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SUBMERSIONS AND
EQUIVARIANT QUILLEN METRICS

by Xiaonan MA

Introduction.

Let ^ be a Hermitian vector bundle on a compact Hermitian complex
manifold X. Let A($) be the inverse of the determinant of the cohomology
of $. Quillen defined first a metric on A(^) in the case that X is a Riemann
surface. Quillen metric is the product of the L2 metric on A(^) by the
analytic torsion of Ray-Singer of ^. The analytic torsion of Ray-Singer [RS]
is the regularized determinant of the Kodaira Laplacian on ^. In [BGS3],
Bismut, Gillet, and Some have extended it to complex manifolds. They
have established the anomaly formulas for Quillen metrics, which tell us
the variation of Quillen metric on the metrics on $ and TX by using some
Bott-Chern classes.

Later, Bismut and Kohler [BKo] (refer also [BGS2], [GS1] in the
special case) have extended the analytic torsion of Ray-Singer to the
analytic torsion forms T for a holomorphic submersion. In particular, the
equation on (<99/2z7r)T gives a refinement of the Grothendiek-Riemann-
Roch Theorem. They have also established the corresponding anomaly
formulas.

In [GS1], Gillet and Some had conjectured an arithmetic Riemann-
Roch Theorem in Arakelov geometry. In [GS2], they have proved it for
the first Chern class. The analytic torsion forms are contained in their
definition of direct image.

Keywords: Characteristic classes — Index theory and fixed points theory.
Math. classification: 32L10 - 57R20 - 58J20 - 58J52.
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Let i: Y —)• X be an immersion of compact complex manifolds. Let
T] be a holomorphic vector bundle on V, and let ($,zQ be a complex of
holomorphic vector bundles which provides a resolution of i^r]. Then by
[KM], the line A"^) 0 A(^) has a nonzero canonical section a. In [BL],
Bismut and Lebeau have given a formula for the Quillen norm of a in terms
of Bott-Chern currents on X and of a genus R introduced by Gillet and
Soule [GS1].

In [BerB], Bismut and Berthomieu solved a similar problem. In fact,
let TT : M —» B be a submersion of compact complex manifolds. Let ^ be a
holomorphic vector bundle on M. Let R9^^ be the direct image of$. Then,
by [KM], the line A(^) 0 A^J^TI-^) has a nonzero canonical section a.
In [BerB], they have given a formula for the Quillen norm of a in terms of
Bott-Chern classes on M and the analytic torsion forms of TT.

Now, let G be a compact Lie group acting holomorphically on X and ^.
Then Bismut [B5] defined AG-(O the inverse of the equivariant determinant
of the cohomology of ^ on X. He also defined an equivariant Quillen metric
on AG-(O which is a central function on G (refer also § la)). In [B5], Bismut
computed the equivariant Quillen metric of the nonzero canonical section
of A^^ry) 0 AG?(O for a G-equivariant immersion i: Y —^ X. In this way, he
has generalized the result of [BL] to the equivariant case. In [B4], he also
conjectured an equivariant arithmetic Riemann-Roch Theorem in Arakelov
geometry. Recently, using the result of [B5], Kohler and Roessler [KRo]
have proved a version of this conjecture.

In this paper, we shall extend the result of Bismut and Berthomieu
to the G-equivariant case. This completes the picture on the G-equivariant
case.

Let TT : M —> B be a submersion of compact complex manifolds with
fibre X. Let ^ be a holomorphic vector bundle on M. Let G be a compact
Lie group acting holomorphically on M and B, and commuting with TT,
whose actions lift holomorphically on ^.

Let R*TT^ be the direct image of ^. We assume that the JI^TT^
(0 < k ^ dim X) are locally free.

Let a be the canonical section of A<^($) 0 A^^'TT^).

Let h™, /i™ be G-invariant Kahler metrics on TM and TB. Let /i™
be the metric induced by h™ on TX. Let h^ be a G-invariant Hermitian
metric on ^. Let ^M be the Kahler form of h™.

Let H(X^\x) be the cohomology of $|^. By identifying H(X^\^)
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to the corresponding fiberwise harmonic forms in Dolbeault complex
(^(X,^^),^), the Z-graded vector bundle H(X,^x) ^ naturally
equipped with a Z^-metric /^^(x) associated to ^Tx, M.

^et I I II.W^A"1^*^) ^e ̂  ^-equivariant Quillen metric on the
line AG(O (g)V(.R^O attached to the metrics h™ .h^h^ ̂ ^Ix)
on TM, ^, TB, R^TT^. The purpose of this paper is to calculate the
G-equivariant Quillen metric 11^1^(00 V(J^o-

For g C G, let Tdg(TM,g™) be the Chern-Weil Todd form on
M9 = {x G M ; (^ == a;} associated to the holomorphic hermitian
connection on (TM,h™) [B5, §2 (a)], which appears in the Lefschetz
formulas of Atiyah-Bott [ABo]. Other Chern-Weil forms will be denoted in
a similar way. In particular, the forms chp(^, h^) on M9 are the Chern-Weil
representative of the ^-Chern character form of (^, h^).

In this paper, by an extension of [BKo], we first construct the
equivariant analytic torsion forms T^c^, h^) on B9 == {x € B ; gx = x},
such that

(0.1) H^^) = ch,(^(X^^),^^l^)

- [ Td^X.^oIi,^).
JX9

We also establish the corresponding anomaly formulas. The equivariant
analytic torsion forms will play a role in the higher degree version of Kohler
and Roessler's Theorem. Notice that in [K], Kohler defined the equivariant
analytic torsion forms for (possibly non-Kahler) torus fibrations and proved
curvature and anomaly formulas for them.

Let Tdg(TM,TB, h™^™) <E p^9 /P^ft be the Bott-Chern cla^s,
constructed in [BGS1], such that

(0.2) ^Td^rM.m/i™^™)
^ZTT

= Td^TM, h™) - TT* (Td^TB, /i™)) Td^TX, ̂ Tx).

The main result of this paper is the following extension of [BerB,
Thm. 3.1]. Namely, we prove in Theorem 3.1 the formula

(0-3) (̂IHIL^^ )̂) ̂  = - /^ Td,(m h^) T,(cA ̂ )

+ / Tdg(TM, TB, h™, /i™) chg^, h^).
JMS
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We apply the methods and techniques in [BerB] and [B5], with
necessary equivariant extensions, to prove Theorem 3.1. The local index
theory [Bl] and finite propagation speed of the solution of the hyperbolic
equation [CP], [T] will also play an important role as in [BerB] and [B5].

This paper is organized as follows. In Section 1, we recall the
construction of the equivariant Quillen metrics [B5]. In Section 2, we
construct the equivariant analytic torsion forms, and we prove the
corresponding anomaly formulas. In Section 3, we extend the result of [BerB]
to the equivariant case. In Section 4, we state eight intermediate results
which we need for the proof of Theorem 3.1, and we prove Theorem 3.1.
In Sections 5-9, we prove the eight intermediate results.

Throughout, we use the superconnection formalism of Quillen. In
particular, Tr^ is our notation for the supertrace. The reader is referred for
more details to [B5], [BGS1], [BerB].

1. Equivariant Quillen metrics.

This section is organized as follows. In a), we recall the construction
of the equivariant Quillen metrics of [B5, §1]. In b), we indicate the
characteristic classes which we will often use.

a) Equivariant Quillen metrics [B5].

Let X be a compact complex manifold of complex dimension £. Let
^ be a holomorphic vector bundle on X. Let H(X^) be the cohomology
groups of the sheaf Ox(0 of holomorphic sections of ^ over X.

Let G be a compact Lie group. We assume that G acts on X by
holomorphic diffeomorphisms and that the action of G lifts to a linear
holomorphic action on ^.

Let E = (Dfl^ E1 be the vector space of C°° sections of

dimX

A(r*^X)0^= Q) A^r^X)^

over X. Let Qx be the Dolbeault operator acting on E. Then G acts on
the Dolbeault complex (E1,^) by chain homomorphisms, and we have an
identification of G-vector spaces

(1.1) H ( E ^ 9 X ) ^ H ( X ^ ) .



SUBMERSIONS AND EQUIVARIANT QUILLEN METRICS 1543

Let h^^h^ be G-invariant Hermitian metrics on TX^. Let dvx be
the Riemannian volume form on X associated to ^Tx. Let * be the Hodge
operator attached to the metric ̂ Tx. Let ( )A(^-(o•l)x)(g^ De tne Hermitian
product induced by /i™, ̂  on A(^*(0'1)X) 0 $. If s, s1 € E, set

/ \ \dimX r
(1.2) (5,5') = (^J / (5,5')A(T-(o,i)X)^^X

/ 1 vdimX r-(d y^^^-
Let c^* be the formal adjoint of 9X with respect to the Hermitian
product (1.2). Set

(1.3) Dx ^c^-h^*, K(X^)=KeTDX.

By Hodge theory,

(1.4) K{X^)^H{X^).

Clearly, for g € G, ^ commutes with ^x, so (1.4) is an identification of
G-spaces.

Clearly K(X^) inherits a G-invariant metric from ( ). Let h11^^
be the corresponding metric on H(X^).

Let G be the set of equivalence classes of complex irreducible
representations of G. Let F1 (0 <_ i <^ k) be finite dimensional complex
G- vector spaces. We consider F = ®^o ̂  as a ̂ tural Z-graded G-vector
space. Let h1' = Q)^ h^ be a G-invariant metric on F = Q)^o F^ Then
we have the isotypical decomposition

F= (]) HomG(TV,F)(g)W,
WCG

and this decomposition is orthogonal with respect to h1^'. Set

k

(1.5) det(F,G)= (]) ^de^Hom^WF^W)/"^.
weG i=o

For W G G, let ^(W) be the character of the representation. Set

dimX

(1.6) \w^)= 0 {det^omc^H^X^^^W))^1^1.
1=0
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Put

(1-7) Ac,(0 = (]) AH.(O.
i^ec?

In the sequel, Ac(0 will be called the inverse of the equivariant determinant
of the cohomology of ^. So AG(O is a direct sum of complex lines.

Let | IA^(^) be the I^-metric on \w(^) induced by h11^^. Set

d-8) ^(ilLa^E^diL^I^-
weG

The formal symbol | IA^O wnl De called the (equivariant) L^ metric
on AG?(O. In effect, it is a product of metrics on A^($) = (]) ^A^(^).

Take ^ G G. Set

(1.9) ^ = { ^ € X ; ^=^}.

Then X9 is a compact complex totally geodesic submanifold of X.

Let P be the orthogonal projection operator from E on K(X, $) with
respect to the Hermitian product (1.2). Set P-1 = 1 — P. Let N be the
number operator of E, i.e. N acts by multiplication by i on Ei. Then by
standard heat equation methods, we know that for any g C G, k € N, there
exist a^ ( — ^ < j < k) such that as ^ —> 0,

fc
(1.10) Tr, [gNexpi-tD^^-2)] = ̂  a, '̂ + O^1).

j=-^

DEFINITION 1.1. — For s € C, Re(s) > dimX, set

(1.11) ^)(5) = -^[^(D^2)-5?^].

By (1.10), ^^(5) extends to a meromorphic function of s € C which
is holomorphic at s = 0.

DEFINITION 1.2. — For g e G, set

(1.12) log(|| ||^))(^ = log(| l2^)^) - 9e^glW.

The formal symbol || \\\c^ will be called a Quillen metric on the
equivariant determinant AG?($).
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b) Some characteristic classes.

Let X be a complex manifold. Let L be a holomorphic vector bundle
over X. Let ^ be a Hermitian metric on L. Let ^L be the holomorphic
Hermitian connection on (L.h^. Let ̂  be its curvature.

Let g be a holomorphic section of End(L). We assume that g is an
isometry of L. Then g is parallel with respect to V1'.

Let 1, e101,..., e^9 (0 < Oj < 27r) be the locally constant distinct
eigenvalues of g acting on L on X. Let L00,!.01,... ,L^ (6>o = 0) be the
corresponding eigenbundles. Then L splits holomorphically as an orthogonal
sum

(1.13) L= L00 e - - - e L 0 9 .
Let /i^ ° , . . . , ̂ L 9 be the Hermitian metrics on L00,..., Leq indu-

ced by h1^. Then V1' induces the holomorphic Hermitian connections
VL0^...,VL'gon(L0",^o),...,(^,/^L0g).Let^^...^^betheir
curvatures.

If A is a ((7, g) matrix, set

(1.14) Td(A)=det(^—^r), e(A) = det(A), ch(A) = Tr[exp(A)].

The genera associated to Td and e are called the Todd genus and the Euler
genus.

DEFINITION 1.3. — Set

Td^L./i^Tdf

L)- ^Td^^-^r^^rTd^L^)

-^^—Td/-^^_)n-f—-
2Z7T / l_l 6 V 2Z7T

-(^)
-H 0'

(1.15) .7=1

Td / -^ j

2wnT( -H +o)1 ,
/Jb=0

(Td.-W,^^[Td-(^^)
2Z7T

'Td\-l/-I^Z-<''^^.-^^_ .

= ' 6 / v 2%7r Jb=0

[ch,(L,^)=Tr[,exp(^)].



1546 XIAONAN MA

Then the forms in (1.15) are closed forms on X , and their cohomology
class does not depend on the ^-invariant metric /^L. We denote these
cohomology classes by Td^(L), T d g ( L ) , . . . , chg(L).

2. Equi variant analytic torsion forms and anomaly
formulas.

This section is organized as follows. In a), we describe the Kahler
fibrations. In b), we construct the Levi-Civita superconnection in the sense
of [Bl]. In c), we indicate results concerning the equivariant superconnection
forms. In d), we construct the equivariant analytic torsion forms. In e), we
prove the anomaly formulas, along the lines of [B5], [BKo].

a) Kahler fibrations.

Let TT : M —> B be a holomorphic submersion with compact fibre X.
Let TM.TB be the holomorphic tangent bundles to M,B. Let TX be
the holomorphic relative tangent bundle TM/B. Let JTX be the complex
structure on the real tangent bundle T-^X. Let h^ be a Hermitian metric
onTX.

Let T11M be a vector subbundle of TM, such that

(2.1) TM=THM^TX.

We now define the Kahler fibration as in [BGS2, Def. 1.4].

DEFINITION 2.1. — The triple (T^/^.T^M) is said to define a
Kahler fibration if there exists a smooth real 2-form uj of complex type
(1,1), which has the following properties:

(a) uj is closed',

(b) T^M and T-^X are orthogonal with respect to (jj;

(c) ifX, Y e TRX, then ̂ (X, Y) = (X, J^Y)^ .

Now we recall a simple result of [BGS2, Thms. 1.5 and 1.7].

THEOREM 2.2. — Let uj be a real smooth 2-form on M of complex
type (1,1), which has the following two properties:

(a) uj is closed;
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(b) the bilinear map X , Y e T^X -^ ^(J^X, Y) defines a Hermitian
product h^ on TX.

For x € M, set

(2.2) TfM={ycT,M; foranyXeT^X, o;(X,F) = 0}.

Then T11 M is a subbundle of TM such that TM = T11M C TX. Also
(TT, /^Tx, T11 M) is a Kahler fibration, and uj is an associated (1, l)-form.

A smooth real (1, l)-form a/ on M is associated to the Kahler fibration
(TT, h^ ̂ THM) if and only if there is a real smooth closed (1, l)-form T)
on B such that

(2.3) J - UJ = 7T*77.

b) The Bismut superconnection of a Kahler fibration.

Let ^M be a real (l,l)-form on M taken as in Theorem 2.2.

Let ^ be a complex vector bundle on M. Let h^ be a Hermitian
metric on ^. Let V^,^ be the holomorphic Hermitian connections
on (TX.h^),^^). Let R^.L^ be the curvatures of V™,^.
Let V^7^0'1^ be the connection induced by V^ on ACr*^1)^).
Let V^^011^^ be the connection on A^0'^) (g) ̂

(2.4) ^A^0'1)^ ^ ̂ A(T^X) ̂  1 + 1 ̂  y^.

DEFINITION 2.3. — For 0 < p < dimX, b e B, let E^ be the vector
space ofC°° sections of(AP(^*(o'l)X) (g) ̂ )|^ over Xb. Set

dimX

(2.5) ^ = Q ̂ , ^+ = Q ̂ , £;,- = Q ̂ p.
p=0 p even p odd

As in [Bl, §lf)], [BGS2, §ld)], we can regard the Eb's as the fibres of
a smooth Z-graded infinite dimensional vector bundle E over the base B.
Smooth sections of E over B will be identified with smooth sections
of A(T^°^X)^^ over M.

Let ( ) be the Hermitian product on E associated to 1n^x, h^ defined
in (1.2).

If U 6 T^B, let U" be the lift of U in T^M, so that TT^ = U.



1548 XIAONAN MA

DEFINITION 2.4. — IfU e TRB. if s is a smooth section ofE over B,
set

(2.6) v^v^r0'^^.
By [Bl, §lf)]. V^ is a connection on the infinite dimensional vector

bundle E. Let V^ and V^' be the holomorphic and anti-holomorphic
parts of V^.

^ For b € B, let Q^ be the Dolbeault operator acting on E^, and
let 9xb:' be its formal adjoint with respect to the Hermitian product (1.2).
Set

(2.7) Dx =axb-^oxb\

Let c(T^X) be the Clifford algebra of (T^X.h^). The bundle
A(T^°^X) 0 $ is a c(rRX)-Clinbrd module. In fact, if U € TX, let
U ' e T^°^X correspond to U by the metric h^. If U, V e TX, set

(2.8) c(U) = V2U'/\, c(V) = -V2iy.

Let P™ be the projection TM ̂  T11M © TX -^ TX.
If U, V are smooth vector fields on B, set

(2.9) T(U11, V11) == -P^^ V^].

Then T is a tensor. By [BGS2, Thm. 1.7], we know that as a 2-form, T is
of complex type (1,1).

Let /i..... /2m be a base of T^B, and let /1..... /2m be the dual base
of ^RE-

DEFINITION 2.5.

(2.10) c(T)=J ^ rA(T(^,/^)).
l<a,/3<,2m

Then c(T) is a section of (A^^gEn^A^^0'1)^) i^O)0'1'1. Similarly,
ifT^'°\ r(°-1) denote the components of T in T^X,T^X, we also
define c(r(1-0)), c(T(0'1)) as in (2.10), so that

(2.ii) c(^)=c(^( l•()))+c(^(()• l)).
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DEFINITION 2.6. — For u > 0, let By, be the Bismut superconnection
constructed in [Bl, §3], [BGS2, §2a)],

(B^^'^V-nB--^,
2^/2u

(2-12) B^V^^*-^,
2V2u

£?,=<+<.

Let Ny be the number operator defining the Z-grading on
A(T^°^X) (g) ^ and on E. Ny acts by multiplication by p on
AP(T^°^X) (g) $. If ̂  V e T^B, set

(2.13) o;™([/, V) = ̂ (U11^ V^).

DEFINITION 2.7. — For H > 0, set

zo;™(2.14) Ny = Nv +
ZA

In the rest of this subsection, we recall the definition of the tensor 6'
[Bl, Def. 1.8] which will be used in the proof of Theorem 2.13.

Let h^3 be a Riemannian metric on T^B. Let V^5 be the Levi-
Civita connection on (T^B.h^3). The metric ^^ and the connection
^TRB lift to a metric hT«{M and a connection V^^ on T^M.
Let /^TRM = h^1^1 C ^TRX be the metric on TpM = T^M C TRX which
is the orthogonal sum of the metrics h^ M and /i'711 .̂ Let ( , }^M denote
the correponding scalar product on T^M.

Let ^/TRX be the connection on T^X induced by ̂ Tx. Let V^^^ be
the Levi-Civita connection on (TRM,/^^). Let ^TRM = VT^M C V^^
be the connection on TpM = Tj^M © TRX. Set

(2.15) 5 = V716^1' - V^^.

Then 5' is a 1-form on M taking values in antisymmetric elements of
End(rRM). By [Bl, Thm. 1.9], the (3,0) tensor (S(-) • , -}^M does not
depend on ^TRB. By (2.15), for U, V e T^X,

(2.16) S(U)V = S(V)U.
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c) Equivariant superconnection forms and double
transgression formulas.

At first, we assume that the direct image R^TT^ of^bypr is locally free.
For b e B, let H{Xb^\x^) be the cohomology of the sheaf of holomorphic
sections of $|^. Then the H^X^^x^s are ^e fibres of a Z-graded
holomorphic vector bundle H(X,^x) on B, and R9^ = H(X,^x)'
So we will write indifferently J^TT^ or H(X, ̂ \x)-

By (1.4), the K(Xb^\x^) are the fibres of a smooth vector bundle
K{X^\x} over B. By [BGS3, Thm. 3.5], the isomorphism of the fibre (1.4)
induces a smooth isomorphism of Z-graded vector bundles on B

(2.17) H(X^\x)^K{X^x)^
Then K(X,^x) inherits a Hermitian product from (E, ( )). Let /^^Ix)
be the corresponding smooth metric on H{X,^x)- Let PH^X^\x)
be the orthogonal projection operator from E on H{X,^\x) ^
^(^^\x)- Let V^^l-^ be the holomorphic Hermitian connection on
(^(X,^),^(^lx)).

Let G be a compact Lie group. We assume that G acts holomorphically
on M,B, ^, and that $,M are (7-equi variant (vector) bundles over M,B.
We also assume ̂ M, h^ are G-invariant. Then R^TT^ is also a G-equivariant
vector bundle over B, and /^(^Ix) ig also (^-invariant.

For g e G, set

(2.18) M9 = [x C M ; gx = x}, B9 = [x € B ; ̂  = a:}.
Then we have a holomorphic submersion 7r9 : M9 —f B9 with compact
fibre X9.

DEFINITION 2.8. — Let PB be the vector space of smooth forms on B,
which are sums of forms of type (p,p). Let P3^ be the vector space of
the forms a C P3 such that there exist smooth forms f3,7 on B for which
a == 9f3 + (h.

We define P^, P^'0, pB^pB^o ̂  ̂  g^ ̂ y

Let ^ be the homomorphism a i—^ (2^7^)-degQ!/2a of Aeven(^^B) into
itself.

In the rest of the section, we will construct an equivariant
analytic torsion form Tg(uJW ,h^) e P39 corresponding to the fibration
TrrTr"1^^) —> B9. Without loss generality, we may and we will assume
that B9 = B.
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THEOREM 2.9. — For u > 0, the forms ^Tr^exp(-^)] and
$Tr,[^exp(-B^)] he in P139. The forms $Tr^exp(-^)] are closed
and that their cohomology class is constant. Moreover,

(2.19) I^TMffexp^)] =-19a<S>^[gN^(-Bl)].
u / ] U 2i7TQu

Proof. — Since g commutes with Nu.Bu, etc., by proceeding as in
[BGS2, Thm. 2.9], we have Theorem 2.9. D-i, -L 11111. ^ . C/J 5

Put

( f UJ1^
C-i,g = j^ -^ Td^TX^^ch^,^)

(2.20) {

g — — I ———— ±Ug\,J.^.,ll, ^ll.g^,ll-),

Jxa Z7r

Co,g=j'^-Td'„(TX,hTX)
+dimX•Tdg(TX,hTX))chg(^hli).

Set

fch^X,^),/^-^))
dimX

= ^ (-l^ch^X^ix),/^'^),

(2.21) {
fe=o

ch,(ff(X,^|^),^(^lx))
dimX

= ̂  (-^^^(^(X^i^^^^lx)).
A;=0

THEOREM 2.10. — As u —^ 0

(2.22) ^TY4^exp(-B^)] = / Td^T^/i^ch^^) 4- 0(n).
JX9

There are forms C^ € P59 (j > -1) such that for k e N, as u —^ 0

(2.23) ^Tr4^,exp(-^)] = ̂  C^ '̂ + 0(^1).
j=-i

AJso

(2.24) r" — r r" — r \^^BglT>B9ft^-l,g — ^-l^^ ^O,^ — ^0,9 m r I r -



1552 XIAONAN MA

Asu —> 4-00

f^Tr4^exp(-^)]=ch,(^(X^,^,^(^lx))+o(1)^
(2.25) ^ ^v^

^Tr,[^v,exp(-^)] = ch^(X,^),/^(^lx)) + o f 1 ) -
Vy^7

Proof. — By combining the technique of [BGS2, Thms. 2.2, 2.16] and
[B7, Thms. 4.9-4.11], we have the equations (2.22), (2.23), (2.24).

Equation (2.25) was stated in [BKo, Thm. 3.4] i f ^ = l . By proceeding
as in [BeGeV, Thm. 9.23], we also have (2.25). Q

d) Higher analytic torsion forms.
For s e C, Re(s) > 1, set

w = ~r^) ^lns-l($Tr4^^xp(-^)]
- ch^^(X,$|^),^x^x)))d^

Using (2.23), we see that d(s) extends to a holomorphic function of s e C
near 5=0.

For 5 G C, Re(s) < j, set

1 />+00

W = -r(^) / ^~l(^Tr,b^exp(-^)]

-ch,(^(X,$i^),^(^lx)))d^

Then by (2.25), ^(s) is a holomorphic function of 5.

DEFINITION 2.11. — Set

(2.26) ^M^)=^(Cl+C2)(0).

Then ̂ (^M, /i^) is a smooth form on B5. Using (2.23), (2.25), we get

(2.27) T,^,^) =- f1 (<I>Tr,[^exp(-^)] - c^ - C, \ du

Jo v u '"/ u

/+oo
($Tfr4<^exp(-^)] - ch,(ff(X,^^),^(^lx))) du

+ C'.^ + r'(l)(C'o,, - ch,(ff(X,$|^), h^'W)).
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THEOREM 2.12. — The form Tg^, h^) lies in P^. Moreover,

(2.28) ^T^^) = ch^(X,^),^(^lx))

- / Td^rX./^ch^,^).
JX9

Proof. — As we saw before, the forms ̂  Tr^ [gNu exp(-^)] lie in P39.
So the form Tg^.h^) € P59. Using Theorem 2.10 and equation (2.19),
the proof of our Theorem 2.12 proceeds as the proof of [BGS2, Thm. 2.20].

D

e) Anomaly formulas for the analytic torsion forms.

Now let (^'M\h^) be another couple of objects similar to (o^,/^).
We denote by a " / " the objects associated to (^/M, h^).

By [BGS1, §l(f)], there are uniquely defined Bott-Chern classes

fd^rx,^,^),^^^,^) e p^/p^o,
ch^(^(X,$|^),^^lx)^^(^lx)) e p ^ / p B ^ o

such that

^Tdg(TX^TX^/TX)=Tdg{TX^fTX)-Tdg(TX^TX^
/^r\

(2.29) < ^dl9^^,h'^=ch^,h'^-ch^,h^

^ch,(ff(X,^),^(^lx),//^|x))

= ch^X,^),/^^-^)) _ ch,(^(X,^),/^(^lx)).

Let C be a smooth section of rigX^EiK^ACr^0'1);?) ® ^). Let
ei, • • • , 62^ be an orthonormal base of TgX. We use the notation

2t
^(^(T.(°.

1=1

_ A / ^ ( 0 , 1 ) .

(y^w + c^)f - ̂ (v^^W + c7(e,))2

»=i
A^X0.1)^)®^ „/ ̂  T X . \
^^e. "^Z^e. ei]•

i=l
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THEOREM 2.13. — The following identity holds in pB9 / p B ^ Q .

(2.30) T^^-T^^) =dlg(H(X^^)^hH^\x\h/H^x))

- I ^TX^^^^ch^h^
j^9 L ^
+Td^(^X^/TX)ch^(^^,^)].

In particular, the class ofTg (cj, ̂ ) in P39 I P 3 9 '° only depends on (h^ , /^).

Proof. — Assume first that h^ = h^. Let c € [0,1] -^ ^M be a
smooth family of G-invariant (l,l)-forms on M verifying the assumptions
of Theorem 2.2 such that uj^ = ̂ M, ^M = ^ ' M . Then all the objects
considered in Section 2 a)-d) now depend on the parameter c. Most of the
time, we will omit the subscript c. The upper-dot " •" is often used instead
of 9/9c.

Recall that we assume that B9 = B. Set
(Q=-^^

(2.31) ^
[ QH(X^X) = pH{X^^QpH(X^\x)^

Let e i , . . . ,e^ be an orthonormal base of T-^X with respect to h^. Let
fi^- - ^ hm be a base of T^B, and that /\ . . . , /2m is the corresponding
dual base of T^B. Set

(2.32) M, = -^(6^)c(6,)c(e,) - —^(/f^)/^)

. - HH -.

-^-^(f^f^rf(3--^{e^JTXe,).

By the arguments of [BGS2, Thm. 2.11], we know there is p C N, ̂  C P^,
U ^ —p) such that as u —> 0, we have the asymptotic expansion

k
(2.33) ^Tr4^M,exp(-^)] = ̂  ̂  +0(^+1).

J'=-P

By proceeding as in [BKo, §§2-3], we easily find an analogue of [BKo,
Thm. 3.16],

(2.34) T^^,^) =^o+^Tr4p0^^1x)exp(-(V^^I^)2)]

+ -^L^(O) + —L^O) 4- ^^(O).
V2i7T V2i7T 2%7T v /

In (2.34), the ^(0) (i = 1,2,3) have universal expressions in terms of
g,^,^ asm[BK6}.



SUBMERSIONS AND EQUIVARIANT QUILLEN METRICS 1555

Let da, da be two odd Grassmann variables which anticommute with
the other odd elements in A(T^B) or c(T^X). Set

(2.35) Ln=-B2,-dauoBV- - da[B^ -M^\ + dadd(- -^(uM^Y

If a C C(da, da), let [a]^^ e C be the coefficient of da da in the expansion
of a. By a formula analogous of [BKo, Thm. 3.17], we know that the class
of —UQ in P39 / P B g ^ coincides with the class of the constant term in the
asymptotic expansion of ^Trs^exp^^)]^^ when u —> 0.

Recall that the (3,0) tensor ( S ( ' ) ' , •) was defined in (2.15). Let V^ be
the connection on A(daeda)0A(^^B)§A(^*(o'l)X)0^ along the fibres X,

(2.36) V^ = V^0'^)^

+ ̂ We^f^^c(e,)r+ ̂ {SW^f^rf

da pa iuj pa . . ^ da/"-^V^^-^^^v^'^-^^0-^'
Let J^ be the scalar curvature of the fiber (X, ̂ Tx). Set

(2.37) L^ =L^+ ^Tr^™].

By [BKo, Thm. 3.18], we get

/ 9 Q Q ^ T - u (\J' \2 V (^(P rTX^^^V^^i)(2.6^) Lu--[\/u^) -Ve,^(^-,J e j ) )^\^u,ei) vezY^^j^ ^ j ^ 4 / 9

^ / • / Try \\ aa f^ dado . . /ry .
- V/^ (^(e^ J^ej)) —^- + -^-^ J^e^

UKX - ^c(e,)c(e,)L'^ei,e,) - ^{e^r^^f^8^ 4 - - / v • ? / K l ' • ? / - V ^

-̂ 'U )̂.
Let Pu(x,x',b'} (b € -£?, .r,^' C X^) be the smooth kernel associated to
exp(Lj with respect to dvx^')/^)^111^. Then

(2.39) $Tr4^exp(Lj] = y ^^[gP^x^x^} ——^^'

Let 7V^/^ = TX/TX9 be the normal bundle to X^ in X. We identify
A^ff/x wrbn ^-he orthogonal bundle to TX9 in TX. By standard estimates
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on heat kernels, for b e B, the problem of calculating the limit of (2.39)
when u —>• 0 can be localized to an open neighbourhood Ue of -^ on ̂ '
Using normal geodesic coordinates to X^ in X&, we will identify Ue to an
^-neighbourhood oi X9 in N^g/x^R-

Since we have used normal geodesic coordinates to X9 in X, if
(rr.z) e A^/x,

(2.40) (T^) = (^-^).

Let dvxs, dv^g/x ^e tne Riemannian volume forms on TX9', N x s / x
induced by }{^x. Let k{x, z) (x € X9, z € Nxg/x,R^ \z\ < e) be defined by

(2.41) dvx = k ( x , z ) d v x 9 ( x ) d v N x g / x ( z ) '

Then

k(x,0) = 1.

Take XQ € X^. By using the finite propagation speed as in [B5, § lib)],
we may replace X^ by (TX)sco ^ C^ with 0 € (TX)xo representing XQ and
we may assume the extended fibration over C^ coincides with the given
fibration over -0(0, e).

Take y € C^, set V = i/ 4- ^. We trivialize

A{da C d^gA^B)^^^0'1^)^

by parallel transport along the curve 11—» tY with respect to V^.

Let p(V) be a C°° function over C^ which is equal to 1 if \Y\ < \e,
and equal to 0 if |Y| > ^e. Let H^o be the vector space of smooth sections
of (A(da C da)0A(T^B) §)A{T^°^X)§)^)^ over (TpX)^. Let A™ be
the standard Laplacian on (T^X)xo with respect to the metric /i^^o.
For n > 0, let L\ be the operator

(2.42) L\ = (1 - AY)) (- JnA™) - p\Y)L^.

For n > 0, s e ̂ o, set

R^(Y)=s(—)^ L^^R^L^Rn.(2.43)

Let ei , . . . , 62^ be an orthonormal base of (TRX^)^, and let 62^+1? • • • ? ^2^
be an orthonormal base of Nxg/x,R,xo'
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Let L^ be the operator obtained from L^ by replacing the Clifford
variables c(ej) (1 < j < 2^') by the operators ^ / 2 / u e3 — -\/u/2 ie • .

Let P^z.z') { z , z ' C (TRX)^, i = 1,2,3) be the smooth kernel
associated to exp(-L^) with respect to dvrx^ (z/)/{27^)d[mx. By using
the finite propagation speed and (2.42), there exist c,(7 > 0 such that for
z e Nxg/x,R,xo^ \z\ < ̂ e,ue ]0,1], we have

(2.44) \Pn(g-\x^ z), Oro, z))k{xo, z) - Pj(^-^, z)\ < cexp (- -^).

By the discussion after (2.39), (2.41), we get

(2.45) lim^Tr,[pexp(Lj]
u—>0

'^^^"^(^

=lim/' f \^e/s ^Tr^gP^g-^x^),^^))}
•'^"•'zeN^/^

dvx9(x)dvN^^{z)
k{x,z)-

(27r)dimx

If a € C^e^Ze;,)^;,^'), let [a]1"'"' e C be the coefficient of
e1 A ... A e2^ in the expansion of a. Then by proceeding as in [B5,
Prop. 11.12], if z C Nx9/x,R, we get

(2.46) Tr4gPj(ff-1^)]
r ^n , »r r r / n~^~ 7 7 \ ~\ max-i da dd

= (_,)d.mX^-d.m^/, ̂  ^3(^———. ——)
L L \ ^/u ^/u / J J

For g,r 6 N, Ogdy]7') will denote an expression in

(A(da C da)^A(T^B)§)c(T^X)0End(^))^

which has the following two properties:

• For k € N, k < r, its derivatives of order k are CdY'l7'^) as |Y| —> 0.

• It is of total length ^ q with respect to the obvious Z-grading of
(A(da C dd)SA{T^B) §c(TRX)0End($))^.

Let r' be the connection form for V'i in the trivialization of
(A(da©da)0A(^^J3)0A(^*(o'l)X)0$) with respect to V'i. By using [ABoP,
Prop. 3.7], we see that for Y C T^X,

(2.47) ^y=^^(Y.-)+O^Y\2).
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LEMMA 2.1. — The following identity holds:

(2.48) V'l2 = ̂ TX'2e„ e,)c(e,)c(e,) + J T^V^-2]

+ J^P"̂  + V^Vf, f^r A //?

^^^W^^)/0

- i^(ek, •)(S(-)ek, /f) - (V. oQ(/f, .^/"da
•»

- -/-(V.^)(eA;,-)c?ac(efc)+^ada(^).

Proof of Lemma 2.1. — If da = da = 0, (2.48) is exactly [B6, Prop.
11.8]. In general, by using (2.16), (2.36), we obtain straightforwardly the
extra-contributions of da, da to V'f. Q

By [Bl, Thm. 4.14] (cf. [B6, (11.61)]), for X, Y e TIRX, Z, IV e r^M

(2.49) (V^^X, ̂ F^Z, P ÎV) + ((^P^KX, r)Z, W)

+<(vTX^)(x,y)z,w) = (v^z.i^x.y}.

Let ̂ Tx | ̂ , L^ | ̂ ,... be the restrictions of R^, L ^ , . . . over M^. Let
Ve, be the ordinary differentiation operator on (T^X)^ in the direction a.
By (2.38), (2.47), (2.48) and (2.49), as u -^ 0,

(2.50) Ll -. Ll = -\ (V., + J (R^^Y, e,)

-daa^Y,ej)^dada(-uj(Y,ej)\\

, da da . , ^y ,^
-^02 - -^^(e^J^e^+L^iM^

and ai e A2^^)^ 0 (T^X C T )̂,,, 02 C (T^X C r̂ B),,. Let

(2.51) L3, = -|(Ve, + J^^lM^e,) +dada(|o;(y,^)))2

dadd . , /ry ,^- _^_^jrx^^^

Let Po3^^,-?') (2,2' £ (TRX)^) be the heat kernel of exp(-£g') over
(TRX)^g with respect to dvTx^(z')/(2^^)dmx.
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By proceeding as in [B5, §§llg)-lli)], we have: There exist 7 > 0,
c > 0 , C > 0 , ' r e N such that for u € ]0,1], z, z ' € (TpX)^, we have

r ip^^^ l^^ i+M+i^D 'exp^qz-^ i 2 ) ,
( Z i . O Z i ) \

[ |(^3 - Pg)(z,z')\ $ c^(l + M + \z'\Y exp(-C\z - z'\2).

From (2.46), (2.50)-(2.52), we get

(2.53) Urn̂  f^^ $ Tr, [gP^z, z)} dv^,^ (z)
Z^Nx9/X,R

— lim / (—^^^{^Tr \nP3(n~17 ^Mmaxt^^ i / \
~ u-iQ \z\^£/SVu\ i ) \^-^sW^uW z•>z)\ } ^Nxg/x^)

JzeNxg/x,R

= f (-^-^{^Tr.bPo3^-1.,.)]111-}^'^^^^)
vNXS /X,R

= /' (-^-^{^^[^'(ff-^^)]"1-}'0'5^^^^.
^^yxa/x.R

Clearly for U, V C TIRX,

(2.54) ^y) = (^J^(^)-l^xy).

So

(2.55) Lr^-Kv^+K^iM-^adaJ^^^)-19^)^^))2

+^|M.-|(Tr[I?TxlM.]+^daTr[(/^^x)-l^x]).

Let 1, e'01,..., e^9 (0 < 0j < 27T, 1 < j < q) be the locally constant
distinct eigenvalues of g acting on TX over M9. Let N^g,^ be the

corresponding eigenbundles. Let /i^^/i x9^ be the Hermitian metrics
6 •

on T.X^ N^g,^ induced by /lTX. Let RTX\RNXg/x be their curvatures as
in Section Ib). By proceeding as in [B4, (3.16)-(3.21)],

(2.56) (-z)^ / ^Tr.bPo3/(^-l.^)]max}dadad|A^^
J N x a / x ^ ^ ~ " { )

.{-[^(^F-^T.^)19b L \ 2z7r 9c /
0 /V0-7 AT"0-7

_i_ T^ /_/?"x9/x ,^j i ̂ / i 'x9/x \- i ^ max>- n ? (- ,̂- - ''('•''"")-• ''a- ̂ )L«W)} •
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By (2.44), (2.53) and (2.56), we know the limit of (2.45) when u -> 0. By
using [BGS1, Rem. 1.28 and Cor. 1.30] and proceeding as in [BKo, §3h)],
we obtain Theorem 2.13 in the case where h^ = h'^.

To prove (2.30) in the full generality, one only needs to consider the
case where ̂ M = ̂ IM. Then by using Theorem 2.12 and by proceeding as
in [BGS1, §lf)], i.e. by replacing B by B x P1, one easily obtains (2.30) in
this special case. D

3. The equivariant Quillen norm of the
canonical section a.

This section is organized as follows. In a), we describe the canonical
section a. In b), we announce a formula for the equivariant Quillen norm
of a.

In this section, we use the same notation as in Section 1.

a) The canonical section a.

Let M, B be compact complex manifolds of complex dimension n
and m. Let TT : M —> B be a holomorphic submersion with fibre X. Let $
be a holomorphic vector bundle on M. Let G be a compact Lie group. We
assume that ^, M are G-equi variant holomorphic bundles over M, B.

We assume that the sheaves -R^TT^ (0 < k < dimX) are locally free.

If given W € G, \w^w are complex lines, if A == O^y^g-W,
/^©w^^sef

(3.1) A-1 = (]) A^, A (g) ̂  = (D \w ^ A4^.
WCG weG

Now we use the notation of Section 1. Set

XG^) = det(^(M,0,G)~1 = (D ^(0.
weeWeG

.-1(3.2) { AG(^TT^) = det^CB.J^O.G)'
dimX

\G(R^^)= (g) (AG^TT.O/ 1) = (^A^-^O.
fc=o weS
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By proceeding as in [BerB, §lb)] and [B5, §3b)], for W e G, the line
'W(0 ̂  ^H1^'7!'*^) has a canonical nonzero section aw Set

(3.3) a = (]) aw € Ac(0 ̂  A^-TT^).
W^G

b) A formula for the Quillen norm of the canonical section a.

Let h™\ h™ be G-invariant Kahler metrics on TM and TB. Let ^Tx

be the metric induced by h™ on TX. Let h^ be a G-invariant Hermitian
metric on $. Let h11^^^ be the ^-metric on H{X,^\^) with respect to
^Tx, h^ as in Section 2 c).

We have the exact sequence of G-equivariant holomorphic Hermitian
vector bundles on M,

(3.4) 0 -^ TX —>TM —> 7r*ra -> 0.

By a construction of [BGS1,§ If)], there is a uniquely defined class of forms
Td^(TM,TB, h™, /i™) e p^/pA^ g^^ ̂ at

(3.5) |9Td^(TM,ra,/^™^ra)=Td,(TM,/l™)
^ZTT

- TT* (Td^TB, /i™)) Tdg(TX, h^).

Let a;M be the Kahler form of h™. Let Tg^.h^) e P59 be the
analytic torsion form constructed in Section 2 c). Let || llAGC^A"1^^)
be the G-equivariant Quillen metric on the line Ac^O^A^1 (-R*7r^) attached
to the metrics h™\ h^ /i™, h11^^^ on TM, ̂  TB, R9^^

Now we state the main result of this paper, which extends [BerB,
Thm. 3.1].

THEOREM 3.1. — For g e G, the following identity holds:

(3.6) log(ll<r||^^.^)(ff) = -^Td^m/^r^,^)

+ / ^(TM,^,^™,^3)^^,^).
^MS

Proof. — The proof of Theorem 3.1 will be given in Sections 4-9. D
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Remark 3.2. — By Theorem 2.13, to prove Theorem 3.1 for any
Kahler metrics /i™,^™, we only need to establish (3.6) for one given
metrics h™, h^. So by replacing h™ by h™ + TT*^™, we may and we
will assume that h™ is a Kahler metric on TM and

(3.7) h™ =h™ +7r*/i™.

4. A proof of Theorem 3.1.

This section is organized as follows. In a), we introduce a 1-form
on R^ x R^ as in [BerB, §3a)]. In b), we state eight intermediate results
which we need for the proof of Theorem 3.1 whose proofs are delayed to
Sections 5-9. In c), we prove Theorem 3.1.

In this section, we make the same assumption as in Section 3. Also,
we assume that h™ is given by formula (3.7). In the sequel, g 6 G is fixed
once and for all.

a) A fundamental closed 1-form.

Recall that Ny denotes the number operator of A(r*^°'^X). Let NH
be the number operator ofA(T*^°'1^). By (2.2), we have the identification
of smooth vector bundles over M

(4.1) TM ^ TX © T^M, T^M ̂  7r*m

This identification determines an identification of Z-graded bundles of
algebra on M

(4.2) A(T*^^M) = A^^^gACr^X).

So the operators Ny and NH act naturally on A(T*^°^M). Of course,
N = Nv + NH defines the total grading of A(T^°^M) 0 $ and ^(M, Q.

DEFINITION 4.1. — For T > 0, let h™ be the Kahler metric on TM

(4.3) ^M=^h™+^hTB.

Let ( )r be the Hermitian product (1.2) on f^(M,^) attached to
the metrics /i™\/i^. Let D^ be the corresponding operator constructed
in (1.3) acting on f^(M,^). Let *r be the Hodge operator associated to the
metric h™. Then *r acts on A(T^M) (g) $.
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THEOREM 4.2. — Let OU^T be the 1-form on R^ x IR^

(4.4) a,,r = 2^ Tr, [^exp^2^2)]

+rf^Tr,[ff^l^exp(-«2^•2)].

Then OU,T is closed.

Proof. — Clearly g is an even operator which commutes with the
operators ^,<9^*, *T,M/, N H . By using [BerB, (4.27), (4.28), (4.30)],
the proof of Theorem 4.2 is identical to the proof of [BerB, Thm. 4.3]. D

Take e.A.To, 0 < e <, 1 < A < +00, 1 < To < +00. Let F = I\A,T()
be the oriented contour in R^ x R^

T

The contour F is made of four oriented pieces Fi , . . . ,Y^ indicated
above. For 1 < k <, 4, set

(4.5) 4° = /I°k= I ^
l^kJFk

THEOREM 4.3. — The following identity holds:

(4.6) E^0-0-
k=l

Proof. — This follows from Theorem 4.2. D

b) Eight intermediate results.

Let Q3* be the formal adjoint of the operator a3 acting on
^(B, J^TT^), with respect to the metrics h™, h11^^^. Set

(4.7) ^^a^+a5*^ F = K e T D B .
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By Hodge theory,

(4.8) H^B.R^^^F.

Let Q be the orthogonal projection from f^(I?, -R'TT*^) on F with respect
to the Hermitian product (1.2) attached to the metrics /i™, ̂ ^l^.
Set Q^ = 1 - Q.

Let a € ]0,1] be such that the operator D312 has no eigenvalues
in]0,2a].

DEFINITION 4.4. — For T > 0, set

(4.9) ET=KerD^'2.

Let PT be the orthogonal projection operator from f^(M,^) on ET
with respect to ( )r.

Let E^p" (resp. E^ ) be the direct sum of the eigenspaces of
jD^f'2 associated to eigenvalues A G [0,a] (resp. A € ]0,a]). Let Drp ' ' L 'aj

(resp. D^'2'10'01) be the restriction of D^'2 to E^ (resp. E^0101). Let
PJ0'" (resp. P^'01) be the orthogonal projection operator from n(M,^) on
E^ (resp. ̂ o'a]) with respect to { )r. Set p^'+^t = 1 - pj?'^.

For 0 < k <: n, g € G, set

(4.10) ^(0 = T^.bl^M^)], X^(^7r*0 = Tr4^(B,^d-

Then by the Lefchetz fixed point formula of Atiyah-Bott [ABo],

'X^)= { Td,(TM)ch,(0,
JM9(4.10)

^{Rk^)= ( Td,(Tr)ch,(^7r^).
J B S

We now state eight intermediate results contained in Theorems 4.5-
4.12 which play an essential role in the proof of Theorem 3.1. The proof of
Theorems 4.5-4.12 are deferred to Sections 5-9.

THEOREM 4.5. — For any u > 0,

(4.12) lim Tr, [^vexp(-^2^'2)] = Tr, [^vexp^n2^2)].
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For any u > 0, there exists C > 0 such that for T ^ 1,
dim X „

(4.13) Tr4^vexp(-^D^2)] - ̂  (-l)^(jy^) < c

j=o
For any e > 0, there exists C > 0 such that for u ̂  e, T > 1,

(4.14) iTr^exp^2^2)]!^.

THEOREM 4.6. — For any u > 0,

(4.15) lim TY, [gN exp^D^-2)?^001}

= Tr, [(/TVexp^2^2)^].
There exist c > 0, G > 0 such that for u > 1, T ̂  1,

(4.16) | Tr^Vexp^D^2)?^001] [ < cexp(-Cu).

THEOREM 4.7. — The following identity holds:

(4.17) lim Tr [gD^2^] =0.

For T >_ 1 Jarge enough, forO <, i < dim M,
i

(4.18) Tr [g^E^-] = ̂ Tr [^|^(B,^-^.o].
j=o

Let (£'r, dr) (^ ^ 2) be the Leray spectral sequence associated to TT, ^.
By [Mal, Thm. II.2.1], the Dolbeault complex (^(M,^),^) filtered as in
[BerB, §la)] calculates the Leray spectral sequence. Then as in [BerB, §4],
for r >_ 2, Er is equipped with a metric hEr associated to h™\ h™ ,M. For
r ^ 2, let r\ \\G{^ be the corresponding metric on A(?(O ^ det(£1y.,G)-l

defined as in (1.8).

For r ^ 1, let N\E^Nn\Er^Nv\Er• be the restrictions of N.Nn.Ny
to Ey..

THEOREM 4.8. — The following identity holds:

(4.18) ^^{Tr^^log^2'^)]

+ 2^(r - l)(Tr,[^|^] - Tr,[^V|^J) log(T)}
r>2

^(^l^)2^).
v 2| |AG(O /

For T ̂  1, let [ |AG(O,T be the L^ metric on the line AG?(O associated
to the metrics h™\ h^ on TM, $ defined in (1.8).
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THEOREM 4.9. — The following identity holds:

(4.20) l̂im {^(l^)2^)T^+oo i v | |^^) y
+ 2( - dimX^(^) + T^bA^Ej) log(r)}

=log(^^)2(,).'oJJ^x^l^
lAc?(0\ \\^^\ /

For u > 0, let By, be the Bismut superconnection on ^l(X,^^)
constructed in Definition 2.6 which is attached to h™, h^ on TM,^.
Let A^ be the operator defined in (2.14) associated to the metric h™.

THEOREM 4.10. — For any T ^ 1,

(4.21) hm^Tr, [g *^ ̂  (^/,) exp(-.2</j)]

= ^ / Td^rB^^Tr, [^2exp(-B^)] - 2 dimXx,(0.
1 J B9 1

Let uM^M^B be the Kahler forms associated to h™^™^™.
Let V^ be the holomorphic Hermitian connection on (TM.h^), and
let R^p4 be its curvature.

THEOREM 4.11. — There exists C > 0 such that for e C ]0,1],
e <T < 1,

T/\ ̂  (*T/.) exp(-.2<^)] - ̂ ^ ̂  Td,(TM)ch,(0

^ —B™ ^
„, ̂ ^(^ -^)-^(^))^ch.(^<)l<C.

THEOREM 4.12. — There exist 6 € ]0,1], C > 0 such that fore e ]0,1],
T> 1,

(4.22) TV, [g^ ^(^)exp(-^D^2)]

^ dirn JC ^

- r( E (-l^^^^O-dimXx^O)! < ̂ ,-
j=o

Theorems 4.5-4.9 can be obtained formally from [BerB, Thms. 4.8-
4.12] by introducing in the right place the operator g. This will permit us
to transfer formally the discussion in [BerB, Sect. 4] to our situation.
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c) Proof of Theorem 3.1.

By Theorem 2.12,

(4.24) chg{R97^^)= ( Tdg(TX)chg{^).
JX9

We also have the obvious equality

(4.25) Tdg(TM) = ̂ (Tdg(TB)) Tdg(TX) + 7r^Tdg(TB)) Tdg(TX).

By Theorem 4.3, Theorems 4.5-4.12, and proceeding as in [BerB,
§4c),d)], using (4.24), (4.25), we get (3.6). D

5. A proof of Theorems 4.5, 4.6 and 4.7.

The proof of Theorems 4.5, 4.6 and 4.7 is essentially the same as the
proof of [BerB, Theorems 4.8, 4.9 and 4.10] given in [BerB, §5], where the
corresponding results were established when G is trivial. Now we use the
notation of [BerB, §5].

At first, for each U € TB, (gU)11 = gU11, so the operator CT in
[BerB, (5.7)] commutes with the action of G.

Let ( )oo be the Hermitian product on E^ associated to the metrics
TT*^™ C h^, h^ on TM,^ defined by (1.2).

Let 2?i^,£^,£'^y (fi > 0) be the vector spaces defined in [BerB,
Def. 5.12]. Then for any T > 0, the linear isometric embedding JT of
^1,00 in ^I,T defined in [BerB, Def. 5.16] is G-equivariant. Let E^ be
the orthogonal space to E^ in E^ with respect to ( )oo. It follows from
the previous considerations that for any T > 0, the orthogonal splitting
E^ = £^ C E^ of E^ considered in [BerB, (5.29)] is G-invariant, i.e.
G acts on £^y and E^.

Therefore the matrix of the unitary operator g with respect to the
splitting E^ = E^ e E^ can be written in the form

(5.1) 9=^ ° 1 ,
L ° 9l,T]

and moreover

(5.2) go^T^T = J T 9 '

The proof of Theorems 4.5 , 4.6 and 4.7 then proceeds as in [BerB, §5
c)-g)]. D
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6. A proof of Theorems 4.8-4.9.

In this section, we give a proof of Theorems 4.8 and 4.9. These
generalize [BerB, §6], where the corresponding results were proved in the
case where G is trivial.

At first we can verify the formulas of [BerB,Theorems 6.1-6.5] are
(7-equi variant. By using [B5, Thm. 1.4], and by proceeding as in [BerB,
§6(d)], we obtain (4.19).

By proceeding as in [BerB, §6(e)], we get (4.20).

This completes the proof of Theorems 4.8 and 4.9. D

7. A proof of Theorem 4.10.

This section is organized as follows. In a), we show that the proof
of (4.21) can be localized near Tr"1^9). In b), given bo e B9, we replace M
by (^R^)fco x ^o? anc^ rescaling on certain Clifford variables. In c), we
prove (4.21).

Recall that in this section, we will calculate the asymptotics as e —> 0
of certain supertraces involving eD^1,^ for a fixed T > 1.

In this section, we use the same notation as in Section 4.

a) The proof is local on ̂ ^(B9).

Let dvM (resp. dz^g, resp. dvx) be the Riemannian volume form
on M (resp. -B, resp. on the fibre X) associated to the metric TT*^™ (B h^
on TM c± 7r*TB C TX (resp. h™ on TB, resp. h^ on TX).

Let d5, ̂ M be the distance functions on B, M associated to /i™, h™.
Let aB,aM be the injective radius of B,M. In the sequel, we assume
that given 0 < a < OQ < ^.mf{aB^aM} are chosen small enough so
that if y G B, dB(g~ly,y) < a, then d5^/,^) < \OQ, and if x C M,
dM{g-lx,x) ̂  a , then dM(x,M9) <, \OQ . If a* e B, let BB{x,a) be the
open ball of center x and radius a in jB.

Let / be a smooth even function defined on R with values in [0,1],
such that

(T.I) m = [ 1 ̂ ^
I 0 for |<| ^ a.
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Set

(7.2) g(t)=l-f(t).

DEFINITION 7.1. — For u e ]0,1], a C C, set

{
/•+oo _,2 i.

F^(a)= / exp(itaV2)exp(——)f(ut)——.
(» ^ J-oo \ 2 / ^/27T

/>+00 /-^\ d^
Gn(a) = exp(itaV2)exp ̂ —^-^g(ut)——'

Clearly

(7.4) F,(a)+G,(a)=exp(-a2).

The functions Fu{a), Gn(a) are even holomorphic functions. So there
exist holomorphic functions Fu(a), Gu{a) such that

(7.5) F,(a) = F,(a2), G,(a) = G,(a2).

The restrictions of Fu,Gu,Fu, Gu to R lie in the Schwartz space S(R).

From (7.4), we deduce that

(7.6) exp(-e2^2) = F.(̂ J + G.(̂ J.

PROPOSITION 7.2. — For 6 > 0 fixed, there exist c > 0, C > 0 such
that for 0 < ^ ^ ^, T > 1,

(7.7) Tr, [g^ ^(*r)G^ (^D^)] | ̂  cexp (- ̂ 2).

Proof. — The proof of our theorem is as same as the proof of [BerB,
Prop. 8.3]. D

For T > 1 fixed, we use (7.7) with e = T and T replace by T / £ , we
find

(7.8) Tr, [g^ ̂ (*^)G,(.D^)] | ̂  cexp (- g).

Let Fe(£DM^{x,x/) {x,x' € M) be the smooth kernel associated to
F^eD^^) with respect to the volume form d^M^')/^?!-)^"^. Using (7.3)
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and finite propagation speed [CP, §7.8], [T, §4.4], it is clear that for
e C ]0,1], T > 1, x , x ' C M, \idB(^x^xf) > a, then

(7-9) F^eD^)(x^f)=^

and moreover, given x e M, F^D^)^,.) only depends on the restriction
ofD^toTr-^B^Tnr.a)).

Let A^/£? be the normal bundle to B9 in B. We identify TV^/a
to the orthogonal bundle to TB9 in TB. Let h N B 9 / B be the metric on
^Bff/B induced by ^TB. Let dz^^ be the Riemannian volume form
on ( N p s / B ^ ^ ^ / a ) . Let c(A^<,/^), C(TRX) be the Clifford algebras of
{NB^/B^h^/^^T^X.h^). For U € TR^, V C TMX, let c(£/),c(y)
denote the corresponding Clifford multiplication operators acting on
^K(T^^B)^(T^^X) associated to h™^Tx defined as in (2.8).
Set

(7.,0) .;̂ (̂ )-̂ ,(I)-.

Then by (7.10), we get

(7.11) Tr. [^^(*T/.)^(^^)] =Tr. [^^ ̂  (*^)F,(A^^)].

Let F^(A^)(.z;, a;') (a;, x ' e M) be the smooth kernel associated to the
operator ^(A^/p) with respect to dvM(x/)/(27^)dlmM.

Let U^ (BS) be the set ofbe B such that ^(6, B5) < o/o. We identify
^ao W to { (6 ,Y) ; 6 e B9, Y e A/B<,/^R, |y| ^ 0/0} by using geodesic
coordinates normal to B9 in B. By (7.9) and the choice of a, ao, we get

(7.12) f^ [,̂  ̂ WA'^-^)] -^^

=^4]v^/x^[5*T/l£^(*^/£)

^(A^)^-1^^.),^^.))]^^.

By (7.8), (7.11), (7.12), we see that the proof of Theorem 4.10 is local
nearTT-^fi5).
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b) Rescaling of the variable Y and of the Clifford variables.

Let V^^V^^V^ be the holomorphic Hermitian connections on
(m/i™), (TX^) and (^). Let R^.R^^L^ be the corresponding
curvatures.

Taking bo € B9, we identify ̂ (60, ao) with B(0, ao) C (TB)^ = C771

by using normal coordinates.

Take y € C^ |^| < OQ, set Y = ^ -h ^. We identify TB|y to TB^
by parallel transport along the curve t \-> tY with respect to the
connection V™. We lift horizontally the paths t e R^ i-̂  ^V into paths
t <E R^ ^ .z-i € M with ^ € X^y, d^/dt € T^M. If XQ C X^, we
identify TX^, ^^ to TX^p, ^o by parallel transport along the curve
t i-̂  Xt with respect to the connections V^^V^. These trivializations
induce corresponding trivializations of A^^011^), A(^*(0'1)M) (g) ^.

Let n^p = f^(Xbo,^[^ ) be the vector space of smooth sections of
(A(^*(0'1)X) 00|x,, on Xfc,. Then ^b, is naturally equipped with a
Hermitian product ( ) attached to /i™'^, h^^o defined in (1.2).

Recall that the operator Dx is defined in (2.7). Under our
trivialization, KerD^j^B^^ is a Z-graded smooth vector subbundle
of^o onBB{bo,ao).

By [BerB, §8b)], there is also a smooth Z-graded vector bundle
K C f^o over (TpB)bo ^ ^2m which coincides with KerI^ on 5(0,2ao),
with KerD^ over T^B\B(0,3ao) and such that if K^ is the orthogonal
bundle to K in ̂ o 5

(7.13) J^nKerD^^O}.

Let PY (Y e R2'71) be the orthogonal projection operator from f^p on Ky.
Set P^ == 1 - Py.

Let ( p : R —)• [0,1] be a smooth function such that

(7.i4) ^)=F ^1^°'
l0 for\t\^2ao.

Let A7'5 be the standard Laplacian on (TR-B)),,) with respect to
the metric /i™!^. Let H^o be the vector space of smooth sections of
^A(T^B)^ ® (^T^X) ®0|^ over (T^B),,, x X^. Let L^ be
the operator

(7.15) L^=V2(\Y\)A'^+(l-y2(\Y\))(^^B- +^2P^•2P^).
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For (Y,x) € (T^B)b, x X^, e > 0, s € H^, set

(7.16) S^x)=s(Y/£^x).
Put

(7.17) L2^ = S^L^Se^

Let Op be the set of differential operators acting on smooth sections
of (A{T^°^X) 0 Ox,, over M^ x X^. Then we find that

L^T ^ c(T^B)00p.

Let /i, . . . , /2m' be an orthonormal basis of (T^B9)^, let /2m7 +1, • • . ,
/2m be an orthonormal basis of Nas/B^bo-

DEFINITION 7.3. — For e > 0, set

(7.18) c,(/,) = ^2/^ A -—if,. 1 ̂  J < 2m'.

Let L^y.MJ^ be obtained from L2/^, *yL^/^(*T/£) by replacing
the Clifford variables c(/j) (1 < '̂ ^ 2m') by the operators Ce(/j).

For 60 € B^, V e A^/B,R,^ I1''! ^ ^^ let A;(6o,^) be defined by
dvB^bo, Y) = k(bo, Y)dvB9 (^0)^^9/5 (^)- Let dv(rB)b ^>e tne Riemannian
volume form on ((TB) ̂ , ̂ B).

Let p^a^cr^')), F,(L^)((r,.r),(r '̂)) ((y^),^'^') e
(TpB)^ x Xbo) {i = 1,2,3) be the smooth kernels associated to exp(—L^ y),
Fe(24^) calculated with respect to d^rB^J^d^J^Q/^Tr)^"1^
Using finite propagation speed [CP, §7.8], [T, §4.4], we see that if
(Y,x) e Nas/B^bo x ^foo. l1^! < i^o, then
(7.19) ^(A^)^-1^^^),^^^))^^)

^F,^)^-1^^),^^)).

We observe that for any k e N, c > 0, there is C > 0, C ' > 0 such
that for e > 0,

(7.20) sup la^ • |F^(a2) -exp(-a2)! < Cexp f^).
|Im(a)|^c v e /

Using (7.20), and proceeding as in [BerB, Prop. 8.2], we find for T > 1
fixed, there exist c, C > 0 such that for |Y|, |y'| < ^ao,

(7.21) |(F,(L^)-exp(-L^))((y,^),(y',^))|<cexp(^).

By (7.19), (7.21), we can replace F^(A^ y) by exp(-L^ y) in (7.12).
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We know that P^Y, x), ( Y ' , x ' ) ) lies in

(End(A(TR5»))0c(A^,/B,R))^0c(rRXbj0End(0.

Then M^P^g-^Y^), (Y,x)) can be expanded in the form

(7.22) M^PlT{a-\Y,x)^x)}

Y^ /ll A . - . A / ^ A ^ ...A^gA11'''^1'-^,
l<.ii<---<ip<_2m'
Kji<---<jy<2m'

with Rtl•••i'"^(g-l(Y,x),(Y,x)) 6 c(A^/^)^c(r,A<,)®End(0.
Set

(7.23) [M^P^(g-\Y,x),(Y,x))]miix=Rl'••'^'(g-\Y,x),(Y,x)).

PROPOSITION 7.4. — If Y € NB<,/B,K,bo, x G X^, the following
identity holds:

(7.24) Tr, [g^ ̂  (^)p^(^-i(y^)^ (y^))]

= (_,)dimB^-2dim^/,^ biM^P^^-^^-^^^^^-l^^^-ax^

Proof. — Since g acts like the identity on A(T^°^B9), g e
c(NB9/B^)boS c(T^X^) 0End($). Therefore the rescaling of the Clifford
variable in (7.18) has no effect on g. Identity (7.24) is now a trivial
consequence of [Ge]. Q

c) Proof of Theorem 4.10.

Recall that for u > 0, the Bismut superconnection Bu associated
to h™ and h^ was constructed infection 2b). Also we observe that Bu is
unchanged if h™ is changed into h™.

Recall that R™ is the curvature of V™. Let RTB\B^ SHH\BC' be the
restriction ofJ^™, uj™ on B9. Also Vy^ denote the ordinary differentiation
operator on (TpB)^ in the direction /^. Then by (7.18), as in [BerB, (7.30),
(7.35)], we have as e —^ 0

(7.25) ^r——Hr,
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and for Y e (TR^,

,HH i^HH

(7.26) e'^iTs-Z^T^e^5"

= -|(V^ + J^i^y,/^-)2 + | Tr̂ is.,) + B^.

By [BerB, (7.36)], (7.18), as [BerB, (7.38)], we get , as e -^ 0

9 2i ̂ HH

(7.27) M,̂  —— M^ =^(Nv- dim X) + —^- •

By [B4, (3.16)-(3.21)], [BerB, §7d)], we have

(7.28) f t ^{gW^PlT^^xWx}'}}^}
^ NBS/B ,R ,bQ v^bo , ,,̂  , / ^

^^.^(^^^p^)

(2^.)dimM

o , ^ ^ max
= i^ Ba ̂  {Td,(TB, /^ Tr, [9(^2 - dim X) exp(-B^)]} .

THEOREM 7.5. — For T ^ 1 feed, there exist c > 0 , ( 7 > 0 , r e N
such that for e € ]0,1], (V, a-), (V, a-') e (TuB)^ x X^,

(7.29) KP^r-^r)^^),^^'))!
^c(l+|y|+|y /|)''exp(-c7|y-y /|2).

To prove Theorem 7.5, we establish at first an uniform estimate on
the kernel P^y.

THEOREM 7.6. — For T >. 1 fixed, there is C > 0 such that
for k € N, there exist c > 0,r € N such that for any s e ]0,1],
(Y,x),(Y',xf)G(TKB)b,xX|,„

^IQI+IC^I i

(7.30) sup °__P^((Y,x),(Y',x'))\
JQ'J^IQ' j ̂ k

^ c(i + |Y| + |y/|)rexp(-c|y - yf).

Proof of Theorem 7.6. — Set

(7.31) ^(y^i+O+l^2)^1^1).
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Let E° be the vector space of square integrable sections of
(A(^^^)0A(jV^^))^§(A(T*(o'l)X) 0Q|^ over (^B)^ x X^. For
0 < Q <: 2m7 = 2dimB^, let E° be the vector space of square
integrable sections of (A^T^) (S)A{N^^))^(S){A{T^°^X) <g) Oix^-
Then E° = (D^o^- Similarly, if p € M, E^ and E^ denote the
corresponding p^ Sobolev spaces. If s G E^, set

f732^12 - / * l^y^l2 ^2(2^-.) d^B^n^x^)
^•oz; I^I^O - / \ S [ I ^ X ) \ 9e{Y) (^\dimM

J(TRB)^xXbo v /

Let ( )e^Q be the Hermitian product attached to [ \e,o' If ^ € End(-£10),
let H^H^'S De tne corresponding norm of C. If s € E1, put

(7.33) |.|̂  = |.|,% + E l̂ 5!^ + E l^5!^-
Q: I

Let A = -A^+P^'2. Using the technique in [BerB, §9d)], especially
[BerB, (9.51)] (in our situation, T is fixed), where we replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we find for any k, k' G N,
there exists C' > 0 such that for e € ]0,1],

(7.34) ||A<^exp(-£^)Afc'||^C'/.

Take p £ N. Let J° ^ be the set of square integrable sections of
(A(T^B'')®A(N^^))hM^T*(o'l)X)<S^x„ over

{(V, x) € (TRfOoo x Xb, ; x C Xb», |V| ^ p + ̂ }.

We equip J° (, with the Hermitian product for s € J° ̂  ,

f735) H 2 - / ' t bfyz)!2^^0^0^0^
{7'35' H -yiyi^vJ^J'^^l (2^-^

If £ € End(J°^ ), let ||£||p oo be the corresponding norm of C with respect
to | |.

Obviously, there is C > 0 such that for any p € N, s £ J°

(7.36) Isl^lsl^o^C^l+p)2"1 '^!.
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By (7.34) and (7.36), we find for any k , k ' e N, there exists C' > 0 such
that for e e ] 0 , l ] , p € N ,

(7.37) HA^-L^A^I^ < C\l +p)2m.

Using (7.37) and Sobolev's inequalities, we see that for k,k' € N, there
exist C > 0, r > 0 such that for p € N, £ € ]0,1],

sup |A^A^,^p^((y^),(y/^/))| < c(i^pY.im^i<p+i/4 ^ ^ ^ ' -' '

So we get the bounds in (7.30) with (7=0.

To get the required C > 0, we proceed as in the proof of [B5,
Thm.11.14].

Let u 6 R —^ A:(n) be a smooth even function such that

(7.38) fc( . )=J 0 f o r H < ^
[ 1 for |̂ | >_ 1.

For q e R^, a C C, set

(7.39) ^(a)=2 / "cosW^expf-^W^-^
Jo \ 2 / \q/ ^/27T

Clearly, Kq(a) is an even holomorphic function of a, therefore, there is a
holomorphic function a C C —^ Kq(a) such that

(7.40) ^(a) = i^(o2).

Given c > 0, set

fVc={AeC,Re(A)^< 1^ 2 -^ ,
(7.41) ^ l 4c2 J

l r^{AeC,Re(A)=^-4

Then by [B5, (11.53)], for any c > 0, there exists C' > 0 for which given
m, m' e N, there exists C > 0, such that for q > 1,

(7.42) sup [aF • \K^\a}\ ̂  Cexp(-CV).
a^zVc
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Also

(7.43) K,(L^)=—— [ WLdA-2m 7p^ A - L^y

Let Kq(Lj^)((Y,x), { Y ' . x ' ) ) be the smooth kernel associated to Kq(L^)
calculated with respect to dv^B^Y^dvx^1)/^)^1^. Using (7^42)
and proceeding as in [BerB, §9d)], where we always replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we get the following
estimation which is an analog of [B5, (11.59)] : there is Co > 0 such
that for k € N, there exist C > 0, r G N for which given q e N,
(V^), (Y^x') e (Tp^)^ x X^ e e [0,1], then

QH+M ^ ,
(7•44) , ,̂  ^^^^^(^((^^.(^^Q)laijoi'i^A; UI ul i

^C(l+\Y\+\Y'\Yexp(-Coq2).

If t >, q, then fc(f/g) = 1. Using finite propagation speed for the
solution of hyperbolic equations for cos(s-\/Zfy) [CP, §7.8], [T, 4.4], we
find there is a fixed constant C'g > 0 such that for q € N*,

(7.45) P^ ((V, x), ( Y ' , x ' ) ) = K,(L3^) ((Y, x), (Y1, x ' ) )
if\Y-Y'\^Coq.

From (7.44), (7.45), we deduce that there exist CO,CQ > 0 for
which given k e N, there exist C > 0, r € N for which given q 6 N*,
(Y,x), ( Y ' , x ' ) € (TRB)^ x X(,o, e € [0,1], then

^H+|c»'l

gy^y^M^^C^))!(7.46) sup
|ct|,|a'|<A;

< (7(1 + |y[ + |y/|)rexp(-Co<^2) if |y - Y'\ ̂  C^q.

For (Y,x), ( Y ' , x ' ) € (TuB)^ x Xbo, let 9 e N such that

C'oq^\Y-Y'\^Co(q+l).
By (7.30) with C = 0 and (7.46), we get

(7.47) sup
HJa'I^A;

Qlaf+la'

^y^y^^Ta^^,^^'))!

^^(i+iyi+irD'ex^-Co^)
^G(l+|y|+|y /[) rexp(-Co( ly^1-l)2).

The proof of Theorem 7.6 is completed. Q
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Proof of Theorem 7.5. — Using (7.25) and Theorem 7.6, and
proceeding as in [B5, §11 i)], [BL, §11 q)], we have Theorem 7.5. D

Using Theorem 7.5, (7.19), (7.21), (7.24) and (7.28), we get over BS

(7.48) hmL,^/, /Tr,[^^(*^)
^Y^NBg/B^ Jx

F.«,)(,-̂  r,.), (^ v,.))] k(b, Y) ̂ y^

= ^{Td^rB./r^Tr, [g(N^ -dimX)exp(-5^)]}max.

By (7.7), (7.12) and (7.48), the proof of Theorem 4.10 is completed, a

8. A proof of Theorem 4.11.

This section is organized as follows. In a), we reformulate Theo-
rem 4.11. In b), we indicate that the proof is localized near ^^{B9) by
Proposition 7.2. In c), we prove the estimate (8.1).

In this section, we make the same assumption and we use the same
notation as in Sections 4 and 7.

a) A reformulation of Theorem 4.11.

THEOREM 8.1. — There exists C > 0 such that for 0 < u ̂  1, T > 1,

(8.1) Tr^^^^exp^^Z^2)]

-u^3™^
+/,, ̂ (^ -^-^^ch^) < ̂ .

Remark 8.2. — Theorem 8.1 implies Theorem 4.11. In fact, for
0 < e <, 1, e ^ T < 1 we use (8.1), with u = T and T replaced by T / e , then
we find that the right-hand side of (8.1) is dominated by

CT2 _ = CeT ^ Ce.

So we have proved (4.22).
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b) Localization of the problem near Tr^^B9).

By Proposition 7.2 and the argument in Section 7b), the proof of (8.1)
can be localized near B^. Thus, we are entitled to choose bo c B9 as in
Section 7b), to replace M by C171 x X^ and to trivialize the vector bundles
as indicated in Section 7b). Then we will prove (8.1) in this situation.

c) Proof of Theorem 8.1.
By (7.10),

(8.2) A^^T^-D^T-^.

Therefore

(8.3) Tr.[g^(^^)e^(-^Dy'2)]

=Trs[ff*^l(^*^)exP(-u2A^,l)]•
We will use the notation of Section 7 with e replaced by 1/T, and T

by 1. By (7.25), we see that as T -^ +00

(8.4) ^/T,I——^,I.
Let ^r^^)^'^)) (C^C^) € (T^B)^ xXbJ (z =

1,2,3) be the smooth kernel associated to the operator exp^u^L^)
calculated with respect to dv(T£?)^(Y7) d^'Xt,o(^/)/(27^)dimM. For V' in
^B9/B,R,bo, X € X^o, Set

(8.5) Qe^x^Tr^M^P^g-^Y^^^x))}^}.
By (7.24), for Y € ^Bo/B,K,i>o> x € Xb^, we have

(8.6) TY, [g^1 (^ *T)Pll/^,l,„(ff-l(y^),(y^))]

^ (_^dimB<'y2dim^/B^Q^^(ry^)

By (8.6) and the argument of Section 7b), to calculate the asymptotics
of (8.3) as u -^ 0 uniformly in T ^ 1, we have to find the asymptotics
as u —» 0 of

(8•7) ^.J^^^'^-
Let dx(x, x ' ) be the distance function on (JQ,o, ft™^). Then

^(^.(r,^)) = (|y-yf+dx(^:r')2) l /2

is a distance function on (T^B)bo x ^bo-
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PROPOSITION 8.3. — There exist c,C > 0,p,r e N such that for any
(Y,x), ( Y ' , x ' ) e (TRB)^ x Xi,,, e 6 [0,1], u e ]0,1],

(8.8) K^ay^My^))! ̂ C(I+\Y\+\Y'\Y

xexpf-C^-^2^-^
v u2 )

Proof. — At first, using the technique in [BerB, §9d)], where we
replace the Sobolev norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), the
bounds in (8.8) with C = 0 are obtained. To get the required C > 0, we
proceed as in the proof of Theorem 7.6.

Using finite propagation speed for the solution of hyperbolic equations
for cos(s^/L^) [CP, §7.8], [T, §4.4], we find there is a fixed constant c1 > 0
such that for e e [0,1], u € ]0,1], q > 1,

(8.9) P^n^xW^)} ̂ K^L^Y^Y^x'))
if d((Y^)^Y\xf))>cfq.

By using the proof of Theorem 7.6, and [B5, Thm. 11.14], there is C > 0,
c > 0, p,r e N such that for q e N*, (V^), (V^') e (TR^ x X^
£G[0 ,1 ] , ^€ ]0 ,1 ] ,

(8.10) ^K^L^Y^^Y1^)^'

^(i+iyi+iy^exp^^l2).

By (8.8) with (7=0, (8.9) and (8.10), as (7.47), we have (8.8). n

Let N ^ g / x be the normal bundle to X9 in X. We identify N ^ g / ^
to the orthogonal bundle to TX9 in TX. Let h N x g / x be the metric on
N x s / x induced by hTX\^. Let dv^g/^ be the Riemannian volume form
^ { N ^ / x ^ h ^ 9 / ^ ) .

By (8.8), to calculate the asymptotics of (8.7) as u —> 0, we can
localize near {0} x X9^. We identify ^4o({0} x -^ ) to

{(y,.r,X); YeA^/5^, x^X\ X e N ^ / x ^ \Y\,\X\<ao}

by geodesic coordinates normal to {0} x X9^ in (T^B)^ x X.
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For Y e (W)^x e X", X e N^^y, \Y\, \X\ ^ lao, let
k' (Y, x, X) be defined by

(8.11) dvx(Y,x,X) = k'(Y,x,X)dvN^^(X)dvx9(x).

By standard results on heat kernel (cf. [BeGeV, Thm. 2.30]), we find there
exist smooth functions a^Ja-),..., Oy 0(2;) (a- € M") such that as u-^ 0,
for re € ̂

(8-12) £:6A^«,|X|<^o/4 Ql/r.n^^X))^,;^)
"^eATBi,/B,R,|y|$ao/4 , , .

^N^/xW^N^/B^)
(27r)dimAf

= EaTj(•E)M2J+o("2)•
j=-n

Also the a^.(.r) only depend on the operator L\^^ and its higher
derivatives on x. By (8.4), a^j^x) is continuous on T € [1, +oo].

By (7.12), (7.27), (8.4)-(8.8), (8.12), we know that there exist OTJ
depending continuously on T e [l,+oo] such that for any u € ]0,1]
re[i,+oo]

(8.13) ^[^^^(^)exp(-^<'2)]- ^ ar^ <
2 ., 0,".')]- ^

j=— dim M

CU2

- y

Set

f6-1^/ G-^^™)^^)'I JM9 Z7r

(8.14)
) r 8 r /—RTM ^TM.-,^ ' ' L . ̂ Td'(^- -t(Ara)-l^)]..„'>•.(^{).

By [B5, (2.44), (2.63)] which extends [BGS3, Thm. 1.22], for T ^ 1 fixed,
as u —» 0

(8.15) Tr, [g ̂  -^ (*^) exp(-z.2^2)] = ̂  ̂  - b^ + 0(n2).

By comparing (8.13) and (8.15), we get
0

(8.16) ar,j =0 if j < -1, ar.-i = ^b-i,g, ar,o = -60,5.

By (8.13) and (8.16). we get (8.1). r;
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9. A proof of Theorem 4.12.

This section is organized as follows. In a), as in [BerB, §9], we reduce
the problem to a local problem near B9. In b), we summarize very briefly
thejxmtent of [BerB, §9 c)]. In c), we establish key estimates on the kernel
of Fe(L^y). In d), we prove Theorem 4.12.

We use the same notation as in Sections 4 and 7.

a) Finite propagation speed and localization.

PROPOSITION 9.1. — There exists C > 0, such that for 0 < e ^ 1,
T> 1

(9.1) Tr,[^^^(*^)G,(,^)]

^ dimX

- r( S (-l^X.^^O-dimX^^G^O) < ̂ .

Proof. — For v > 0, set

/+oo ,2 . j j .
H^o) = exp(<tv/2a)exp (- ' U f ) " 1

-oo v z ^ / V^/27T

Clearly

G^a)=HJa\\v /

By an analogue of the McKean Singer formula [MKS], we find that

dimX

(9.2) Tr^gNvH^D13)] = ̂  (-l)^,(^7r.0^(0).
j=o

Using (9.2) and proceeding as in [BerB, Prop. 9.1], we have (9.1). D

By (7.6) and (9.1), to establish Theorem 4.12, we only need to
establish the following result.
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THEOREM 9.2. — If a > 0 is small enough, there exist 6 > 0, C > 0,
such that for 0 < e < 1, T ^ 1

,-1 ^ ^ . \ r f^-r^M \\(9.3) Tr, [̂  *^ ̂  ( /̂,)F,(^%)]

9 dimX ^

- r( ̂  (-l^X^^^O-dimXx^O)^^) < ̂
j=o

Proof. — The remainder of the section is devoted to the proof of
Theorem 9.2. D

By (7.11), we deduce that

(9.4) Tr, [g^ ̂ (^)F,(^)] = Tr, [g^ ^(^/,)F,(A^)].

Let Fe(A^)(a;, x')(x^ x ' C M) be the smooth kernel associated to Fe(A^)
with respect to d^M^')^^)^1117^. Using finite propagation speed, as
in (7.9), it is clear that if x € M, F^^rX-^') ^Y depends on the
restriction of A^ y to 7^-l(BB(7^.r, a)).

As in Section 7, the proof of (9.3) is local near Tr"1^5).

b) The matrix structure of the operator L^rp as T —>• -(-oo.

We use the same trivializations and notation as in Section 7.

Also by using (7.19), (7.24), for Y € (A^/^p)^, we get

(9.5) Tr, [̂  ^T/eWL^)(g-\Y^x)^Y^x))\

^(_,)dimB^-2dimN^/^r,^M^(L^)(^-1^^

Recall that the vector bundle K and the operators P, Se were defined
in (7.13) and (7.16). Let F^ be the vector space of square integrable sections
of A(T^) § A(A^/^) g^-1*^ over (T^B)b^ Then F^ is a Hilbert
subspace of E°. Let ¥^•L be its orthogonal complement in E°. Let pe be
the orthogonal projection operator from E° on F^, set p^~ = 1 — pg. Then
i f 5 ( E E ° ,

(9.6) p^(y)=P,y5(y,.) for YeT^B.
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Put

(9.7) f ̂  = P^,TPe, F,^ = P.L^P^

\ G^T = P^L^Pe, H,,T = P^L^P^.

Then we write L3^ in matrix form with respect to the splitting
E^F^®^--1-, -

(9.8) ^3,T=f,££•T ^1.
\_<Je,T He,T\

Recall that L^^R^ are the curvatures of ($,V^), (rX.V™), and
that the (3,0)-tensor {S(-) • , •) is denned in Section 2b). In the sequel,
[ , ]+ denotes an anticommutator.

THEOREM 9.3. — There exist operators E,,F,,G,,H, such that as
T-»-+oo,

(9.9) 1^=^+0^), F^=TF,+0(1),

\G^T=TG,+O(I), H^T=T2H,+0(T).

Set

(9.10) Q, = V\£\Y\){ - J [v^0'1^)^

2m'

E^^^.^^A——^)^
Q=I v z / V2

^ 2m

+2 E <^)^.^)^xc(/.)c(6,)1
Q=2m/+l -1+

1 ^m 9

+ 7J E (^a A -yV.)<-(^) (̂  + J Tr[^]) (/., e.)

2m

+ E jc(^ff)^)(^+lT^^^X])(^,e,)}.
a=2m'+l - / J

TAen Q,(F^ c ̂ 'J-, and

(9 11) [ F £ = P£Q£P^ G- = P^QePe.
\ H, = p^^Y\)Dy + (1 - ̂ Y\))D^.
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Proof. — For a fixed e > 0, the analysis of the matrix structure of
L^y as T —> +00 is the same as in [BerB, §9c)]. Of course, the rescaling
on the Clifford variables which depends on e > 0, is different, but this does
not introduce any extra difficulty.

So Theorem 9.3 holds for essentially the same reasons as in [BerB,
Theorem 9.3]. Especially, by [BerB, (7.33), (9.37)], we get (9.10). D

c) Uniform bounds on the kernel of Fe(L^).

We now establish an extension of [BerB, Thm. 9.6].

THEOREM 9.4. — There exists C > 0, for which ifk C N, there exist
C' > 0, r € N such that if |a|, \a'\ < k, e C ]0,1], T > 1, (Y,x), ( Y ' . x ' )
e(7RBKxXb,,

aH+i^i - i
(9tl2) QY.QY^ Wir) (W ̂  (^ ̂ )) |

< c'(i + |Y| + iY^y exp(-c\Y - y'|2).

Proof. — Recall that ( )^o is the Hermitian product on E° defined
by (7.32). If se E1, put

(9.13) |<^ = r2!?^!^ + l^y<o
+Elv^<o+T2El^p^<o•

a i

The bounds in (9.12) with C = 0 are easily obtained by proceeding
as in [BerB.Thm. 9.6], where we replace the Sobolev norms [BerB, (9.49),
(9.50)] by (7.32) and (9.13). To get the required C > 0, we proceed as in the
proof of Theorem 7.6 where we use the Sobolev norms (7.32) and (9.13). D

d) Proof of Theorem 9.2.

Let ¥g be the vector space of smooth sections of A^T^B9)^)
M^B^/a)^5'^1*^ over (TstB)bo' Let 5g be the operator from F^ to
itself

(9.14) E,=E,-F,H^G,.

One verifies easily that 2g is an elliptic second order differential operator
acting on F^.
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The operator (eD13)2 acts on smooth sections of A(T^°^ B)(S) Ker D^
Therefore by proceeding as before, i.e. by rescaling the coordinate Y and
the Clifford variables c(fp)(l < /3 < 2m'), we construct from {eD3)2

an operator S^, which acts on smooth sections of A(T^B^)§A(7V:-g^ )
SS^K over B(0,2a/£). Then as [BerB, Prop. 9.9], we have

PROPOSITION 9.5. — Over B(0, a / e ) , one has the identity

(9-15) 2, = E^.

Let ^(5.)(y,y/),F,(S,3)(y,y/)(Y,y/ e (TRB),J be the smooth
kernels associated to the operator 1^(2^), ^(5^) with respect to
dv^^)/^)^1^. Using (9.15) and finite propagation speed, it is clear
that for I V I . I Y ' I <a/4e,

(9-i6) F,(s,)(y,y') = i^)(y,y').

Here, the minor difference with [BerB] is that here only the Clifford
variables c(f^) (1 <, £ ̂  2dimB^) are rescaled, while in [BerB], the Clifford
variables c(f^) (1 < £ < 2dimB) were rescaled. Because our Clifford
rescaling introduces fewer diverging terms than in [BerB, §9], so we have
the following analogue of [BerB, Thm. 9.8]: There exists C > 0 such that
for 0 < e ^ 1, T > 1,

(9.17) ||W^) - P,yF^)P,y||^° < ———.

Now by using (7.27), (9.5), (9.12), (9.16), (9.17), and by proceeding
as in [BerB, §9 g)] and [B5, §13 j)], we obtain Theorem 9.2. n
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