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ZEROS OF FEKETE POLYNOMIALS

by B. CONREY, A. GRANVILLE,
B. POONEN and K. SOUNDARARAJAN

1. Introduction.

Dirichlet noted that, from the formula

T{s) =ns [ x^e-^dx = n8 { (-log^-1^-1 dt,
Jo Jo

we may obtain the identity

r< (̂., (,)) ' r(.) E (•̂  » ̂ (- „..)- E (̂ ,- ..
/, -.^ • n^l •/" ra^l '

- y1 (-^g^)"1 A^- ̂"yo ^ i-^
Here (-) is the Legendre symbol and

(1.2) /^)-E©^
a=0 '

Equation (1.1) allowed Dirichlet to define L ( s , ( , ) ) a s a regular function
for all complex s. Fekete observed that if fp{t) has no real zeros t with
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866 B. CONREY ET AL.

0 < t < 1, then Z/(s, ( _ ) ) has no real zeros s > 0; and the fp(t) are thus
now known as Fekete polynomials. Indeed, if L(s, (-)) = 0 then by (1.1)

and the mean value theorem there is a t in (0,1) with ^~ l og^ s— j p^ = 0,
and so fp(t} = 0 here.

Among small primes p, there are only a few for which the Fekete
polynomial fp(t) has a real zero t in the range 0 < t < 1. In fact, we may
verify computationally that there are just 23 primes up to 1000 for which
fp has a zero in (0,1). This implies that there are no positive real zeros of
L(5, ( , ) ) for most such primes p, and in particular no Siegel zeros (that
is, real zeros "especially close to 1"). It is interesting to note that for those
primes p = 3 mod 4 for which fp(t) does have a zero in (0,1), the class
number of Q{^^p) is surprisingly small (for example p = 43,67,163,...).
Unfortunately this trend does not persist: Indeed Baker and Montgomery
[1] proved that fp(t) has a large number of zeros in (0,1) for almost all
primes p (that is, the number of such zeros —^ oo as p —» oo, and it seems
likely that there are, in fact, x log log p such zeros).

In this paper we shall study the complex zeros of fp(t). Using zero
locating software one finds that, for primes p up to 1000, about half of the
zeros lie on the unit circle; leading one to expect this to be the general
phenomenon. It turns out to be fairly easy to prove that at least half of
the zeros of fp(t) are on the unit circle (that is \t\ = I): First note that

(P-l)/2 , .
F^):=.-^/,(.)= ^ (a)(^-^+(^)^-.)

a=l ' v A /

by combining the a and p — a terms1. Taking z = e2^ we have
(p-l)/2

2 ^ ( a } cos({2a - p)TTt) i f p = l m o d 4
ra^

0^1 v^

(P-l)/2
(1.3) Fp (e2^) =

2i ^ ( a } sm{(2a - p)7rt) if p =3 mod 4.
a=i ^

Define Hp(t} = F^e2^) if p = 1 (mod 4), and Hp(t) = -iFp{e2^7rt) if
p = 3 (mod 4). By (1.3) we see that Hp(t) is a periodic, continuous real-
valued function when t is real.

Now if Cp = e2^^ then, for all k not divisible by p, /p(C^) is a
Gauss sum and has absolute value ^/p (see Section 2 of [2]); therefore

1 Here z = e2^* with 0 ^ t < 1, so that there is no ambiguity in the meaning of 2;-p/2.
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ZEROS OF FEKETE POLYNOMIALS 867

1^(^)1 =^p. Moreover

^(tf) = «.')-/'E (^c;*»(-1)'^) § C^1

-(-l)^)^).

Therefore if (A;/p) = {(k + l)/p) then ^(fc/p) and Hp((k + l)/p) have
different signs. Since Hp(t) is real-valued and continuous, it must have a
zero in-between k / p and (/c+l)/p, by the intermediate value theorem. Thus
the number of zeros of Hp(t) in [0,1) (and so of Fp{z) on the unit circle) is

^#L:l^p-2 and ( k ) = f^±l)l = P—l
I \p) \ p ) \ 2 '

as we shall see in Lemma 2.

Other than possible zeros at z = -1 and at z = 1, this accounts for
all the zeros on the unit circle for each prime p < 500. So the question is,
is this all, for all p? The answer is "no" and indeed one finds more zeros
when p = 661. In general one has the following:

THEOREM 1. — There exists a constant KQ, 1 > ^o > 1/2 such that
#{z : \z\ = 1 and fp(z) = 0} ~ ̂ p as p -> oo.

We determine /^o in terms of another constant ^ defined as follows:

THEOREM 2. — Let Tj be the set of rational functions

^ ) = 1 4 - — — + V -5!-
x 1-' bfe ̂

JT'0,-1

where we allow each ^ to take value +1 or -1. There exists a constant
M, 1/2 > M > 0, such that

#{g C Tj : g(x) = 0 for some x <E (0,1)} ~ ̂ #{g G J='j}

as J —> oo.

The constants KQ and /^i are related as follows:

THEOREM Ij. — In fact KQ = 1/2 + /^i.

It is still an open question to determine the value of ^o. It is known
that a "random" trigonometric polynomial of degree p has p/V3 zeros in

TOME 50 (2000) FASCICULE 3



868 B. CONREY ET AL.

[0,1) (see [7]), so one might guess that KQ = 1/\/3 ^ 0.5773... However
this is not the case. We will show

0.500813 > KQ > 0.500668.

While it is theoretically easy to find the value of KQ, we do not know a good
practical way of achieving this.

As well as determining precisely the proportion, KQ, of the zeros of
fp(t) which lie on the unit circle, we would also like to understand the
distribution of the set of zeros in the complex plane. There are several easy
remarks to make: By (1.2) we have

fp/p(i/t)=(^-)/p(()
and so the zeros of fp(t)i other than t = 0, are symmetric about the unit
circle (i.e. they come in pairs other than at t == 0, =L1). We also note that,
for \t\ > 1,

IA.O/'-'I = g 0^ ̂  - EKJ,̂  > 1 - i.î T.
However if \t\ ^ 2 then 1 — l/{\t\ — 1) ^ 0, and so fp(t) has no zeros in
\t\ ^ 2. By symmetry it has no zeros in \t\ ^ 1/2 except 0. Thus

PROPOSITION 1. — The zeros of fp(t), other than at 0,1 and -1
come in pairs a, I/a. Moreover, other than 0, they all lie in the annulus
[r C C : 1/2 < |r| < 2}.

As for the distribution of the arguments of the roots of fp(t) we
can use a beautiful result of Erdos and Turan (Theorem 1 of [3]), which
immediately implies that, for any 0 ^ a < f3 < 1,
(1.4) #{r € C : fp(r) = 0, a < arg(r)/27r < (3} = (f3-a)p+0(^/p\ogp).

The arguments above, and those used in proving Theorems 1 and 2, focus
on determining which arcs ( ^ K ^ K ~ [ ' 1 ) of the unit circle contain a zero of
fp(t). Evidently (1.4) cannot be used so precisely. However we can show
that there are zeros of fp(t) near to such an arc, so long as fp(t) gets "smalP
on that arc.

THEOREM 3. — Suppose that e > 0 is a sufficiently small constant.
Ifp is a sufficiently large prime and K an integer such that there exists a
value oft on the unit circle in the arc from ̂ K to CT^ w1^ l/p(^)l < e\/P?
then there exists r = r^^~0 with fp(r) == 0 where 0 < 0 < 1 and
1 - e1/3/? < r ^ 1.

ANNALES DE L'lNSTITUT FOURIER



ZEROS OF FEKETE POLYNOMIALS 869

Remark. — Applying Proposition 1 we also have /p((l/r)<^+0) = 0.

As we have already discussed, Gauss sums ̂ ^ (^)^ (and many
generalizations) have the surprising property that they have absolute value
exactly equal to ^/p. It is, we think, of interest to ask what happens when
we replace the primitive p-th root of unity ̂  in the expression for a Gauss
sum^above, by some primitive 2p-th root of unity. These may be written
as Cp or CJ^4'1, or -<^; so we must consider the values of fp(-^). Do
these all take on the same absolute value? The answer we now see is "no"
as we evaluate the distribution of these absolute values:

THEOREM 4. — For any fixed real number p

#^k : 1 ̂  k ^ p such that Hp (k-^} < pVp\ ~ Cpp

as p —> oo where

I I / 1 0 0 . . , TT 2 (^\ dx°p = o + - / sm(p7rx) cos2 — —.
2 7rjx-0 n^l \ n } X

n odd

Moreover c_^ and 1 - Cp = exp(- exp(7rp/2 + 0(1))) for positive p.

After proving this in Section 6, we indicate how our proof may
be modified to establish several related results. First, to show that
m^x\z\=l \fp{^)\ > ^/P^og^ogp, so re-establishing a result of Montgomery
[5]. Second to understand the distribution of the values of the Fekete poly-
nomial at (p - l)-st roots of unity.

Acknowledgements. — We thank Jeff Lagaria^ for facilitating this
joint endeavour, Peter Borwein, Neil Dummigan, Hugh Montgomery, Pieter
Moree, Mike Mossinghoff, Bob Vaughan and Trevor Wooley for some
helpful remarks, and the referee for a very careful reading of the paper.

2. First results.

Let \ be any character (mod?) and let k be an integer not divisible
by p. Note that

(2J) E^)^ = XW^ak)^ = xW^xWCp6.
"^ a=l 6=1

TOME 50 (2000) FASCICULE 3



870 B. CONREY ET AL.

In particular we see that /p(C^) = (^)/p(Cp)^ whereas in contrast /p(l) = 0.
Recall that for a non-principal character \ (modp), the Gauss sum r(^) is
Z^=i xW^p' ^us /p(Cp) is the Gauss sum r((-)). It is easy to determine
the magnitude of |/p(Cp)h Note tnat

(p - iv.(Cp)2 = E ̂ fc)2 = E E (^^^
fc=0 fc=0a,b==0 A

p-1 , p-1 p-1 ,

V i^^fW}^,, V 1'°?''E^)!;^'1^!:^)'^)^!).
a,b=l ' k==0 a==l ' x

b=p—a

Hence we have /p(Cp)2 = (-I/?)?, and so |/p(Cp)| == y^* Gauss showed
more and determined that

f ( r \- f ̂ /p i f ^ = l (mod 4),
P { 3 P ) \zVP if P =3 (mod 4).

Since fp(^) = (k/p)fp(Q, for 1 ̂  k ^ p - 1, and /p(l) = 0, we get
by Lagrangian interpolation

^)=E^)n(—^)-
k=0 j=0 ^^P >P /

3^k

Note that
P-1 ^p _ 1n^)-—
j=o z ^P

and that

n (^ - ̂ ) = ̂ "^ H(1 - ̂ ) = p^"-
J=0 .»=1
j^

Hence

r 2 2 ^ p f^ = p ^W ^(^ cP Jp^J ^ ^ ^"^Jp^) ^ v- (k\ ^p
fp(Q ^ -1 /p(Cp) ^/2 - z-^2 ^P^- ̂ '

P^^ ^ V^ / ^ ^ Sp

^ \ p ) z - ^ 'v * / ^ /'/" ^ ~o 1 - / • / / - ^ -s/n/2 ^--n/2 / ^ V ^ / ^

If H = 1 then note that z P / 2 - z - P / 2 € %R, and from (1.3) and /p(Cp)2 =

(-l/p)p we have z~^ fp(z) / f p ( ^ p ) € R. Thus the right side of (2.2) c zR

ANNALES DE L'lNSTITUT FOURIER



ZEROS OF FEKETE POLYNOMIALS 871

for all \z\ == 1. To facilitate studying fp(z) as z goes around the unit circle
from C^ to C^4-1, we write z = ̂ +x = ̂ e^/P and then let

(2-3' -̂(te^L.-
_ . , K . K^ ,^______
='[''\.^^>^•^•

Thus g?^K{x) is a real valued function of a; € [0,1].

PROPOSITION 2. — IfO ^ K ^p-lis an integer with (K) = (K±l)
then gp,K(x) has exactly one zero in (0,1). Equivalently, fp{z) has exactly
one zero on the arc of the unit circle from (K to ̂ K+l. If (K-) = —(-^±3-)
then Qp^K ho-s either no zeros, or exactly two zeros in (0,1). Equivalently,
fp(z) has exactly 0 or 2 zeros on the arc from ^K to C?^1-

Remark. — In the above proposition, and henceforth, we count zeros
with multiplicity.

Before proving the proposition, we evaluate Y^k^i sm^fc/ ) •

LEMMA 1. — For all integers p ^ 2,

^ 1 _P2-!
^sin^f) 3 •

Proof. — Put A(z) = n^=^(^ ~ C^)- Logarithmic differentiation
shows that

f . A ^ ) y A ^ ) 1 , ^ y^ ^ _,! ̂  1
1 I A{z) ) ± A(z) ;l.=i ^ (1 - C^)2 4 ̂  ^2 ̂ \ •

However, A(z) = z^- = z^1 + ̂ p-2 + ... + 1 and using this to evaluate
the left side above, we get the lemma. D

Proof of Proposition 2. — Note that with g == Qp^Ki we have
lim^Q+g(x) = oo, and lim^i- g{x) = ~{K)(K~1)00• Further observe
that

TOME 50 (2000) FASCICULE 3
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, 2n/K\ ^ fk\ ^-k+x

9 w ~ ~ p \ p ) ^ \p) (C^-^ - 1)2
" ' \k-K\<p/2 • ^P i '

= - ^ ( K } V ( k } 1

2 P V P / |fc-fep/2 Wsin^-fc+.r))-

If (-^) = (-^ l̂) then, by Lemma 1,

(2.4) l^)l^^(,i^2^+^2^(i_^- ̂  sin2^-^))

b'l<p'/2
7 1 - / 2 P2-l^

>^p[^)-^)>o-

since the sum of the first two terms is minimized when x = 1/2. Hence
g ' ( x ) -^- 0 for all x € (0,1), so that g is monotone decreasing in [0,1] going
from oo to —oo. Thus g has exactly one zero in this interval.

Moreover

^ - 7r2 ( K } \- ( k } COS^K-k+x))
^; l.-^^81113^^-^-))'

Nowif(f)=-(^ l)then

I " ( ^o^V008^^ cos(g(l-^)) cos(gg-^)) \
}g wl - ̂  ^sin3 (^) + sin3 (^(1 -^)) ^^ |sin(^ -x)^)'

J^0,l

Let ^ be the minimum of cot^t) over t = x, 1 — x. Since cott decreases
rapidly as t goes from 0 to Tr/2 we see that the above is

7T2 / 1 1 ^ 1 \

^ ^^Vsm2^) + sin^^l-^)) ~ ̂  sin2^^ - j))Y > '
|J|<P/2

as in (2.4). Thus g ' ( x ) is monotone increasing in (0,1) going from —oo to
+00. Thus there is a unique XQ in (0,1) with g ' ( x o ) = 0, and the minimum
value of g{x) is attained at XQ. Plainly g has 0 or 2 zeros depending on
whether g(xo) > 0, or g(xo) ^ 0. This proves the proposition. D

From Proposition 2 we know that fp(z) has at least as many zeros on
\z\ = 1, as there are values 1 ̂  K ^ p - 1 with (Jc) == (-Fc±l). We next
determine the number of such values K.

ANNALES DE L'lNSTITUT FOURIER



ZEROS OF FEKETE POLYNOMIALS 873

LEMMA 2 (Gauss). — For any non-principal character \ (modp),
we have

(.5) EX(W+^{^1 ;̂ ;:.

Hence

4(^):(^(^1)}^,

and 4(^,,);(^-(^)}.^1.
Proof. — lfp\k then the right side of (2.5) is ̂ p^ |^(6)|2 = p- 1.

Suppose now that p f fc, and let c = (b + /c)/& = 1 + fc/6. As b runs over the
non-zero residue classes (modg), note that c runs over all residue classes
except the residue class 1 (modp). Hence the right side of (2.5) is

E ^(c) = -1'
c (rnodp)

c^l (modp)

as desired. D

If (3-) = ~(K~1) then we need to determine (in the notation of the
proof of Proposition 2) whether g{xo} > 0 or ^ 0. This depends heavily on
the values of (J-) for k neighbouring K. The following lemma shows that
these neighbouring values behave like independent random variables.

LEMMA 3 (Well). — Fix integer J , and then the numbers ^€{—1,1}
for each j with \j\ < J . We have, uniformly,

#L (modp) : (^) = 6, for all \j\ < J\ = ̂  + O(J^p).

Proof. — The above equals

E^n^^c-7))^^
.=i2 ijKjY v P ' )

=-^+o(^— Y Y(H^-3)\ \yj-i + u^ 22J-1 2^ 2^{ p ) " ' } •
' SC{\j\<J} x=l l ' /

Syt9

TOME 50 (2000) FASCICULE 3



874 B. CONREY ET AL.

By WeiRs Theorem [8], if f(x} is a squarefree polynomial (mod?) then

l^)-^) « (degree/)v^.
1;E=1 p'a^l

Hence the above is

P . ^ ( VP 2^ f2J-l\ ^ A
=227^^+O^E( m )m+J)-

and the result follows. D

We conclude this section by determining the order of the zeros of
fp(z) at ±1. In fact we shall determine the number of zeros of fp(z) on
the arcs ^p-l)/2 to ^p+l)/2 (which contains -1), and Cp-1 to Cp (which
contains 1).

LEMMA 4. — Ifp=l (mod 4) then fp{z) has only a simple zero at
z = -1, on the arc from C^'^12 to ^p+l)/2, and fp{z) has only a double
zero at z = 1, on the arc from (^p1 to (^p. If p = 3 (mod 4) then there are
no zeros of fp{z} on the arc from Cf to Cp ? and fp(z) has only a
simple zero at z = 1 on the arc from C,"1 to <^>.

Proof. — We make free use of the fact that (—1/p) = 1, or —1
depending on whether p = 1 (mod 4), or 3 (mod 4). Let's begin with the
arc from ̂ p-l)/2 to ̂ p+l)/2. We take K = (p - 1)/2 in Proposition 2. Note
that (f) = (K^) ifp = 1 (mod 4), and (f) = -(^) ifp = 3 (mod 4).
In the first case, Proposition 2 tells us that there's exactly one (simple)
zero on this arc. Since

p-i p-i
^a^ a ^ _ l\-^/ ^al^)'D-^)4D-')'(©-('^))-»

for p = 1 (mod 4), this simple zero is at —1. Now suppose p = 3 (mod 4). By
Proposition 2, we know that there are 0 or 2 zeros on this arc, depending
on whether mmx9p,K(x) > 0 or not. We now show that this minimum is
attained at x = 1/2, and the minimum value is positive. Putting j = K — k
in (2.3) we have

^M'.(f) E (^)^V / '—^ \ V / (•"r |j|<(p-l)/2 " '>?- lil^C»i-1W9 •r SP 1

-^^(^(^ 1 ^{ p } 2^ { p ;^_i ^-^_i^'

ANNALES DE L'lNSTITUT FOURIER



ZEROS OF FEKETE POLYNOMIALS 875

since K + j + 1 = -(JC - j) (modp). Evidently ft,,^(l - a;) = 9p,K(x), so
^p,x(l —^) = 9p,K(x) since gp,K(x) is real-valued. However we see that the
minimum of 9p,K(x) is obtained at a unique point in (0,1), so that must
be at x = 1/2. Now

^'D-i^'E^-E^)
a=l A a=l A fc==l F

a even fo even
where a = p — b is odd in the second sum,

/^-T^-^E'^-^-O^),
where h{-p) is the class number ofQ(v/:::p) (see Section 2 of [2]). By (2.3),
and since /p(Cp) = ^\/P by Gauss, we have

'-(1)= -©f /.(-•> -v^Hf)>(-.)
=^+(^))ft(-p)>0.

This shows that /p(^) has no zeros on the arc from C^"^72 to ^p+l)/2

when p = 3 (mod 4).

Now let's consider the arc from Cp~1 to Cp. Take K = p—1, and consider
9p,K(x) as defined in (2.3). Usually gp,K(x) would have a discontinuity at
1. but here since (K±l) = (n) = 0 we do not have this problem. Thus
9p,K is a continuous function on (0,2), and we may study fp(z) on the
arc from Cp~1 to (p by studying ^p,x(^) on (0,2). Note that for any p,
fpW = SS^i (S) = O? 80 that there is at least a simple zero at z = 1. Also
/;(!) = -z(-l/p)/p(Cp)^p-i(l) by (2.3). Since fp(z) = (-1/p)^/^),
we deduce that ^p,p_i(^) = -(-l/p)^p_i(2 - a;).

I f p = l (mod 4) then ^p-i(l) = 0 and so /p(l) = 0. Now, as in
the proof of (2.4), the first part of the proof of Proposition 2, we have
I^K^)! > 0 ^or all x C (0,2). Therefore g has only a simple zero at x = 1,
and thus fp has a double zero at 1.

I f p = 3 (mod 4) then, as in the second part of the proof of Proposition
2. |^^(^)| > 0 for x e (0,2). Thus there is a unique minimum of g?,K(x)
on (0,2), but since ̂ p_i(a;) = ^p_i(2-a;) this must be attained at x = 1.
However, by (2.3), and as /p(Cp) = i^/P by Gauss,!"•'c(l)=-:^)=-^§<•©='/'"•(-t•)>»•
TOME 50 (2000) FASCICULE 3



876 B. CONREY ET AL.

(see [2], Section 2), and so pp,j<(.r) > 0 and thus has no zeros in (0,2).
Therefore fp has only a simple zero at z == 1 on this arc. D

3. Functions with random coefficients.

If g € Fj then, for any x G (0,1), we have

1 ,., . 1 1 V-—S 6j
_ _ f " ( r y \ ___ ____ I ________________ I \ ________J

29 w - ^ + ( l - ^ 3 + ̂  (^-)3

j¥o,-i
J_ 1 ^ 1

( ) ^ + (T^)3 - ̂  (^T7)3
J/0,-1

>2(^3-2C(3)>0.

Since limt_o+ 9'W = —oo and lim^_^i- g ' ( t ) = oo we deduce that ^'(rr) has
exactly one zero in (0,1), call it XQ. Note that g(x) attains its minimum
value at .z*o. If 0 ^ t < I/TT then

-^)^-2((1^+(3^+(5^+-)=^-7^2>0•

Similarly if 1 - I/TT < t-^ 1 then g\t) > 0. Thus

(3.2) xoe^, 1-^-1.
LTT TTJ

We now show that few g are small in absolute value, at their minimum XQ.

PROPOSITION 3. — We have \g(xo)\ > J"1^ for almost all g € Fj,
where g ' ( x o ) = 0, uniformly as J —> oo.

Proof. — Consider the subset S of Tj with all the 6j fixed given
values, except when j C [1,1 + I1112} where J = J174. Let / C 5 with
^ = -1 for all j € [J, 7 + ^1/2]. Suppose that f(x-i) = 0 and let

7- E -A-
bfe '1+J

^[j,z+J1/2]

where SQ = 1, 6-1 == —1. Let ^ be any element of S with g ' ( x o ) = 0.

ANNALES DE L'lNSTITUT FOURIER
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By (3.1) note that

(3.3) \x, - xo\ « | / ' f^di = \f\xo) - f\x,)\ = \f\x^
' J X Q

1 1
(^o+j)2 < <7•

=\f\xo)-g\xo)\^2 ^
j-e[J,J+J1/2]

Hence, keeping in mind XQ, x-i C [I/TT, 1 - l/7r],

877

E9{xo) - 7 = ^
•^o+J

+0
^o + J rri + j I

1 I ,

\3\<J
j^[J,J+J1/2]

J•e[J,J+Jl/2]

17 E ^o( E
I XQ+J

4- |a;i -a'o|
j€[J,J+^1/2] \•e[/,J+Jl/2]

^ s: ^°G).je[i,i+i1/2]

since each |1/J - l / ( x o + j)\ < 1/J3/2 and there are I 1 / 2 such terms.
Therefore if \g(xo)\ ̂  I / I then

E ^-=-7^+0(1).
jc[J,J+ji]

(3.4)

Now, the 6j are independent binomial random variables, so the distribution
of their sum tends towards the normal distribution. Therefore the maximum
probability for (3.4) to occur happens when 7=0; and so (3.4) holds with
probability 0(J'-1/4), for any 7, implying Proposition 3. D

4. Proof of Theorem 2.

Suppose that g G Tj and / G ̂  with J < K, such that the ^ are
the same in each for \j\ < J . Select XQ,X^ e (0,1) so that g ' { x o ) = 0 and
f'{x^ = 0. Now

l/(^)-/(^o)|^ ̂
\3\<K Xl + J ^0 + J «E

b'K^

l^i ->gp|
^+1

< |.TI -rco|,

since XQ, x^ G [I/TT, 1-1/Tr]. Arguing exactly as in (3.3), we see that
l^o — ^i| <^ 1/<7, and so we have

(4.1) l/(^)-/(^o)|«^
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We next consider the mean-square of

\f(xo)-g(xo)\= ^ -^
^|<xa;o+•)'

To do so we will need to sum over all 6 = {Sj}j^\j\<^K ^ ^J,K^ that is
the set of all possibilities with each 6j = —1 or 1 (note that there are 2
possible values for each 6j so the set Aj^ has f^2•K~2J elements). With this
notation, the mean square is

_1__ V^ Y^ ^
K-2J Z^ Z^ /y.. -i_ /,y.K-2J Z-^ \ Z-^ Tn 4- ?
' ^A^Jj^K^0^

^•Sl^^^'^^^ ̂ ^/'^i iE
^K.^^^2 J'

Thus if '0j -^ oo as J —> oo then

^ I ̂  ^^f42) ^ 3 <--rJ-
^ ) ^ ^o+J ^1 /2 5

j^|j|<x u J

for almost all choices of the 6j.

Combining (4.1) and (4.2), we see that for almost all choices of 6j
(J ^ \J\ < K) we have

(4.3) |/0n) - g(xo)\ ̂  |/(^i) - f(x^)\ + |/(.ro) - ̂ o)| < |̂ .

Taking ^j == Jl/4/2, and combining this with Proposition 3 we see that
for almost all g € Tj^ and almost all extensions / of g to TK-^ f{xl)
has the same sign as g(xo). Summing up over all g € Fj we deduce that
^K = ^J + 0(1)5 where

#{^ ^ ̂ J ^ ^M = 0 for some x e (0,1)}
^j '-— ——————————.—————————,

#{9 ^ Fj}
and the "o(l)" term depends only on J . Therefore limj—.oo ^J exists, and
equals ACI say.

Strong bounds on /^i, which imply those in the statement of Theorem
2, are given in Proposition 6 in Section 8.

Theorem 2 follows.
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5. Proofs of Theorems 1 and 1^.

Let 1 < K ^ p-1 be an integer. If ( K ) = (K±l) then by Proposition
2 there is exactly one zero of fp(z) on the arc from ̂  to C^1; by Lemma
2 this happens for ~ p/2 values of K. Suppose now that (-K-) == —(K±l)
so that fp(z) has either 0 or 2 zeros on the arc from ^K to ̂ K+l depending
on whether min^(o,i) 9p,K{x) is positive or not. To decide this question we
need the following proposition:

PROPOSITION 4. — Suppose J ^ ^/p, and J —^ oo as p —» oo. For
almost all 1 ̂  K < p — 1 we have

^^©SCT2)^0^).
|j|<1^

uniformly for all x € (0,1).

Proof. — Note that for J ^ \j\ < p/2,

1 1 | ̂  | g - x | ̂  ^ ^ P
c^ -1 c^ - i l l(c^ - Wp -1)' ^o '+^) < < ^

and, for |j| < J,

1 ^ ^ 1 . on)
C^-l 2Z7T (j+r,)^^1^sp

Hence, putting j = K — k in (2.3), we have

, . /K\ v-^ (K — j \ 1^^=i 7 E ̂  Wrr
^ |j|<p/2 ^ ^P 1

=-^)y f^-2)^-
2 7 r V p ^ . - ^ V p ^'+a;

0 E (^)(TLT^(J^)•" j^b'Kp/2 r ^p i
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We now show that the mean-square of the second term above is small,
which proves the proposition. By Lemma 2,

^| y- f^-n-^2K-j\ 1 |2

^j^p^ P ^-1

y 1 . Y f^-n ( K - ^ }
^Ai<p/2 (^ - w -1) hv ^ A ^ )

V-^ 1 „ 1 2
=? > ——..—————— \ —————

2L^ |A? _ -i |2 2-̂  ^ -iz-^ \^ — 1 |2 Z-^ ^j -i
J<^\j\<p/2 ^P il ^|j|<p/2 ̂  1

«" E Q)^( E ^̂ .og2,,.
J^|j|<p/2 VJ / J^lj-Kp^-7

This proves the proposition. Q

By Proposition 4 we know that for almost all K with ( K ) = -(K±l)
the minimum value of ^-gp^W equals the minimum of (K) ] > , .,^^ (xr2)
j^ +0(J~^). For such ^C the minimum value of gp^(x) is non-positive if
and only if the minimum of (-^) E|j«j {K^1)J^ is non-positive, unless

^ Y- fK^l\_l « x(") (-).S;(-^)-«^.^l^' p / J+a l J3

Now choose J = [log p/10]. Given any choice of 6j € {-1,1},
0 < \j\ < J with 60 = 1, and <^-i = -1, by Lemma 3 there are ~ p/2217-2

values of K with (^) (-^) = 6j for each^'. Therefore (5.1) fails, for almost
all K, by Proposition 3. Appealing now to Theorem 2 we have proved that
for ~ ^p/2 values of K with ( K ) = -(-^hl), the minimum of gp^(x) is
< 0. For such K, fp(z) has two zeros on the arc from ̂  to (^+1, so that
the total number of such zeros is ~ /^ip. Theorems 1 and 1- follow.

6. Pseudo-Gauss Sums:
Proof of the first part of Theorem 4.

In this section, we wish to study the distribution of fp^^112). By
(2.3) and Proposition 4 we have (if (^/p >)J -^ oo as p -^ oo) for almost
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all 1 ̂  K <^p- 1,(.„ ^).^(^(^)^(^))
Vpf\^ f1^-^ 1 ^( 1 ^

'"^iS^^T +0^))'
where ^ = ±1 or ±i is fixed. Thus, by Lemma 3, we have that for any fixed
real number p

p̂  ̂ {^: 1 ^ K ^p and H? (K^) < p^}
exists and equals

(6.2) ^ Prob[ ̂  -A^ < Trp : <$ e Ao,j)
^00 ^|^•|<J^~^2 /

(using the notation Aj^ of Section 4). One may obtain an expression for
this probability as follows: Recall that

^smydy=7-.Jo y 2
and so for any k -^ 0

2 f°° sm(kx) , . , 2 f°°sm(\k\x).
- f —-—-dx =sgn(A;)- / ————dx
^ JQ X 7T Jo X

=sgn(k)- / smy-dy=sgn(k),
7r Jo V

where sgn(A;) is the sign of k (= 1 if k > 0 and -1 if A; < 0). Hence the
probability (6.2) equals

i Y- /i i r° . ff^ 6, \ \dx\
^^^-^o "(^TT?-^^)

i i^ i ^A^-^.r^^v.
2 - 7 r^ yJ-l^^ 2, JT

= 1 _ 1 /'00 TT /e^ +6"^^ /e-^P-e^P^ ̂
- 2 - 7 r y o i - i A 2 ^ ^ ^

1 , 1 /'00 • i ^ TT / 2a; \ da;'^.Lo8111^!!-^}^
IJ^17
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Letting J —> oo, we get

1 1 f00 dx /2x\
Cp = - + - / sm(p7rx)C(x)— where C(x) := | f cos2 ( — ) ,

2 7r./o ^ ^ V ^ 7
n odd

and thus Theorem 4 is proved. Note that this integral does converge: For
any x > 0 we have

w « —
2 •"•

since this estimate is trivial for a; ^ 1, and otherwise we note that
|cos(2a;/n)[ < 1/2 if 3x/7r < n < 6x/7r. Thus the part of the integral
with x ^ 1 is easily bounded. Since sm(p7rx) <C PTTX, the portion of the
integral from 0 to 1 is also easily bounded.

Remark 1. — We use the above to study the multiplicative average
size of fp(C,p ). Due to the symmetry of Cp we have that

1 / p~1 £ /^fc+i/2\\ /.oo 1^.<n^)-/^4)
Using our expression for Cp one can show that this is

f1 C{x) - 1 , r°° C(x)= 7 + log TT - / -———— dx - ——— dx.
Jo x Ji x

All of these integrals converge, though we do not know their exact values.

Remark 2. — The expansion given in (6.1) for /p, and the general
technique involved, is very similar to that used by Montgomery [5] in
showing that

i) 1/p^)! < VP^gp for all \z\ = 1.

ii) If p is sufficiently large then there exists some value of z with
\z\ = 1 for which \fp(z)\ > ^^/ploglogp.

Indeed to prove a result like that in (ii) we note that we may select
each 6j equal to the sign of j for \j\ < J = e log p. By Lemma 3 there are
many such K and we proceed as before with the expansion in (6.1), but
now taking a little more care over the set of excluded K.

Remark 3. — Fix t 6 (0,1). By the argument above, we have, for
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any fixed real number p,

c^ : = ̂ ^{^ : 1 ̂  K ° and ̂  (^) < ̂ }

= lim Probf^ e Ao,^ : ^ -^ < — r p )
-7-00 ^ hfe-^ sm(7^)/

1 L 1 /l00 • ( P^ \ TT ( x \dx= - + - / sm —-—- cos —— —.
2 TrY^o \sm(7rt)j ̂  \ J + t j x

Remark 4. — We can also use these techniques to investigate the
distribution of values of Hp(t) at t = a / ( p - 1) for 1 ^ a ^ p - 1. We
note that if K ~ ap then <^_i = ^^{1 + o(l/p)}. Therefore we can
get an expression similar to (6.1) for almost all -Fp(C^-i)? but now with
^\j\<J (KJl)JTa ^Placing the sum in (6.1), and multiplying the whole
expression through by sin(aTr). Thus the density of those K, for which
^p(^l) ^Py^is

1 . 1 f1 r°° . / PTTX \ ,-r / x \ d x .- + - / / sm ———- | cos ——— —da.2 TT J^o J^o \ sm(a7r) / ^± \ m + a ) x

We cannot see how to obtain a simpler expression.

It is not hard to modify this technique to determine the distribution
of values of the Fekete polynomial (or, in fact, Hp(t)) at any "reasonably"
distributed set of values.

7. The distribution of g (1/2) for g e Fj as J —^ oo.

We now look at the limiting distribution of ^(1/2) — 4 for g € Tj as
J —^ oo. Define, for N ^ 1,

SN(S) = ^ - ^ ,
Ij+l^N-7 ' 2

where each ^ = 1 or -1 with probability 1/2. We will prove that the
distribution function of S^(6) decays double exponentially.

THEOREM 5. — As x —> oo, we have

Prob(|^i(Q| > x) = exp^/^0^)).
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Proof of the second part of Theorem 4. — Note that

Prob(5i(<y > x) = Prob(S^S) < -x) = exp^e^0^),

by symmetry. Taking x == 717?, the result follows from (6.2). n

To prove Theorem 5 we study the 2A;-th moment of 5^(^), call it
M^v(A;), that is, the expectation of SN^)^. For example

^w= E (T^-
|j+l/2|>7V w • 2 . )

Our aim is to determine the asymptotic behaviour of Mi (A;) for large k.

PROPOSITION 5. — For large k,

Mi (A;) = (2 log A;-2^^+0(1))^.

Proof. — To establish the lower bound, consider 6 such that 6j = 1
for all 1 ̂  |j+l/2| ^ k/ log k\ and such that Sk/ log k (6) > 0. The probability
of this happening is x i^/10^, and S^{6) ^ 2 log k - 2 log log k + 0(1)
for such ^. Hence

Ml^) » 22fe/ llogfc(210gA;-210g logfe+Q(l))2fc

= (2 log A; - 2 log log A; + 0(1))^.

Now

M^(A;)= y ^(-631- 6j2 6^ }
^.^ ^1+^2+j ^4-,J-

where E stands for the expectation. Observe that a summand above
is non-zero only if each value of j appears an even number of times
amongst ji , j2,. . .J '2fc. In particular ^ = ji for some H > 1, and then
^IIi^^ 6ji) = ̂ rii^^, i^i,£ ̂ 'J- Summing over all 2A;-1 possibilities
for £ in the above, we deduce that

(7.1) M^(k)^(2k-l) ^ ____M^_I)^
|j+l/2|>7V ^ ' 2 )

for all k ^ 1 and all N ^ 1. Iterating this inequality, we obtain

(7.2) MN(k) ^ (2A; - 1). (2k - 3).. .3 .1. [ ^ , \ Y
\j+l/2\>N ( J + 2 ) 2 ^

< W ^ 2 ^' ̂  (2A;)!
" A;!2^ \N-y k \ ( N - ^ '

ANNALES DE L'lNSTITUT FOURIER



ZEROS OF FEKETE POLYNOMIALS 885

Now

\Si{6) - SN(Q\ ^ 2A^v, where XN := ^ —^ = \ogN + 0(1).
N^•+1/2^1 J "h 2

Evidently the odd moments of SN^S) are zero. Therefore, by the binomial
theorem and (7.2),

Mi (k) = E fS) M '̂) Wi(S) - 8^6)^)
j=0 v J /

,y./2fc\ (2j)! 2^-
^WJKA^^

< (^"EKw^-)^ ̂ ^(fA^)-j = 0 ^ ' \\1^~2)AN>/ \ [ l y ~ 2 ) A N y

Taking N = k/ log k we obtain the upper bound of the proposition. D

Proof of Theorem 5. — Take k = c^xexlcl^O(V) for some ci > 0, and
then Prob(|Si(^)| > x) ^ x'^M^k) < exp(-C2e372) for some constant
C2 > 0, if ci is sufficiently small, by Proposition 5.

The lower bound is more involved. Select integer k so that 2 log k —
2 log log A; is as close as possible to x. The contribution to Mi (A;) of those
6 with \S^(6)\ < x - C3 is ^ (x - c^ ^ Mi(AQ/4 if €3 is sufficiently
large. The contribution to Mi(/c) of those 6_ with |5i((?)| > x 4- ca is
^ ;^^Prob(|5i(<a| > t^dt « J^^ex^-c^/2)^ ^ Mi(A;)/4
if €3 is sufficiently large, using the upper bound from the paragraph above.
Thus M^(k)/2 ^ Prob(.r - 03 ^ \Si(6)\ ^ x + C3)(^ 4- 03)^ which implies
that Probd^i^)! ̂  x - €3) ^ M^(k)/2(x + 03)^ > exp^e^2) for some
constant 04 > 0, by Proposition 5. Replacing x — 03 by x gives the lower
bound and thus our result. D

Remark. — We follow up on Remark 3 of Section 6. The arguments
above (Theorem 5 and Proposition 5) hold just as well with "1/2" replaced
by any fixed t € (0,1). Thus 1 - Cp^ and c-p^ = exp(- exp(7rp/2 sin(Trt) 4-
0(1))) for p > 0.
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8. Bounds on ACi.

Applying the method of Section 6, we note that for any real A,

(8.1) TO, : = lim Prob {g € Fj : g ( 1 ) < 4A}
J—^oo I \Z/ )

i i r°° . , . ,, , T-r 2 / x \ dx= - - — / sm((l - X)x) | | cos ( — ) —.
2 TrYo ll > ' î i \1n) x

n odd

We can use this to obtain numerical bounds on K\ using the following result.

PROPOSITION 6. — We have Tr.omge... ^ M > TTO-

Using Simpson's rule to compute the integrals in (8.1) we obtain
.000813 > ^.013496... ^ ^i ^ TTQ > .000668, from which we deduce the
bounds on K,Q in the introduction.

Proof. — Again selecting XQ so that g{xo) is minimal, we have, by
definition, that

M = lim Prob{.9 € Fj : g(xo) ^ 0}.
J—>00

Since g{xo) ^ ^(1/2) we deduce the lower bound on /^i above.

To get the upper bound, write XQ == 1/2 4- v so that \v\ < 1/2. If
g{xo) ^ 0 then

^(D^^i)-9^
=4_-!-__!_4- y^ ^-(^o -1)

xo l-a'0 i^ 0"+5)0"+•Eo)
j¥0,-i

A 9 00 t I ~2 i t4t^" Y^ ____\v\____ ^^ ____\v\____

^~1i~~^+2^(3+^U+k+'/)+^U+^U+^+'/)
4;/2 v^ 2|;/| (2H+4;/2) , , „

= ——1———2 + 21 . • , 1^2———2 = -^———2~^ + TTtan 7T 1. .
3 -v ~^[ U + 2) v 3 -v
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Using Maple to compute the max^, we obtain

g^-} ^ max(7rtan(7rM)- ( —— / ) =0.053986...,
vz / H^\ i-^ /

the maximum being attained at v = ±.057052.... D

Remark. — One can refine the above to get better bounds for /^i.
First note that g(x) = l/x+1/(1 -x) is the only element in ̂ i, and in this
case XQ = 1/2; thus "1/2" appears in the definition of TI-A. More generally,
let J be some positive integer. For each 7 e Tj select ^o so that 7(^0) is
minimal. We again have g(xo) ^ ^(^o), so if g(^o) ^ 0 then g(xo) ^ 0. On
the other hand, if g(xo) ^ 0 then we can again get an explicit upper bound
on 9{\o) and proceed as above. This can be used to give another proof that
/^i exists.

9. Zeros off the unit circle.

Proof of Theorem 3. — Theorem 3 holds trivially if there is a zero of
fp(t) on the unit circle in the arc from ̂  to C^+1. Thus we shall henceforth
assume that there is no such zero. Let h(x) := H p ( ( K - ^ - x ) / p ) / H p ( K / p ) , so
that \h(x)\ = \fp(^+x)/^/p\, and h(x) is a continuous real-valued function.
Now the hypothesis implies that h(y) < e for some y e (0,1) (in fact,
t = C^^ while our assumption above implies that h{x) ^ 0 for all
x € (0,1). By (2.3) we have, uniformly for \x\ ̂  2/3,

h(x) = sin(7ng) ( 1 + ( K } \- WP) \
^ p W^W {P {^^p/^^ + K - k^ 1

=l-(C7+0(l))a:, where C := - ( K / p ) ^ ( k / p ) .
l<^\K-k\<p/2 ~

So if h(y) < e for some sufficiently small y then h(2y) = 2h(y) -
1 + 0(y) < 0, contradicting our assumption. Therefore we may assume
that y > 1, and also 1 - y > 1 by the symmetric argument. Thus
9p,K(y) < v/p|/p(^|/sin(7n/) < ep by (2.3), so that

gp,K(xo) ^ 9p,K(y) < ep
where XQ is defined as in Section 3.

Let 3:1 = XQ - e1/2, and x^ = XQ + e1/2, and then Oj = (p3 for j = 1,2.
Let R = 1 - e173/?. We shall consider the variation in argument of

G ( z ) : = i ( K } P M Z ) , = i ( K \ y ( k } 1^/p(Cp)^-i [p)^_^{p)^_^
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as z goes around (in the anti-clockwise direction) the box bounded by the
four curves, Ci, the arc of the unit circle from a\ to 02, then C^, the straight
line segment from 02 to Ra^^ then €3, the arc of the circle of radius R,
from Ra^ to Ra\, then finally €4, the straight line segment from Ra\ back
to ai.

We know that G{z) is real valued and positive on the arc C\. We shall
show that G(z) has positive imaginary part on €2, that G(z) has negative
real part on €3, and that G(z) has negative imaginary part on €4, This
shows that the change in argument of G(z) is 27r as we go around our box,
so that there is exactly one zero in our box. This implies a little more than
Theorem 3.

To estimate H(r,x) := G^rC^^^) when R ^ r ^ 1, for a value of
x € [x 1,0*2], we calculate the Taylor series expansion around r = 1, which
is

H{r,x) =g,,K(x) - ̂ -^-(^'SW

^^.^°(W-

From the proof of Proposition 2 we have, since x is bounded away from 0
and 1,

9p,K(x) =gp^(xo)-^0((x-xo)2p), g^^W x (x-xo)p and g'p^W ^ p.

Therefore

Im(G(^))=Im(^(r,^))^61 /V(l-r)4-0((l-r)62 /V)>0 on C^
Im(G(^))=Im(^(r,.^))^-61/V(l-r)+(9((l-r)e2 /V) < 0 on C^
Re(G(^)) = Re{H(r, x)) ̂  -e273? + 0(ep) < 0 on C^

as required. D

Remark. — By (9.1) we see that

\ £ / \i ^ V^ 1 ^^+^^^x |/^)| >.^^^ j(~7~)-

This again allows us to recover the results of Montgomery [5], as in Remark
2 of Section 6.
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