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PROLONGATIONS AND STABILITY
IN DYNAMICAL SYSTEMS

by J. AUSLANDER and P. SEIBERT (1)

Introduction.

In this paper we present a unified theory of stability and
boundedness in dynamical systems by means of prolongations.
The notion of prolongation was first used, in a very special
sense, by Poincare and, subsequently, by Bendixson in their
studies of the asymptotic behavior of trajectories in the plane.
In a much more general sense, prolongations were considered
by Ura [12, 13], who recognized their close relation to the
concept of stability in the sense of Liapunov. Consider the
map which associates to every point in the state space the
positive semi-orbit issuing from it. The first prolongation is
obtained by extending this map to one which is closed,
(considered as a subset of the product space). By
alternating extensions to maps which are transitive and
closed respectively, we obtain a sequence of more and more
extensive prolongations and, following Ura, associate to
each of these a concept of stability: A compact invariant set
is called Q-stable if it is invariant under the prolongation Q.

In particular, there exists a smallest prolongation which is
both closed and transitive. The corresponding concept of
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Aeronautics and Space Administration under Contract No. NASw-718. Reproduction
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stability is called absolute stability. This notion turns out to
play a key role in another context, namely in connection
with the «generalized Liapunov function», introduced by
Zubov [15]. While Liapunov stability of a compact invariant
set can be characterized by the existence of a generalized
(not necessarily continuous) Liapunov function, it has been
known that there exist cases of stable sets for which no conti-
nuous Liapunov function can be found (e.g., certain critical
points in the plane of the « center-focus » type). We prove
(Theorem 6) that the existence of a continuous Liapunov
function is necessary and sufficient for absolute stability.

It has been observed [14], that between the concepts of
stability (in the sense of Liapunov) and boundedness (Lagrange
stability), a kind of duality exists. In Chapter VI we formalize
this duality by compactifying the phase space. In this way
we obtain from every stability theorem a corresponding
boundedness theorem.

In Chapter VII, some aspects of asymptotic stability are
discussed. It is shown that asymptotic stability implies
absolute stability. On the other hand, the dual concept,
namely ultimate boundedness, implies the existence of a
compact invariant set which is asymptotically stable in the
large. While asymptotic stability cannot be characterized
in terms of invariance under a prolongation, it is proved that
it can indeed be characterized by the property of being the
image of one of its neighborhoods under a map obtained from
a prolongation by deleting the positive semi-orbit.

In the concluding chapter we study stability under persis-
tent perturbations or, as we call it more briefly, « strict stabi-
lity ». The dynamical system here is assumed to be given
by a differential system in euclidean n-space. It is shown that
strict stability can be characterized in terms of invariance
under a closed, transitive map which has essential properties
in common with the prolongations. Thus some results concer-
ning absolute stability can be carried over. Moreover, strict
stability occupies an intermediate place between asymptotic
and absolute stability. The complete analysis of the relation
between strict and asymptotic stability, however, requires the
development of some additional methods and will therefore
be published separately.
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1. Definitions and notations.

1. In this section, we establish our notations, and also
recall the basic notions in the theory of dynamical systems.
X will denote a locally compact metric space with metric d.
(In Chapter VI we shall assume in addition that X is second
countable.) If A c X, S will denote the closure of A, A° the
interior of A. R and R4' denote the reals and the non-negative
reals, respectively. If £ > 0,Se (A) == [y e X[c?(i/, A) <; e]. A
set will be called relatively compact if its closure is
compact. The boundary of a set A we denote by bA.

By a dynamical system or continuous flow 9 on X, we mean
a continuous map IT : X X R -> X satisfying

(a) ^(x, 0) == x {x e X),
(&) ^{x, ̂ ), t^) = 7c(rp, ̂  + ̂ ) {x e X; ^, t^ e R).

Typically, dynamical systems arise from the solution curves of
autonomous systems of differential equations, x == f(x), if f
satisfies suitable hypotheses [10, p. 17ff]. However, except
for Chapter VIII, we shall consider dynamical systems abstrac-
tly without explicit reference to a system of differential
equations. As general references, consult [2], [10], and [15].

It x e= X, the set {^(x, t)\t e R^ is called the orbit or trajectory
through x, and will be denoted by y(^). The positive semi-
orbit, denoted by y4"^), is the set \^{x, t)\t^0^. The negative
semi-orbit ^(x) is defined analogously. The omega limit set
of x^ Q{x), is the set ft [^{^{x, t))\t^ 0 ^ ; clearly Q(^) is the
set of points y for which there exists a sequence |^j of real
numbers with ^ -> + oo and 'rc(.r, tn) -> y. Similarly, the
alpha limit set of x, A(a;), is defined to be fl [j~(^{x, t))\t^0}.

A subset A of X is called invariant if 11(̂ 3 () e A whenever
x e A and ( is real. If re e A and t ̂  0 imply ii(.r, () e A, we
say that A is positively invariant. We remark that the alpha
and omega limit sets of a point are invariant.

In conformity with current pratice, we shall suppress the
map it notationally; if xe X and te R, we write xt in place
of ^{x, t).
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2. In this paper we shall frequently be concerned with
maps from X to 2X (the set of all subsets of X). If Q: X->2^,
and A c X, then Q(A) === U |Q(^)|.re A j . If a family of maps
Q : X -> 2X (a e a, some index set) is given, by U [ Qa|a e a j we
mean the map Q: X->2X defined by Q_{x) = U ^Qa(^)|a e a j .
Finally, if m is a positive integer, the map: X —> 2s

defined inductively by Q1 == Q,and Q7" == Q o Q7"-1.
is

2. The first prolongation.

3. Let x e X, and let %(x) denote the neighborhood filter
of x. Following Ura ([12], [13]), we define the first prolongation
of x, denoted by Di(oQ, by ft ^(W^W e %{x) j .

It is easy to see that y e D^{x) if and only if there exist
sequences x^ e X and tn ̂  0 such that x^—>x and Xjfn —> y.
The first prolongation may be regarded as an extension of
the orbit closure of x. Indeed, it is an immediate consequence
of the definition that ^(x) c Di(^).

A simple example of a non-trivial prolongation (that is,
Di(a;) =7^ ̂ (x)) is provided by the dynamical system in the
plane defined by the differential equations x^ = x^y Ag == —x^
this is a system with a saddle point at the origin. Let x={0, —1)
Then ^{x) consists of the points (0, ^2)? with —1 <1 x^ <10,
whereas Di(rc) contains, in addition to Y4"^), all points of the
a;i-axis.

A second example is furnished by the differential equation
(in polar coordinates) r = r(r — I)2, 6 == 1, which has an
unstable critical point at the origin and a limit cycle, stable
from the inside and unstable from the outside, at r == 1. In
this case. the first prolongation of the origin is the closed
unit disc.

4. We observe the following elementary properties of the
first prolongation :

a) If A is compact, and a; e A, then Di(^) c A, or Di(rc)
meets the boundary of A.

b) If \x^\ and \Vn\ are sequences in X, such that
^eDi(^), and if Xn -> x, yn -> y, then 2/eDi(^).
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c) If A is compact, Di(A) is closed. (This is a consequence
of&).)

It is not difficult to verify these properties directly. However,
they will follow immediately from developments in Chapter III.

5. The first prolongation is intimately connected with the
notion of Liapunov stability. We recall that the compact posi-
tively invariant set M is said to be Liapunov stable (or simply
stable) if for every neighborhood U of M, there is a neighbor-
hood W of M with Y+(W) c U. It is not difficult to show that
M is stable if and only if Di(M) = M ([12, p. 341]). In the
general case (M not necessarily stable), Di(M) may be regarded
as a « measure of instability » of M. In this connection, we have :

THEOREM 1. — Let M be a compact positively invariant set.
Then Di(M) is the intersection of all closed positively invariant
neighborhoods of M.

Proof. — Let y e Di(M), and let W be a closed positively
invariant neighborhood of M. Choose x e M such that y e Di(^).
Then y e y+(W) = W. Thus Di(M) cW.

Now suppose y^Di (M) . Then y^Di(x), for each x e= M.
Therefore, if x e= M, there is a W(x) e Tb(^) with y ^ ^(W^)).
By compactness of M, there exist rci, . . . , x^ e M such that
M c W = = u {W(xi)\i= 1, . . . , / c j . Let W* == ^(W). W* is a
closed positively invariant neighborhood of M and y ^ W*.
The proof is completed.

COROLLARY 1. — The compact positively invariant set M
is Liapunov stable if and only if every neighborhood ofM contains
a positively invariant neighborhood of M.

3. Abstract prolongations and semi-prolongations.

6. We now wish to generalize the notion of prolongation.
Toward this end, we define two operators, 3) and y, on the
class of maps from X to 2X. If Q : X -> 2^ we define ®Q by

3)Q(^)= n Q(W):
we%(a-)

13
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is defined by

^Q(^) = U W-
n==l,...

We note that y e 3)Q(^) if and only if there are sequences
\Xn\ and \y^\ with yn e Q(a^) such that yn->y and ^-^ ^.
Also z/ e a'Q(.r) if and only if there are points x^ . . ., Xn in X
with x = x^ y = x^ and Xj^ e Q(^)(/ == 1, . . ., n — 1).'

The operator 3) may be considered a closure operator, in
the following sense. Let S denote the relation in X defined
by : (x, y) <= S if and only if y e Q(a;). Then it is readily verified
that y e 3)Q(;r) if and only if (x, y) e S.

The following statements follow easily from the definition
of 3) and ^, and from the above remarks.

(a) 3)2 = ®, and ^2 = ̂ ; that is, 3) and ^ are idempotent
operators.

(fc) If A is compact, 3)Q(A) is closed.
(c) Suppose V is a continuous real valued function on X,

such that y e Q(^) implies V(y) < V(aQ. Then y e 3)Q(a;) u ^Q(o?)
implies V(y) ^ V(*r).

DEFINITION. — An abstract prolongation (or simply pro'
longation) is a map Q: X —> 2^ satisfying

(a) If x^X, then ^(x) c Q(rc).

(P) ®Q = Q.
(y) If A is a compact subset of X, and x e A, then either

Q(;r) c A, or Q(^) meets the boundary of A.
If the map Q: X —> V satisfies (a) and (y) above, but not

necessarily (p), it will be called a semi-prolongation.
If Q is a semi-prolongation, and ^Q == Q, then Q is said to

be transitive,

7. The following lemma indicates how, given a collection
of semi-prolongations, new prolongations and semi-prolonga-
tions can be formed.

LEMMA 1.—(i). If iQpj, ( (?€=%), is a collection of semi-
prolongations^ and Q = U^QplpeS^, then Q is a semi-pro-
longation.
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(ii) If Qi and Qg are semi-prolongations and Q == Qi o Qg,
<Aen Q 15 a semi-prolongation.

(iii) J/* Q i5 a semi-prolongation^ ^Q 15 a semi-prolongation
and 3)Q 15 a prolongation.

Proof. — (i) That Q satisfies property (a) is obvious.
Suppose A is compact, x e= A, and Q_(x) <t A. Then for some
P e ^B, Qp(^) < A, and therefore Qp(^) n ^)A =/= ^. Therefore,
Q(a;) n bA =7^ ^, and property (y) is verified.

(ii) If x^ X, y+(^) c Q,(;r) c Qi(Q^)) == Q(^), so (a) holds.
Let A be compact, and suppose x e A. with Q_(x) <t A. If there
is a z e Qa(^) n 5A, then z e Qi(Js) c Qi(Q2(^)) == Q(^), so
z e Q(a;) n bA. If Qg^) c A, then, since Qi(Q2(^)) <t A, there
exists z e Qa^) with Qi(^) <t A. Then, there is a y e Qi(^) n ^)A.
It follows that y e Q(rc) n ^A.

(iii) If Q is a semi-prolongation, it follows from (i) and (ii)
that tfQ is a semi-prolongation. We show that 3)Q is a prolon-
gation. Since y^) c Q(rc) c 3)Q(*r), property (a) holds, and
since 3)2 == 3), (?) is satisfied. We show that (y) holds. Let
re e A, a compact subset of X. It is clear that we need only
consider the case in which Q_{x) c A, but 3)Q(a;) d A. If re e bA,
then x e 2)Q(rc) n ?)A, and there is nothing to prove. Therefore,
suppose x e A° and let y e 3)Q(;r) with y ^ A. Then there are
sequences ^j and \yn\ with ^ -^ rr, yneQ(^), and z/,-> y.
We may assume x^ e A, and z/n < A (since A is closed). Now,
since Q is a semi-prolongation, there exist y'n e Q(a;n) n ^)A,
and since ^A is compact, we may assume y'n —> y ' e bA. Then
y' e 3)Q(a;) n ^)A, and the proof of (y) is completed.

THEOREM 2. — Le( M he a compact subset of X, and let
Q be an abstract prolongation. Then Q(M) == M if and only if,
whenever W is a neighborhood of M, there is a neighborhood
U of M 5uc/i t/ia( Q(U) c W.

Proof. — Suppose Q(M) == M, and suppose there is a
neighborhood W of M, such that for every neighborhood U
of M, Q(U) <t W. It is no loss of generality to assume that W
is compact.

Then there exist sequences \Xn\ and \Vn\^ with y/i^QC^n)?
Xn —> M, and y^ « W. Since M is compact, we may assume that
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Xn —> x e= M. By property (y) in the definition of prolongation,
there exist y'n e Q(^n) n bW, and since ^)W is compact, we may
assume that y'n->y ^ ^)W. Then z/' e 3)Q(^)= Q(^) c Q(M) == M,
which is a contradiction.

To prove the converse statement, suppose that y d M. Let
W be a neighborhood of M such that y ^ W, and let U be a
neighborhood of M with Q(U) c W. Then, Q(M) c Q(U) c W,
so y ^ Q(M). Therefore Q(M) c M, and since M c Q(M), the
proof is completed.

COROLLARY 2. — Let M be a compact subset of X and let Q
be a transitive prolongation. Then Q(M) = M if and only if
M possesses a fundamental system of compact neighborhoods
{Vn} such that Q(U,) = U,.

Indeed, if ^W^ is any fundamental system of neighbor-
hoods, choose N» compact and such that Q(N^)cW^, and
define U, = Q(N,).

4. The higher prolongations and stability of order a.

9. If xe X, let Eo(^r) be ^(x), the positive semi-orbit of .r.
Clearly Eo is a transitive semi-prolongation. Then, by lemma 1,
2)Eo = ®^Eo is a prolongation, and indeed it is equal to D^,
as defined in Chapter II. We define Ei == ^Di, and Dg == 3)Ei.

Now, let a be any ordinal number. We define the prolonga-
tion Da inductively. Suppose for every ordinal ? <; a, the
prolongation Dp has been defined. Let Ep = ^Dp, and let
E:== U t E p | [ 3 < a j . Define D^ = ®E:.

Observe that y e Da(^) if and only if there are sequences
[xn\ and \y^\ in X with Xn -> x, y^ -> y , and ^eD^(^),
where ?n are ordinal numbers less than a, and kn are positive
integers.

By Lemma 1, Ep and E^ are semi-prolongations, and there-
fore Da is a prolongation. Observe that if (3 << a, we have
Dp c Ep c Ea <= Da. If a is a successor ordinal, Ea == Ea-i,
and Da = ®Ea-i. (2).

(2) These are essentially the same as the prolongations D4' of Ura [13]. However
Ura includes the semi-prolongations Ep, as well as the Da among his transmute
sequence j D^ | ; therefore our system of numbering differs from his.



PROLONGATIONS AND STABILITY IN DYNAMICAL SYSTEMS 245

THEOREM 3. — Let y denote the first uncountable ordinal
number. Then:

(i) D , = U t D p | p < y h
(ii) If Y' > Y, then D^ == D^.

(Therefore D^ 15 a transitive prolongation,)

Proof. — (i) Let yeD^rc). Then there are sequences \Xn\j
\Vn\ 1" X, and a sequence \^n\ °f ordinal numbers, such that
Pn < T??/n e ̂ (^n)? ^n -^ ̂  and Vn ̂  2/- Let P be an ordinal
number such that j ^ ^ P ^ P + l ^ T * Such ordinals exist,
[3, p. 30]. Then ^eEp(^), and yeD^{x).

(ii) We first show that D^. is transitive, or, what is the same
thing, that D^ === D^. Suppose that y ^ D ^ x ) , and zeD^(y).
Let p < Y such that y e Dfi(.r) and zeDp(z/) . Then

jzeD^cEp^cD^o;).

Hence we have E^ == ̂  = D^. Then D^i==®E^=®D^= D^.
A simple induction show that if y' > y, D^ == D<^.

We shall frequently write D instead of D^. By Theorem 3,
^D == 3)D == D; therefore D is the smallest closed transitive
map containing the positive semi-orbit.

10. Definition. — Let M be a compact positively invariant
set, and let a be an ordinal number. M is said to be stable of
order a, or ^-stable, if Da(M) == M.

If M is a-stable for every ordinal number a, then M is said
to be absolutely stable.

Theorem 3 tells us that M is absolutely stable if and only
if M is stable of order y, where y denotes the first uncountable
ordinal.

Note that stability of order 1 is the same thing as Liapunov
stability.

THEOREM 4. ([13]). — Let M be a compact positively invariant
set. Then the following statements are equivalent:

(i) M is stable of order a.
(ii) If W is a neighborhood of M, there exists a neighborhood

U of M such that Da(U) c W.

Proof. — This is an immediate consequence of Theorem 2.
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11. We conclude this chapter with some examples which
will illustrate the notions of prolongation and stability of
order a; (cf. also [13], pp 191-194 (3)). The examples are all
special cases of the equation

S + f{x2 + x^x + x = 0.

To every zero of the function f(r2) = f(x2 + ^2) there cor-
responds a limit cycle x2 -}- x2 = r2. The orbits between two
neighboring limit cycles are spirals with decreasing or increasing
distance from the origin, depending upon the sign of /*. The
compact invariant set M under consideration is the origin.

a) Let f(r2) =—r sin2-^- for 0 < r, and let /'(0) == 0,

(figure 1). Then Di(0) == |0^ , so the origin is stable of order 1.

FIG. 1.
(3) Added in proof: This example was also considered by N. N. Krasovskii

[Stability of motion, Stanford 1963 (Russian original: Moscow 1959), |pp. 46 f].
He also pointed out that the construction of a continuons Liapunov function
of the form V(a;) is not possible in this case.
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1For n a positive integer, let Cn denote the circle r= ——; Cy»
vn

is an invariant set. If p e=C^ (n>2), then Di(p) consists of
the closed annulus A^ bounded by Cn and Cn_i, and therefore
Ei(p) = U ^ A k | / c ^ n ^ . Now let pneC,. Then pn-^0, as
M-> oo, and it follows that Da(0) consists of the entire unit
disc. Hence the origin is not stable of order 2.

b) Let

lo, forr=—1— (n=0,l,2, ...;m=l,2, . . . )
f{r2)=\ n+1

I m
\ <; 0, elsewhere.

An analysis similar to that given in the preceding example
shows that the origin is stable of order 2, but not of order 3.
If n is any positive integer, it is clear that we may define a
function /*„, similar to f above, so that in the dynamical sys-
tem 9^ determined by the equation

X+fn(x2+X2)x+X=0,

the origin is stable of order n, but not of order n + 1.
By appropriately combining the 9^, we may define a dyna-

mical system 9 which is m-stable, for every positive integer m,
but not stable of order co (where co denotes the first infinite

ordinal). We may suppose that / n ( — ) = = 0 , < 1 ? ?/ ' < ?

\ k J ' (k=n—1, n).

Now define g(r2) = fn(r2} for -1 < r < , 1 . and g(0)==0.
\/n \/n—1

Then 9^, the dynamical system determined by

x + g{x2 + x^x + x = 0,

( 1 1coincides with ̂  on the annulus B^ = ^r] —= <; r ̂  —
( \/n \/n•—^. ;

Now let m be a fixed positive integer, and let ix^} be a sequence
tending to 0. Then, for k sufficiently large, Xj, e= U \Bn\n^m\,
and if y/c <= E^_i(^), then y^ -> 0. Hence J O J is stable of
order m. On the other hand, let Xn -> 0, with x^ e Bn. Then
y == (1, 0) e E^(xn) c E^(^), and (1, 0) e D^O).
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TCc) Let f(r2) = r sin -y (figure 2). Here we have stable limit

cycles alternating with unstable ones. The origin is absolutely
stable.

FIG. 2.

5. Liapunov functions.

12. The study of stability in dynamical systems has been
facilitated by the use of generalized Liapunov functions [6],
[15].

DEFINITION. — Let M be a compact positively invariant set.
A generalized Liapunov function for M is a non-negative func-
tion V defined in a positively invariant neighborhood W of
M, and satisfying:

a) If £ > 0, then there Jexists X > 0 such that V(^) > X,
for x not in Sg(M).
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b) If X > 0, there exists Y] > 0 such that \(x) < X, for
rreS,(M).

c) If a; e W, and ( > 0, then V(^) ̂  V(;r).
Conditions a) and b) may be succinctly summarized by the

condition:
If \Xn\ is a sequence in W, then V(^) -> 0 if and only if

Xn—^M. (In particular, V{x) = 0 if and only if xeM.)
We shall usually omit the adjective ((generalized » and

speak simply of Liapunov functions.
The following theorem is a purely topological version of one of

Liapunov's stability theorems. It may be found in [6] and [15].

THEOREM 5. — The compact set M is Liapunov stable if
and only if there exists a generalized Liapunov functions for M.

LEMMA 2. Let V be a generalized Liapunov function for the
compact positively invariant set M. Let W^ = \x e X|V(^)^X^.
Then the sets |W^|X > Oj constitue a fundamental systems of
neighborhoods of M.

This is an easy consequence of the definition.
13. A generalized Liapunov function is not necessarily

continuous (although it is always possible, in the case of
Liapunov stability, to find a Liapunov function which is conti-
nuous on every orbit). The role of continuity of the genralized
Liapunov function is demonstrated by the following theorem.

THEOREM 6. — Let M be a compact subset of X. Then the
following are equivalent:

(a) There is a generalized Liapunov function V for M which
is continuous in some neighborhood W of M.

(b) M possesses a fundamental system of absolutely stable
compact neighborhoods.

(c) M is absolutely stable.
^ Proof. — We show (a) ==^(fc)==^(c)=^ (a), (a) => (6) :

Since X is locally compact, we may assume that W is compact.
Using the notation of Lemma 2, let Y) > 0 such that Wy, c W.
Then |W^|0 < X < Y ] J is a fundamental system of compact
neighborhoods of M. We show that each W^ is absolutely
stable. Let 0 < X < Y). Let ^eW^, and let y^D^x). Then
there exist Xn -> x, tn ̂  0, such that x^ -> y. Now, x e W),, so
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n^eW^cW, for n^rio. Then V(a^n) ̂  V(a;n), and by
continuity of V on W, it follows that V(y) ̂  V(a;). That is,
if X < Y], Di(W\)cW^. Now, let a be an ordinal number,
and suppose that Dp(W\) c W>,, for all X < Y], and all ordinals
P < a. Then, Ep(Wx) c Wx and therefore ES(W^) c Wx. By
an argument similar to that above for Di, we obtain

Da(Wx)cWx.
Since a is arbitrary, the sets W^ are absolutely stable.

(&) ==^ (c). Let Y denote the first uncountable ordinal
number. Since Dy is a transitive prolongation, (c) follows
immediately from Corollary 2.

(c) =^ (a). Suppose that M is absolutely stable. Then, for
each dyadic rational number X == /^"(n === 0, 1, 2, .. . ; / an
integer such that l:^/:^^71), we construct a set W\ such
that (1) W), is a compact neighborhood of M, (2). If X < X',
W\ c interior W^, (3) W\ is absolutely stable, and (4)
n^W^|X a dyadic rational | == M.

To see that such a construction is possible, first obtain a
fundamental system of compact absolutely stable neighbor-
hoods Wi/2"? n = 0, 1, . . ., such that Wi/2"+1 c interior W^a"?
n === 0, 1, . . . . This is possible by virtue of Corollary 2. Now,
to define, for example Ws/4, observe that W\ is a compact
neighborhood of the absolutely stable set Wi,2. Then, again by
Corollary 2, we may find an absolutely stable compact neigh-
borhood Wa/4 of Wi,2 such that Wg/4 c interior of Wi. Procee-
ding in this manner, we can define the sets W^ (X a dyadic
rational) with the required properties.

If ^ < = W , define ^(x) = inf [X|^eWx]. Clearly V(x) == 0
if and only if xeM. Let (> 0. We show V(xt) ̂  \{x).
Suppose V(xt) > V(.r). Then there is a dyadic rational X
with \(xt) > X > V(^)- Then ;re=W^, and, for any ordinal
number a, xt e D^x) c Da(W^) c W^. That is, V(^) r^X, which
is a contradiction.

Finally we show that V is continuous on WS. If not, then
for some x e W?, (say V(rc) = r), there exists a sequence x^—^x
such that (i) V(^n) -> T' < T or (ii) V(rz^) -> T' > T. In case
(i), let X, X' be dyadic rationals such that

^ < X' < X < T.
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Then x«W^, and x^ e W\', for n sufficiently large. Since
W\' c W^, we have x^ c W^, and since W\ is closed, re e W\,
which is a contradiction. In case (ii) let X, X' be dyadic ratio-
nals with T < X < V < T'. Then V(^) > X' for n suffi-
ciently large, and Xn « W>/. Now, re e W^ c W^'. But o^ -> re,
and since n^ ^ Wv, r^ < W^. Again we have reached a contra-
diction, and the proof is completed.

14. In conclusion, we remark that the developments in
this and the preceding chapter could just as well have been
applied to any semi-prolongation Qo, and the successive
prolongations Qa obtained by alternate applications of ^
and 3). Then we would have a notion of « Qa-stability » defined
by Qa(M) = M. In particular, Theorem 6 may be formulated
in terms of a semi-prolongation Qo, the smallest transitive
prolongation Q containing Qo, and a continuous non-negative
function V with the property that V(y) ̂  V(rr) if y<=Qo(;r),
(see Lemma 1 in [1]). The proof is an exact paraphrase of
the proof of Theorem 6. We shall make use of these remarks
in Chapter VIII.

6. The duality between boundedness and stability.

15. The dynamical system 9 is said to be bounded or
Lagrange stable if ^{x) is compact for every x e X. It is natural
to generalize this notion as follows. If a is an ordinal number,
we say that S is bounded of order a, or en-bounded^ if Dy.{x)
is compact, for every x e X. This is easily seen to be equivalent
to the assertion that Da(A) is compact whenever A is compact.
9 is said to be absolutely hounded if it is a-bounded for every
ordinal number a.

In this section, we assume that X is second countable (as
well as locally compact metric). Under this assumption,
it turns out that there is a kind of duality between boundedness
and stability. This duality may be established by means of
the following device. For x e X, let Eo~(^) == Y~(^)? the nega-
tive semi-orbit of x. We may define negative prolongations
Do" in a manner completely analogous to the definitions of
Da, that is, we let Dy = 3)E^o, Ey == ^Di', and so on. Then,
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for any ordinal number a, Da" = (s)(\^) Ep-V where Ep = ^Dg.
\P<a /

We note that x e D-(y) if and only if y e DaQr). We may then
define negative stability of order a (for a compact negatively
invariant set M), by Do"(M) = M. Clearly all the theorems
of the preceding sections may be phrased so as to apply to
negative stability. [In particular, condition c) in the defini-
tion of generalized Liapunov function would read :

\(xt) > V(^),
for x e X, and ( ̂  0.]

Let X denote the one-point-compactification of X. Then
X = = X U | ( o I , where co denotes the point at infinity. The
assumption that X is second countable guarantees that X
is metrizable, ([3], p. 125). We extend the dynamical system 9
to a dynamical system 9 on X by defining of = co, for all
real t. Then \(^\ is a compact (positively and negatively)
invariant set in X. The prolongations pertaining to ^, we
also distinguish notationally by a tilde.

The duality between boundedness and stability is embodied
in the next theorem.

THEOREM 7. — 9 is abounded if and only if ( c o j is nega-
tively on-stable.

Proof. — If 9 is not a-bounded, then Da(rc) is not compact,
for some xeX. That is, co e Da(^), and ^eD-a(co), so |(DJ is
negatively a-unstable.

Suppose, conversely, that 9 is a-bounded. If |coj is negati-
vely a-unstable, then there are sequences \Xn\ and \y^\ in X,
with^-^co, ^eEp^) ((^<a), and ^ -> y e X. Then,
co e Da(?/). Now, let K be a compact subset of X such that
Da(y) c K°. Since CD e Da(t/), it follows from the defining pro-
perties of a prolongation that there is a z e Da(y) n 6K. Then
there are sequences y^ -> y , Zn -> z such that ^eEp^),
(Pn < a). Now, it follows easily that Ep(y') = Ep(z/'), for all
P < a and all y e X. Then

z e Da(y) n ^)K.
This is a contradiction.
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16. It follows from Theorem 7 that every stability theorem
has a boundedness theorem as its counterpart.

Continuing in this vein, we define a (generalized) Liapunov
function at infinity to be a positive real-valued function V
defined in the complement of a compact subset K of X satis-
fying

a) V is bounded on every compact set.
b) The set |^|V(^)^^j is a relatively compact subset

of X.
c) If ^ e X — K , and t^ 0, then V(^) ̂  V(o;).
Equivalently, we may consider an extended real valued

function V, defined in a neighborhood of co in X, such that
V(o)) = + °C), and such that V(^) —> + °o if and only if
Xn -^ CO.

It follows that V is a generalized Liapunov function at
1 .infinity if and only if V == — is a « negative » (non-decreasing)

Liapunov Function for the set ^co| .
Using this observation, it is easy to prove the following

theorems, which are the duals of Theorem 5 and 6.

THEOREM 8. — The dynamical system 9 is bounded of
order 1 if and only if there exists a generalized Liapunov function
at infinity (4).

THEOREM 9. — The following statements are equivalent.
a) The dynamical system 9 is absolutely bounded.
b) Every compact set is contained in an absolutely stable

compact set.
c) There exists a continuous (generalized) Liapunov function

at infinity.

7. Asymptotic stability and ultimate boundedness.

17. The compact set M is said to be asymptotically stable
if it is Liapunov stable, and if there exists a neighborhood W
of M such that d{xt, M) —> 0 as t —> oo, for all x e W. The

(4) This theorem is a generalization of Theorem 4 in [5].
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last condition is equivalent to the statement that Q(x) is a
non-empty subset of M, for each x e W. If M is asymptotically
stable, the largest neighborhood W of M such that Q(W) c M
is called the region of attraction or domain of asymptotic stabi-
lity^ W is an open subset of X. If W == X, then M is said to
be asymptotically stable in the large, or completely stable, [5].

If M is asymptotically stable, then (since X is locally
compact), it is known that M is uniformly asymptotically
stable, [6, p. 38]. That is, if A is a compact subset of W, and
U is a neighborhood of M, then there is a T > 0 such that
At c U, for all ( > T.

THEOREM 10. — If the compact set M is asymptotically
stable, it is absolutely stable. Indeed, M is asymptotically stable
if and only if there exists a continuous Liapunov function V
for M such that \(xt) < V(rc), whenever x^M, and t > 0.

Proof. — Suppose that M is asymptotically stable. Let W
be the domain of asymptotic stability of M, and let U be a
relatively compact neighborhood of M, with U c W. If x e W,
define Y(a;) = sup d(xt, M).

t^Q

It is known that Y is a Liapunov function for M, [6, p. 36(5)].
We show that Y is continuous on U. Let x e U — M, and
suppose d(x, M) = 2e > 0. Let T > 0 be such that U( c Sg(M),
for all t^T. Suppose \x^\ is a sequence in U such that
Xn -> x. We show that Y(o;n) ->• Y(a;). Let Tn, T ̂  0 be such
that Y(a^) == d(x^n, M), and Y(a?) = d{x^, M). Since

0^<T,

we may suppose T^ —> T' ̂  0. Then

Y(^) = d{x^n, M) -> d{x^, M).

We show that YQr) = d{x^, M). Obviously Y(rc) > d{x^, M).
Suppose that Y(rc) == rf(rrc, M) > d{x^, M). Let X > 0 such
that d(x^, M) + 2X <; d(x^, M). For n sufficiently large,
d(x^, xi:) <i X, and d{x^n, x^) < X. Then it follows that

d(^T, M) > d{x^, M) — X > d{x^, M) + X > d{x^n, M),

(5) This function, which is due to Okamura and Yoshizawa, is a Liapunov function
for M whenever M is 1-stable.
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that is d(x^^ M) > d^Xn^n, M) == Y(^n), which is a contradic-
tion. Since Y is always continuous on M, it is continuous
on U, and by Theorem 6, M is absolutely stable.

The function Y is not, in general, strictly decreasing on
orbits of points outside M, as we require in the statement
of the theorem. However, it is easily verified that the function
V defined, for x e U, by

\[x) == f a(^)Y(^) dt

where a is any positive, non-increasing, summable function,
is a continuous Liapunov function for M satisfying V(a^) <^V(.r),
for x e U — M, and ( > 0.

Suppose conversely, that V is a continuous Liapunov
function satisfying 'V(xt) <; V(^), for x e U — M, and ( > 0,
where U is a neighborhood of M. Let Y] > 0 be chosen so that
W^ == {x\V{x) ^r\^ is a compact neighborhood of M. We
show that Q(W^) c M. By the defining properties of generali-
zed Liapunov functions, it is sufficient to show that

lim V(^) = 0,
(•>4-oo

for all x e Wyj. Suppose the contrary. Then, for some x e W^,
lim ^(xt) = X > 0. Let z e Q(x). Then V(z) == X. But, if

(->-+-00

T > 0, JST e Q(x), and V(zr) == X. This is a contradiction.
The last proof is due to La Salle ([5]).

18. The dynamical system 9 is called ultimately bounded
[14] if Q(X) is a non-empty, relatively compact subset of X.

LEMMA 3. — Suppose that 31 is ultimately bounded. Let A
be a compact subset of X. Then "^(A) is relatively compact.

Proof. — We may suppose 0(X) c A°. If the conclusion of
the lemma is false, there are point Xn e ^)A and ^ > 0 such that
x^tn contains no convergent subsequence; clearly <n -> + oo.
We may also suppose (by replacing Xn by Xj^ny f01* some Tn>0,
if necessary) that Xjf ^ A, for 0 <; t ̂  ̂ . Now, suppose
Xn —^ x e ^)A, Let N be a neighborhood of x and t > 0 such that
N^ c A°. Then, for all n sufficiently large, x^t e A°, and t <; tn'
This is a contradiction.

The next theorem shows that asymptotic stability and



256 J. AUSLANDER AND P. SEIBERT

ultimate boundedness are dual notions, in the sense of Chap-
ter VI (provided that the space X is second countable). As
in Chapter VI, co denotes the point at infinity in X.

THEOREM 11. — 9 is ultimately bounded if and only if
the point | a) \ is negatively asymptotically stable (in the dynami-
cal system 9).

Proof. — Suppose that 9 is ultimately bounded. In order
to show that ^ co \ is negatively asymptotically stable, we
apply Theorems (14.1) and (14.3) of [6] (modified so as to
apply to negative stability). Then, we must show:

a) There is a neighborhood W of | a) ^ , such that if x e W,
and x =/= | OD \, then there is a ( e R with xt ^ W.

b) If N' is a neighborhood of | co ^ , then there is a neighbor-
hood W' of |o)j such that y+(X — N') c X — W'.

To prove a), let W be any compact neighborhood of Q(X),
and let W = X — W.

Since X — N' is a compact subset of X, 6) is a consequence
of Lemma 3.

Now, suppose t c o j is negatively asymptotically stable. Let
W be a compact set in X such that W === X — W is the
domain of asymptotic stability of ^ c o ^ , We show Q(X) c W.
If not, there is an x e X, and („ —> + °° such that xt^ —> z e W'.
We may suppose all rc^eW'. Let U' == X — { x } ^ U' is
a neighborhood of co. Choose a compact subset K of W such
that xt^ e K, for all n. As we observed in § 17, asymptotic
stability in a locally compact space is uniform; hence there
is a T > 0 such that K( c U', for ( < — T. But („ > T, for n
sufficiently large, and therefore x = {xtn){— tn) e K (—tn) c U'.
This a contradiction.

19. Similar to Theorem 10 we have :

THEOREM 12. — Let X be second countable, and suppose
that 9 is ultimately bounded. Then:

(i) 9 is absolutely bounded.
(ii) There is a continuous generalized Liapunov function at

infinity V, defined on the complement of a compact set K, such
that if x e X — K, and t > 0, V(^) < \{x).

(iii) There exists a compact set M which is completely stable.
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Proof. — Statements (i) and (ii) follow immediately by
dualizing Theorem 10. To prove (iii), let K be a compact
subset of X with Q(X) c K, and let M == D(K). Since 9 is
absolutely bounded, closedness of D implies that M is compact,
We show that M is completely stable (6).

Recalling that D2 === D, we have
Di(M) c D(M) = D(D(K)) = D(K) = M.

Hence M is 1-stable. Since Q(X) c K c D(K) == M, M is
completely stable.

20. LEMMA 4. — Let M be asymptotically stable^ and let
W be the domain of asymptotic stability of M. Let N be a compact
positively invariant set with M c N c W. Then N is asymptoti-
cally stable.

Proof. — Since Q(W) c M c N, it is only necessary to show
that N is Liapunov stable. Let U be a relatively compact
open set with N c U c U c W. Since U is a relatively compact
neighborhood of M, there exists T > 0 such that Ut c U, for
all ^>T. Now, let yeDi (N) . Then yeD^(x), for some
x e N. Hence there exist sequences [x^\ in X, and ^ "> 0
such that Xn -> x, and x^tn —> y ' It the sequence ^n| is bounded,
then y e N, since N is positively invariant. If not, („ ̂  T,
for n sufficiently large, and x^tn e U^ c U, so y e U. Since U
is an arbitrary relatively compact neighborhood of M, we
have Di(N) c N. The proof is completed.

Now, suppose that M is completely stable. Then Lemma 4
tells us that any compact positively invariant superset of
M is also completely stable. Therefore, it is reasonable to
ask for a smallest or «minimal» set which is completely
stable (that is, one which contains no non-empty proper
subset with the same property). We will show that such a
set exists. First, we state a lemma, the proof of which is left
to the reader.

LEMMA 5 .—( i ) Let M be completely stable and let t > 0.
Then Mt is completely stable.

(6) Actually, it can be shown that D^jK) is completely stable. However, it is
not in general true that K is asymptotically stable. See [9] for an interesting example
of this phenomenon.

14
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(ii) Let j M J a e a j be a family of completely stable sets.
Then M* == Q t M a | a e d l j is not vacuous, and is completely
stable.

THEOREM 13. — Assume the compact positively invariant
set M to be completely stable. Then M* = Q JM(|( ̂  0^ is
the minimal completely stable set.

Proof. — Since the collection of sets tM(|(^ 0} constitutes
a decreasing family of non-empty compact sets, M* is non-
empty, and, by Lemma 5, M* is completely stable. It is easily
shown that M* is positively and negatively invariant. Sup-
pose that N is a completely stable proper subset of M*. Let
y <= M* — N, and let U be a neighborhood of N with y « U.
Let (o > 0 such that M% c U. Then z = y{ — to) e M* and
y = ztQ e M% c U, which is a contradiction.

21. Asymptotic stability cannot be described in terms of
invariance under an abstract prolongation, as the following
considerations indicate. Suppose there were an abstract
prolongation Q such that Q(M) = M if and only if M is asympto-
tically stable. Now, consider a compact invariant set M,
such that M = Q [ Mn|n == 1, 2, . . . ^ , where each Mn is asymp-
totically stable, but M is not asymptotically stable. Such
exist; see example c) in Chapter IV. Then Q(M) c Q(Mrt)==M^,
so Q(M) c Q ^ M»| n = 1, 2, . . . j = M, and M would have to be
asymptotically stable.

Nevertheless the prolongations Da do throw some light
on the notion of asymptotic stability. For x e X, and a an
ordinal number, define Dy,(x) = Dg,(x)—^{x). Then D^(x}
is, so to speak, the ((non-trivial part)) of Da(^). Of course
Da(^) may be empty.

•

THEOREM 14. — If M is asymptotically stable, and W is
the domain of asymptotic stability, then Da(W) c M, for every
ordinal number a.

Conversely, if there is a neighborhood W of M such that,
for every x e W, there exists an ordinal number a ̂  1 for
which Da(^) is a non-empty subset of M, then M is asymptotically
stable.
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Proof. — Suppose M is asymptotically stable. Let W denote
the domain of asymptotic stability. Then, using the property
of uniform asymptotic stability, it is easy to show that, for
rceW, Di(^)cy+(^)UM. That is, Di(^) c M. Now, let a be
any ordinal number. Suppose for all ? << a, and all x e W,
Dg(rc) c M. It follows immediately that if yeE^), then
either y e M, or t/ey+(a;).

Now, suppose x e W, and y e Da(^). Then, there are sequences
Xn —^ x, y^ —> y with i/n e E^(^). If infinitely many y^ are in
M, then y e M. If not, then y^Y4"^), and

y e D^) == y+(^) U Di(^) c y+(a;) U M.

That is, Dy,(x) cy+(^)UM, and therefore Da(^) c M, for all
rceW.

To prove the second part of the theorem, observe that if
^eM, then D^z) = y+(z)UD^) c MUM = M, so that M is
Liapunov stable. Let rre=W — M. We show that Q{x) c M. Let
a be an ordinal number for which Da(^) ~=f=- ^ and Da(^) c M.
Then Da(n;) == ^(^UDa^) c Y+(^)UM. Therefore, since

Q{x) c D^(^)
it is enough to show that Q^fly4'^) ===,0 or, what is the
same thing, x^Q{x). First, we show that x is not periodic.
If it is, let A ==== y^), and let N be a compact neighborhood
of A with N n M == ^. Then since ^ ^= Da(.r) c M, it follows
that T)a{x) <t N. Therefore, there is a point z <= D^(x) n ^)N.
Since js « T^^)? z e M. This contradicts N n M == ^.

Finally, suppose a;eQ(rc), and that a; is not periodic. Let
N be a neighborhood of x with N n M == ^. Then, (by [10],
Theorem 4.10, p. 348) there is a point ;s e N n Q(a;), with
z^y^.r). Then zeDa(^). But this contradicts D^x) c M.

8. Strict stability and boundedness.

22. In this chapter, X denotes a region of euclidean Tz-dimen-
sional space R". Moreover, the dynamical system 9 under
consideration is assumed to consist of the solution curves of
the autonomous system of differential equations

(1) ±=f(x)
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where x and f are n- vectors. We assume that f is defined and
continuous in X, that f(x) = 0(||rc[|), and satisfies a local
Lipschitz condition in X. Under these assumptions, the solu-
tions of (1) depend continuously on the right side of (1), and
form a dynamical system in X [10, Chapter I]. Then, if x e X
and (e R, by xt we mean ^(x^ t) where IT is the unique solution
of (1) satisfying ^(rc, 0) = x.

Let § > 0. By a ^-solution of (1) we mean an absolutely
continuous curve ^ in X satisfying

(2) \\'W-fW{t})\\<S

for all (e R for which ^(() is defined.
If x e X, let Y§(.») be the set of S-solutions ^ of (1) satisfying

W =x.
Next, we introduce the following subsets of X:

Ps(x,t)= i^l'^Wh
Ps(.r) = U|P5(^)|00^

and
P(.r)=ntP6(.r) |8>0|.

The set P{x) consists of the points y for which, for any
S > 0, there is a S-solution ^ such that ^(0) = x and ^(() == y,
tor some (J> 0.

Note also that y e= Ps(rc, () if and only if ^ e=Pg(y ,—() ,
and that P$(a;, ( + ! ' ) = = = P§(P§(^, t), (').

As an example, consider a parallel flow in the plane, defined
by the equations x-^ = 1, x^ = 0. If x <= R2, then P{x) coincides
with the positive semi-orbit f^^).

A second example is furnished by the equations of a harmo-
nic oscillator with damping x^ == x^ x^= —x^ —^x^ (^ > 0).
Here P(0) = |0|, where ^ O j denotes the origin, which is
a stable focus.

Consider next a center, given by x^ = x^ x^ = —x^. If
rce=R 2 , and S > 0, any point y e R2 may be joined with
x by a S-solution. Then P^(x) == R2, and consequently P{x) = R2.

23. The following lemma is an easy consequence of the
continuous dependence of the solutions of (1) on the function
A7).

(7) It follows, for example, from the « fundamental inequality », [10, p. 13].
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LEMMA 6. — Let x e X and let £ and T be positive real
numbers. Then there exists § > 0 such that if d{x, x'} < S,
and y e= P§(^', (), wAere |(| ̂  T, ^72 J(̂ , y') < £.

The next lemma plays a central role in all subsequent
considerations.

LEMMA 7.—Let \x^\ and \yn\ be sequences in X with
Xn -> x and y^ —> y. Let Sn be a sequence of positive real numbers
with §n -> 0, and suppose y^ e= P^(^n). Then y e P{x).

Proof. — If y == x, there is nothing to prove, so suppose
y =^ x. Let § > 0. We show yePg(rc). By hypothesis, there
exists for every M, a ^-solution ̂  of (1) satisfying ^(0) == x^
^n{tn) = Vn with ^ > 0. Let U and V be relatively compact
disjoint neighborhoods of x and y respectively, and suppose
that Xn <= U, yn €E V, and §„ < S/3. Let t' = inf ^. It can be
shown, using lemma 6, that (' > 0. Let A be a compact neigh-
borhood of U u V,and let 0 < to ̂  t' such that U( c A and

V(—()cA for O ^ t ^ ^ .
Zi

Now we define the following sequence of functions :

iW+xn--^{2t—t,) for O^t^^
I to Z

W= ^n{t) for ^^t^--^,

W + ^——^» (2t + t, — 1Q for t^—^^t^.____ <o^'<^ ~r —.— [^ ~r ^ — ^n) ior ^ — —
^0 ^^0 ^

Clearly, y^O) = ^ and 9^(^) = y . We show that 9^ is a
S-solution of (1), for n sufficiently large. Differentiating, we
obtain

^^^^"—^ 0^(^^
IQ — — 2

^)- k(^ ^^^<n-^.

^(() + 2^—^-"(2f+ 4-2(,), t^-^^t^.
IQ Zi
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This holds almost everywhere in [0, ^]. Now

ll?n(<) -/•(?^))|| ̂  ||9n(<) - ̂ )11 + \\W) -f(W)\\

, +||A^))-/>(^))||

<^max^||^-^||,||^-l/]j+^-+||A^))-/>(?n^))||.

In order to show that 9^ is a o-solution of (1) for large n, it
is therefore only necessary to show that \\f(^n(t))—f{fn(t))\\—>0,
as n -> oo.

Now, 9,(<) = ̂ ), for -^-^^—4 so we need only
2i 2i

consider the intervals Io = J O , - °L and !„ = j\—-^ ^1-

Let N be a relatively compact neighborhood of A.

Since U( c A and V ( — ( ) c A , for 0^^^ we may
Zi

apply Lemma 6, and obtain ^(() e= N, for ^I^UL. Since
l l9n(<)—^)| l^max I[|^—a;||, | |^—y||j, we may find a
compact set K =) N such that <p^) e K, for ( e I ^ U I n , and n
large. Since f is uniformly continuous on K, we obtain
\\f{W)—f^nW\\—0 as n->oo. The proof is completed.

24. LEMMA 8. — P is a transitive prolongation.

Proof. — P obviously satisfies condition (a), and (?) follows
immediately from Lemma 7 by putting §„ = 0. To show that
(y) holds, let A be a compact subset of X, let x <= A° and let
y e P(x) — A. Then there exists a sequence of numbers
^n > 0, ^ -> 0, and ^-solutions ^ of (1) with '^(0) == x
and ^(^) == y, where („ > 0. Let 0 < T^ ̂  („ such that
Vn = ̂ n(^n) €s ^A. By choosing a subsequence if necessary
we may suppose y^ -> y e ^)A. By Lemma 7, yeP(rc), and (y)
is proved.

To prove that P is transitive, let y e P ( x ) and z ^ P { y ) .
Then, if S > 0, there are S-solutions f^ and ^2 with ^i(0)==.r,
^i(^i) == V, W) = y, ^2(^2) == 2, where (i, (2 > 0. Then

^.\^iW for 0^^,
T f ^ (<—<i ) tor <i^^<i+^

is a S-solution with ^(0) == x and ^((i + (2) == z.
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COROLLARY 3. — If M is compact, then P(M) is closed and
positively invariant.

The compact set M in X is called strictly stable if, for any
£ > 0 there exist S > 0 and YJ > 0 such that

Po(S,(M)) c S,(M).

The dynamical system 9 determined by (1) is called strictly
hounded if, for any cr > 0, there exist S > 0 and T > 0 such
that | M I < ( T implies ||P^)|| < T (8).

THEOREM 15. — Let M be a compact subset of X. Then M
is strictly stable if and only if P(M) === M.

Proof. — By Theorem 2 and Lemma 8, P(M) == M it and
only if, for every neighborhood W of M, there is a neighbor-
hood U of M such that P(U) c W°. We may suppose that U
and W are compact. Then an application of Lemma 7 tells
us that P§(U) c W, for some S > 0. That is, M is strictly stable.
The converse is obvious.

Theorem 15 immediately yields :

COROLLARY 4. — Let Mn(n == 1, 2, . . .) be a decreasing
family of compact invariant sets, each of which is strictly stable.
Then M == | | Mn is strictly stable.

n=l,2,...,
Applying the duality principle between stability and

boundedness, discussed in Chapter VI, we obtain :

THEOREM 16. — The dynamical system 9 is strictly bounded
if and only if P(B) is compact whenever B is compact.

The last theorem in this section is the strict stability analo-
gue of Theorem 6. The proof is similar to that of Theorem 6,
and is therefore omitted. (See the concluding remarks in
Chapter V.)

THEOREM 17. — Let M be a compact positively invariant
set. Then the following are equivalent.

(8) Strict stability is also called stability under persistent perturbations, total stability
and weak stability under perturbations. Similarly, strict boundedness is called bounde-
ness under persistent perturbations or total boundedness [14].
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(a) M is strictly stable.
(b) There is a fundamental sequence of strictly stable neigh-

borhoods of M.
(c) There exists a non-negative continuous function V defined

on a neighborhood W of M such that \[x) == 0 if and only if
x e M and such that V(y) ̂  V(^) whenever y e P(a;).

25. Now, we shall indicate the relationship between strict
stability and boundedness with some of the stability and
boundedness notions studied in earlier chapters. Actually, (i)
is known ([7], [8], and [11]) but the proof is included here
for completeness.

THEOREM 18. — (i) If the compact invariant set M is asympto-
tically stable^ then it is strictly stable.

(ii) If M is strictly stable^ it is absolutely stable,
(iii) If the dynamical system 9 is strictly bounded^ it is absolu-

tely bounded.

Proof. — (i) We show: if e > 0, there exist ^ > 0 and
S > 0 such that x e S(M, S) implies P^{x, t) c S(M, e) for
all t ̂  0. We may suppose that S(M, s) is contained in the
domain of asymptotic stability of M. Choose § and t so that

0 < S < ̂  S(M, S)R+ c S (M, 4V and S(M, e)t c S (u, -^\2 \ 2 / \ 2 /
for <^T. By Lemma 6 we may choose ^ > 0 so that x e S(M, S)
and y e P^(^, t), O^^^T implies d{xt, y) < S/2. Then, for

.reS(M,§), O^^T,

( ^ \
we have P^r, <) c S M,—+-( :7)CS(M, &). Moreover, since

n;T e S(M, 8/2), P^r, T) c S(M, §). Now since

P^, ( + T) == Pr(P^ ^), <),
we obtain immediately P^(^, t) c S(M, e), for 0 ̂  ̂  ̂  2r,
and P^, 2r) c S(M, S), whenever ^ e S(M, S). The conclusion
follows by an easy induction.

(ii) If a; e X, and y is the first uncountable ordinal, then
D^rc) is the smallest transitive prolongation containing
^{x). Since ^{x) c P(rc), and P is a transitive prolongation,
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D^)cP(^). Therefore, if P(M) c M, D^(M) c M and the
assertion follows from theorem 15.

(iii) This is an immediate consequence of Theorem 16.
None of the converses to the statements in Theorem 18

is valid. Let M = FIM^ where each M^ is asymptotically
stable, but M is not. [Example c) in Chapter IV.] Then each
Mn is strictly stable, and Corollary 4 tells us that M is strictly
stable. A center in the plane provides an example of an abso-
lutely bounded dynamical system is not strictly bounded;
here the origin is absolutely stable and not strictly stable.

26. Actually, using the method of proof of Theorem 18,
it may be shown [II], that asymptotic stability implies strict
asymptotic stability, that is, Mis strictly stable and there is a
neighborhood W of, M such that if £ > 0, then there exist § and
T > O such that rceW implies P^xt) c Sg(M), for ( > T.
Conversely, strict asymptotic stability implies asymptotic
stability.

Strict asymptotic stability (and therefore asymptotic sta-
bility) can be conveniently characterized in terms of a set
which is formed in an analogous manner as the omega limit
set. If x e X, we define Qp{x) = (^ P{xt). Since P{xtf) c P(xt)

f€R

whenever t' > (, it follows that Qp{x) ==C^\P(xt).
t^to

Our final theorem characterizes strict asymptotic stability
by means of Qp.

THEOREM 19. — The compact invariant set M is (strictly)
asymptotically stable if and only if there is a neighborhood W
of M such that Qp(W) c M.

Proof. — Suppose M is strictly asymptotically stable. We
will find a neighborhood W of M such that Qp(W) c Ss(M)
for every s > 0. Choose W as in the definition of strict
asymptotic stability, and let £ > 0. Choose S and T such
that Pg(.r, () c Ss(M), for t^ T, and x e W. Then

P^, ( + T) c S,(M),
for x <= W and t ̂  0. Now

Pg^T, () C P8(P^, T), () == P^X, T + t) C S,(M)
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for (^0. Then P§(^)cS,(M); it follows that P(^T) c Sg(M),
and then Qp(a;) c Se(M).

Conversely, suppose that W is a compact neighborhood of
M for which Qp(W) c M. We show that if £ > 0, there
exist T and S > 0 such that P^{x, t) c Sg(M), for t^T, and
x € W. If not, there are sequences Xn e W, §„ —> 0, tn —> 4- °° ?
and i/^ e Pg^^n? tn) such that rf(yn? M) = £ > 0. Without
loss of generality, suppose y^ —> y and Xn —> x e W. Let T > 0,
and suppose all („ > T. Now, ^ e P^(^n, („) = Pg^Pgj^, r),
^—T) . Let ^eP^(^,r) such that ^e P^, ̂  — r). By
Lemma 6, z^ —> x^y and by Lemma 7, yeP(n;T). That is,
y e (^ P(^r) c Qp(^) c Qp(W). But d(y, M) = £, and this

T^O

contradicts Qp(W) c M.
27. In the two following diagrams we summarize the rela-

tions between the various types of stability and boundedness
discussed in this paper. Except where indicated, the converses
of the implications are not true.

asymptotic stability ^—^ strict asymptotic
stability. ( . .absolute stability <—— strict stability

| (total stability)

stability of order a(a > 1)iLiapunov stability

ultimate boundedness

absolute boundedness

strict ultimate
boundednessi

strict boundedness
(total boundedness)

boundedness of order a(a > 1)

boundedness
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