\v) = 0 for any J ' C J, J' ^ J and (^j|v) = =bl. This proves the
assertion.

The existence of uj can be shown similarly. D

3.2.3. — Consider fli as odd vector space endowed by the structure
of 0o-module. Then A^fli is a one-dimensional flo-module which is even
iff dim^i is even. For a (graded) go-module L denote by ^L the graded
go-module -L^A^^i. We will consider ^L as the vector space L (if dim^i
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is even) or II(L) (otherwise) equipped by a new structure of go-module
given by g * m := (g + c(g))m for any g ^ QQ^TTI ^ L.

3.2.4. PROPOSITION. — For any Qo-module L the linear map ^
denned by

^{v! (g) m){u) := (u\u') * m, Vm e L, n, u' € ^/(g)

provides an isomorphism Ind^ L -^ Coind^(L 0 A^^i).

Proof. — If dim^i is even then (^IZA') == 0 provided that n,i/ are
graded elements of distinct parity in U(o). Similarly, if dim^i is odd then
(u\u') = 0 provided that 'u, u' are graded elements of the same parity in
U(o). This shows that the map ^ respects the Zs-grading.

For any g 6 So and m € L one has, by (3)

(u\u'g) * m = i^uu'g) * m = ^i(uu'){g — c(g))) * m = (u\u') * (pm)

and thus ̂ (u'g^m) = ^{u' ^gm). Moreover ^{u1<S>m) is a So-linear map
since

^(u' <S> m)(gu) = {gu\u')m = ^(zAin^m = g}Sf(u/ (g) m)(n).

Hence ^ is a well-defined map from Ind^ L == Z^(s) 0^(go) ̂  to Coindj^ *L.

For any s € ̂  one has

^(sn'^m^n) = (ztls^^m = (us\u')m = ^(^/(g)m)(n5) = (s^r(n /(g)m))(u)

and so ^ is a homomorphism of left U{^) -modules.

Any element of Indj^ L can be written in the form ^Cjci ̂  ̂  m^
where mj € L. Fix J7 C J and choose ^j/ € ^/(fl) as in Lemma^.2.2. Then
^(Sjcj XJ ^ mJ)(n^/) == m^'- This implies that ker ̂  = 0.

Fix J C I and choose vj € ^/(fl) as in Lemma 3.2.2. Then for any
m € L one has ^(vj <S> m}(xj') == Sj^j'm. This implies the surjectivity of
^ and completes the proof. D

3.3. — Retain notation of Lemma 3.2.2.

THEOREM. — Assume that Q == Qo (B Qi is a Lie superalgebra such
that 0i is finite dimensional. Then the map 0 : z i—^ (ad'z^)^ provides
a linear isomorphism from the ^-invariants of U(Qo) 0 A^^i onto the
anticentre A(o). Moreover one has gi(/)(z) = xgr z where x is an element
ofA^P^i).
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Proof. — The proof follows from Lemma 3.1.2 and Proposition 3.2.4.
We give the full details below.

Set M(Qo) := ^(flo) ̂ A^Pfli. Using notation of Proposition 3.2.4 one
has

(Ind^^(0o))0 = ̂ ((Coind^ ^(flo))0).
For z e (*^(flo))00 denote by jz the linear map U(^) -^ C such that /^(l) =
2; and fz{oU(^)) = 0. The map z ^ jz provides a linear isomorphism
(*^(flo))00 -^ (Coind^ ^(flo))0. Therefore the map z ̂  ^~1^ provides
a linear isomorphism (*^(flo))00 -^ (Ind^l/(flo))0. Moreover ^I/"1^) =
V0 (g)z since (u\v^}z = 0 for u € ^(0)5 and (1^0)2; = 2:. Using Lemma 3.1.2,
one concludes that (f): z ^—> (ad' v^)z is a linear isomorphism (*^(flo))00 -^
w.

The proof of Lemma 3.2.2 shows that v^ = -^xi+^j^ xi\jdj where
dj are certain elements oiU(^o). Therefore
(4) (t>(z) := (adS)(^) == (ad' (^ + ̂ w))z

j^i
where cj are scalars. By the formula (2), gT(f)(z) == xgr z for re := grxj €
A^P^). This completes the proof. D

3.3.1. Remark. — If A^^i is a trivial flo-module, the map (f) of
Theorem 3.3 provides a linear isomorphism ^(flo) -^ ^4-(s)-111 particular,
A(o) 1=- 0 in this case, because Z(flo) contains the base field.

3.4. — A classification theorem of Kac (see [Kl], 4.2.1) states that
any complex simple finite dimensional Lie superalgebra is isomorphic either
to one of the classical Lie superalgebra or to one of the Cartan Lie
superalgebras W{n\ 5(n), S(n), H{n).

Evidently A^gi is a trivial 0o-module ifflo is a semisimple Lie algebra
or if 0i ^ 0^ as fio-module. In particular, A^^i is trivial for all simple
classical Lie superalgebras. It is easy to check that it is trivial also for the
Cartan Lie superalgebras S(n\S{n)^H(n).

On the other hand, if QQ is reductive and A^^i is not a trivial QQ-
module, then (^(flo) ^ A^Pfli)^0 == 0 and so A(o) = 0. In particular, for
the "strange" non-simple Lie superalgebras p(n) one has A(Q) = 0 (remark
that Z(g) = C, see [Sch]).

3.4.1. Example. — Consider a Cartan type Lie superalgebra Q :=
W(n) (n > 2). Let us show that A(o) = 0. Recall that W{n) is a Z-graded
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Lie superalgebra Q = (BfceZS^ so tnat go = C^2^, 0i = es^^ and
dimg^ = ^fcZi)' ̂ e ^le algebra g^ is isomorphic to gl(n). Denote by
e the image of the identity matrix in ^°\ One has [e, u\ == to for u € 0^.
In particular, e acts on A^^i by the multiplication on a positive integer.
Since the action of e on ^/(filo) is semisimple and all eigenvalues are non-
negative integers, [e,m] ^ 0 for any non-zero m € U{Qo) 0 A^^i. Hence
A{Q) == 0 by Theorem 3.3.

3.4.2. — Let A^SI be a trivial fio-module.

DEFINITION. — Denote by T a non-zero ad'^-invariant element
belonging to (ad'^(g))(l).

The element T is defined up to a non-zero scalar and it is even iff
dim^i is even. Observe that, up to a scalar, T is the unique element of the
anticentre whose image in <5(fl) belongs to A^^i).

3.5. Remarks.

3.5.1. — Consider U(g) as an associative algebra and denote its
centre by Z. Evidently Z H ^(g)o = Z(o) H ^(fl)o and Z H ^(5)1 =
A{^) nZY(^)i. Using Corollary 3.1.3 one concludes that

Z = Z(^) 0^(5)0 if dim^i is even or dim^i ==• oo,
Z = {Z(Q) n^(g)o) C A(Q) if dimsi is odd.

3.5.2. — In most of the cases U{^) is not a domain (see [AL]).
However, even if^(fl) is a domain (for example g = osp(l,2/)) the direct
generalization of the Gelfand-Kirillov conjecture does not hold for Lie
superalgebras.

In fact, let A; be a field of characteristic zero and A^(k) be a Weyl
algebra over k. Recall that the centre of a Weyl skew field Wn(k) coincides
with k and that An{k) = An{k) 0^ k where k stands for the algebraic
closure of k. Therefore a Weyl skew field does not contain non-central
elements whose squares are central.

Assume that Q = Qo © ^i is a Lie superalgebra such that dim^i is
even and non-zero, A^^i is a trivial ^o^odule and U(Q) ls a domain.
Then A(^) 7^ 0 by Theorem 3.3 and A(o) C Z^(s)o by Corollary 3.1.3. Take
any non-zero a € A(o). Since a is a non-zero divisor and ax + xa == 0 for
an odd element x, a ^ Z. However a2 e Z. This implies that a Weyl skew

ANNALES DE L'lNSTITUT FOURIER



ON THE GHOST CENTRE OF LIE SUPERALGEBRAS 1757

field and a skew field of fractions of^(fl) are not isomorphic if dim^i is a
non-zero even integer and A^^i is a trivial ^-module.

4. The case of basic classical Lie superalgebras.

In this section Q denotes a basic classical Lie superalgebra (see [K2]
and 4.1 below) such that 0i 7^ 0. In this case the dimension of ^i is even
and so all elements of A(o) are even. In particular, they anticommute with
the odd elements of U{^) and commute with the even ones.

In this section we show that the restriction of the Harish-Chandra
projection V on A(o) is an injection and describe its image. We also prove
that Z(o) coincides with the centralizer of U(o)o and with the set of the
elements ofU(o) acting by superconstants on each simple finite dimensional
module.

4.1. Notation. — A finite dimensional simple Lie superalgebra Q
is called basic classical if Qo is reductive and Q admits a non-degenerate
invariant bilinear form. The list of basic classical Lie superalgebras is the
following as determined by Kac (see [K2]):

a) simple Lie agebras

b)A(m,n), B(m,n), C(n), D{m,n), P(2,l,a), F(4), G(3).

Fix a Cartan subalgebra () in QQ and a triangular decomposition
g = n~ © ^) Q n^. For a Z^ ({^-module M and an element fi G I)* set
M\^ = {m^M | hm = ̂ {K)m, V^€()}. When we use the notation ^(s)|^,
the action of Q on ^/(g) is assumed to be the adjoint action.

The Harish-Chandra projection V : U(o) —^ <S(()) is the projection
with respect to the following triangular decomposition U{^) = ^Y(t)) (B
(^(0)n+ 4- n~^(s)) (we identify «$(()) and U(^)). An element a of^(g)|o
acts on a primitive vector of weight ^ {fi € (}*) by multiplication by the
scalar P(a){p,). The restriction of P on ^(s)|o = ^(fl)^ is an algebra
homomorphism from U(o)o to <S(^) if g -^ A(n, n).

Denote by Ao the set of non-zero even roots of Q. Denote by Ai the
set of odd roots of Q. Set A = Ao U Ai. Set

Ao:= {a C Ao | a/2 i Ai}, Ai:= {/? e Ai [ 2/3 i Ao}.
Note that Ai is the set of isotropic roots. Denote by A"1" the set of positive
roots and define Ap", A^, AQ as usual.
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Denote by W the Weyl group of Ao. For any a e Ao let s^ C W be
the corresponding reflection. Let W be the subgroup of W generated by
the reflections s^, a € Ao. Note that W = W iff all odd roots are isotropic.
Otherwise (if Q is of the type B(m,n) or G(3)) W is a subgroup of index
two.

Set
1 V" 1 V^

Po ''= ̂  Z^ °S ^1 := 2 2^ a? P^Po-Pi'
aGA^ aeA^

Define the translated action of TV on I)* by the formula

w . A = w ( A + p ) -p, V A e t ) * , w e T V .

Define the left translated action of TV on <?(!)) by setting w./(A) = /(w"1 .A)
for any A € I)*.

Fix a non-degenerate ^-invariant bilinear form on Q and denote by
( — , — ) the induced bilinear form on ()*. This form is non-degenerate and
TV-invariant.

4.1.1. —_ For A e y denote a graded fl-Verma module of the highest
weight A by M(A) where the grading is fixed in such a way that a highest
weight vectorjhas degree zero. By [LM], an element of U(^) annihilating
the modules M(A) for A running through a Zariski dense subset of ()*, is
equal to zero.

The following result is due to Kac (see, for example, [Ja]).

4.1.2. LEMMA. — Assume that a, pair (n,a) belongs to the follow-
ing set:

(N+ x A^) U ((1 + 2N) x (A^ \ A^))

and X C y is such that 2(A + p,a) == n(a,a). Then M(A) contains a
primitive vector of the weight A - no. Moreover this vector is even iff a is
even. If a € A^ and (A + p,o) = 0 then M(A) contains an odd primitive
vector of the weight A — a .

4.2. — For /? e ()* denote by h^ the element of I) such that
^(hft) = (/^,/3) for any ji e ()*. Set

^= n (^+(P^))-
aCA^
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4.2.1. LEMMA. — The restriction of the Harish-Chandra projection
P provides a linear injective map A(^} —> tSC^)^.

Proof. — Recall that a e ^(fl)|o acts on a primitive vector of
weight fi (p, € y ) by multiplication by the scalar P(d}(p). Fix a non-
zero a € A(o). Since ^(5) C ^(fl)|ch a acts on the even component of M(A)
by multiplication by the scalar P(o)(\) and on the odd component of M(A)
by multiplication by (—P(o)(\)). The intersection of the annihilators of all
Verma modules is zero (see 4.1.1) and so P(a) is a non-zero polynomial
in <?(()).

Choose a pair (n, a) and an element A satisfying the assumption of
Lemma 4.1.2. Then P(a)(\) = ^(a)(A - na) for a G A^ and P(a)(X) =
-P(a)(A - na) for a € A^ \ A ^ . Note that A - na = -SQ.A if a € Ag
and A - na = S2a.A if a € (A^ \ A^). Therefore 'P(a)(A) = P(a)(sa.A) =
5^(a)(A) for a € A^ and P(a)(A) = -S2a.W(A) for a e (A^ \A^).
For fixed a € A^ U (A^ \ A^) the set of A € ()* satisfying the assumption
of Lemma 4.1.2 is a Zariski dense subset of ()*. Thus P(a) € <?(()) is W!'-
invariant and P(a) = -52a.P(a) for a € (A^ YA^) . The last implies that
P(a) is divisible by (ha -h (p, a)).

Now take a € A^. Then a is isotropic. Take A e ()* satisfying (A 4-
p,a) = 0. Using Lemma 4.1.2, we conclude that P(a)(A) == (-^^(^(A -
na) for any n € N. Therefore P(a)(A) = 0 if (A + p,a) = 0. Thus P(a) is
divisible by (ha + (/?, a)).

Hence P(a) is divisible by (ha + (p,a)) for any a € A^ and so it is
divisible by t. It is easy to see that t is W-invariant and t == —s^a-t fo1'
a e (A^ \A^). Thus P(a)/t is W-invariant as required. D

4.2.2. — Define a filtration on Q by setting ̂  = 0, F\ = fli, ̂  = Q
and extend it canonically to an increasing filtration on U(^). Let z € ^(so)
have a degree r with respect to the canonical filtration. Then, by (4),
(t>(z) € ^im01+2r and so P((f>(z)) is a polynomial of degree less than or
equal to (dimfli +2r)/2 = [A^] +r. In particular, P((1>(1)) is a polynomial
of degree less than or equal to |A^| and so it is equal to t up to a non-zero
scalar. Recall that the map (f) depends on the choice of basis {a*^}^/; choose
a basis {xi}i^i such that P((f)(l)) = t.

4.2.3. — Fix r C N and set Zr := ^(flo) H ^r. Denote by Sr
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the space of TV.-invariant polynomials of degree less than or equal to r.
Take z C Zr' Combining Lemma 4.2.1 and 4.2.2, we conclude that
(P((f)(zr))/t) € Sr. Recall that gr^(so) -^ ^(t))^ as graded algebras
and so dimZy. = dimfiy. Since (f> is a linear isomorphism, it follows that
P(Zr) = tSr.

4.2.4. COROLLARY. — The restriction of the Harish-Chandra pro-
jection P provides a linear bijective map A(o) —» ^<?(^)ly•. In particular,
P(T) = i.

4.2.5. LEMMA. — Any non-zero element z € A(^) is a non-zero
divisor in U(Q).

Proof. — Assume that zu = 0. Recall that z acts by multiplication
by P(z)(\) (resp. —P(z)(X)) on the even (resp. odd) graded component
of M(A). Therefore u annihilates M(A) when A is such that P{z)(X) 7^ 0.
Since P(z) ̂  0, the set {A | P(z)(\) ^ 0} is a Zariski dense subset of ()*.
By 4.1.1, it implies that u = 0. D

4.2.6. COROLLARY.
^(fl)n.4(s)=o.

Proof. — For any z € -^(0) H A(o) and any element u € 0i one has
zu = uz == —^n and so zu = 0. Hence 2^ = 0 by Lemma 4.2.5. D

4,3. The structure of Z{^). — The algebra Z(^) has the following
easy realization. Consider the algebra <S(()) := <5(())[$]/($2 — 1). Define
a map V : Z(g) -^ «S(J)) by setting P ' { z ) = P(z) for ^ € Z(s) and
7^'(z) == P(z)f, for z € ^(fl). Since Z(fl) C ^(fl)|o, the restriction of P on
^(5) is an algebra homomorphism. Taking into account Corollary 4.2.4,
we conclude that P ' provides an algebra isomorphism from ^(s) onto the
subalgebra (P(Z(Q)) C iS^)^^) of <S(^).

4.3.1. — Assume that Q is of the type B(m^n) or G(S). Then
W + W and so t is not W-invariant. Therefore P{A^}) nP(Z(g)) = {0}.
Then, using Corollary 4.2.4, we conclude that the restriction of the Harish-
Chandra projection provides an algebra isomorphism Z(g) ^ (P(Z(o)) 0
tsw^).

In all other cases, P(A(Q)) C P{Z{^)).
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4.3.2. — In the case when Q = osp(l,2Z), Z(o) is a polynomial
algebra and A(o) is a cyclic Z(o) module generated by T. In other cases
(when Q is basic classical Lie superalgebra) this does not hold. However, a
similar result hold after a certain localization.

More precisely, if Q ̂  osp(l,2Z) (that is Q is not of the type B(0,1))
then P(Z(g)) is strictly contained in ^(i))1^-. However, since the product of
two elements from the anticentre belongs to the centre, P(Z(o)) contains
^5(1))^. Set Q := T2, q := t2. Then the localized algebras Z(Q)[Q~1} and
<?(())^[9-1] are isomorphic. Moreover Z(Q)[Q-1] = Z(Q)[Q-l}eA(Q)[Q-l}
and A(Q)[Q~1} is a cyclic Z (5) [Q~1] -module generated by T.

4.4. The action of Z(o) on the simple modules. — Let us say
that an element u € U{^) acts on a ^(fl)-module M by a superconstant
if it acts by a multiplication by a scalar on each graded component of
M. By 2.2, each element of Z(o) acts by a superconstant on any simple
module. In this subsection we shall prove that actually Z(o) coincides with
the set of elements of U{^) which act by superconstants on each simple
finite dimensional module. Moreover Z{g) coincides with the centralizer of
the even part ^(fl)o in ^(g).

4.4.1. — By definition, Z(g) lies in the centralizer of^(g)o in ^/(g)
and even in the centre of ^(fl)o since all elements of Z(o) are even.

Let A be the centralizer of ^(fl)o in U{^) and a be an element of
A. Clearly, a acts by a superconstant on any Verma module. On the even
component of M(A) a acts by P(a)(\). Let f(a) be the function y —^ k
such that a acts by /(a) (A) on the odd component of M(A).

4.4.2. LEMMA. — For any a € A the function f(a) : ()* -^ k is
polynomial.

Proof. — Choose y e n^" and x e n^ such that h := [y,x] e S(^)
and h ̂  0. For each p, 6 ()* choose a highest weight vector v^ e M(/^).
Then yv^ is odd and so

xayv^ = f(a)(p,)xyv^ = f {a)(ii)h(^)v ̂ .
Since a:ay C ^(fl)|o one has ;ca^ = P(xay){p)v^. Thus

(5) /(a)M^)=P(^)(^.
This implies that P(xay)(^) vanishes on the hyperplane [fi \ h(^) = 0}.
Therefore h divides P(xay)(p,) and so /(a) = P(xay)/h is a polynomial. D
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4.4.3. — Lemma 4.4.2 implies that an element a € A acts by P(a)(A)
on the even component of M(A) and by /(A) on the odd component of
M(A). Arguing as in 4.2.1, we obtain that Pf := V(a) — f(a) belongs
to tSW^. Similarly, P := P(a) + /(a) belongs to 5(1))^ and moreover
for any a e Ai4' one has P(A - a) = P(A) if (A + p,a) = 0. By [Sl]
and Corollary 4.2.4, this implies that P = P(z) for some z € Z(fl) and
P' = P(z') for some z ' e A(fl). Then a-^z+z')^ kills any Verma module
and so a == (z + ^')/2. This proves that Z{o) = A.

The intersection of the annihilators of all simple highest weight
modules is equal to zero (see 4.1.1). This implies that the set of elements
of U(o) acting by superconstants on each graded simple finite dimensional
module coincides with A. Hence we obtain

4.4.4. COROLLARY. — Jfg is a basic classical Lie superalgebra then
the following algebras coincide:

i) The algebra of elements ofU(o) which act by superconstants on
each graded simple finite dimensional module.

ii) The algebra Z(fl).

iii) The centre of^(g)o.

iv) The centralizer of U(^)Q.

4.5. A remark concerning the separation theorem. — An
important structure theorem of Kostant asserts that for any finite dimen-
sional semisimple Lie algebra there exists an ad fl-submodule H ofU(g) such
that the multiplication map induces the isomorphism H 0 Z(g) -^ U(s).
In [Mul], I. Musson proved the similar assertion for Q = osp(l,2^). These
theorems are called the separation theorems. We shall show that separation
theorem does not hold for any basic classical Lie superalgebra apart from
finite dimensional simple Lie algebras and Q == osp(l, 21).

Indeed, by (1) the right multiplication by T provides a ^-isomorphism
from the ad'fl-module generated by 1 onto the adfl-module generated by
T. Thus T2 € (ad^(fl))T -^ Ind^ V where V stands for a trivial flo-
module. Let Q be a basic classical Lie superalgebra which is neither simple
Lie algebra nor osp(l,2^). Then fli contains a non-zero element x such
that [x,x] = 0. One has a-Ind^V = {m € Ind^ V \ xm = 0}. Since
(ada;)r2 = 0 there exists u G (ad^(fl))r such that T2 = (ndx)u. Thus
T2 e ((a.dx)U(Q) H Z(o)). However (ada;)^(s) D Z(s) ^ 0 contradicts to
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the existence of an ad fl-submodule H satisfying H (g) Z(^) -2—^ U{s)'

5. Questions.

5.1. — The centralizer of U(o)o contains ^(g). Do they coincide
provided that A^^i is a trivial flo-module?

5.2. — Let C be the set of the elements of U(g) which act by a
superconstant on each simple module. Clearly, C is a subalgebra ofZ^(g).
By 2.2, C contains Z(fl) if dim^i is even. Assume that dimfli is even and
that the intersection of all graded primitive ideals of U{^) is zero. Does this
imply that C = Z(fl)?

5.3. — In the case when Q is a basic classical Lie superalgebra both
answers are positive (see Corollary 4.4.4).
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