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ON THE HILBERT SCHEME OF POINTS
OF AN ALMOST COMPLEX FOURFOLD

by Claire VOISIN

1. Introduction.

If X is an algebraic variety, we can define for each k an algebraic
variety Hilb^X). It is defined as the set of length k coherent quotient
sheaves of Ox' Such quotient is the structural sheaf Oz of a 0-dimensional
subscheme Z of X. Hilb^X) contains naturally the open subset X ^ ' of the
symmetric product X^ of X parametrizing unordered sets of k distinct
points.

If dimX = 1 and X is smooth, one has Hilb^X) = X^ for any k.
In general it is easy to see that XQ is open in Hilb^X) so that its closure
is a schematic component of Hilb^X), but the following becomes false in
dimension > 3

THEOREM 1 (Fogarty), [5]. — IfX is a smooth surface, Hilb^X)
is smooth and irreducible. Furthermore the Hilbert-Chow map

c:m\bk(x)-^x{k\
which to a length k subscheme Z C X associates its cycle c(Z) ==
S;r€X ^x(Z)x is a birational morphism and an isomorphism over XQ .
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Math. classification: 14C05 - 53C15.



690 CLAIRE VOISIN

These Hilbert schemes have recently attracted a lot of attention.
Many beautiful works ([3], [7], [8], [1]) have been done towards the un-
derstanding of their cohomology and Hodge structures-it appears to be
built by universal constructions on several copies of the tensor prod-
uct of H*{X) with shifts of degree- and a very interesting structure in
the infinite dimensional space (Dfe.H^Hilb^X)), endowed with the ac-
tions of H*(X) on it induced by the natural incidence correspondences
Zk,n C Hilb^X) x Hilb^^X) x X, has been found in [12].

Our main motivation however comes from the following theorem, due
to Ellingsrud, Gottsche and Lehn [2]

THEOREM 2. — The Chern numbers ofHilb^X), i.e. the integrals

/ P(ci , . . . ,C2A;),
JHilb^X)

where P is a weighted homogeneous polynomial of degree 2k, and the Ci 's
are the Chern classes ofHilb^X), depend only on the Chern numbers of
X, i.e.

I P(Cl,. . . ,C2fc)=<MclW2^2(X))
JHilb^X)

for a function <I>p which depends only on P.

If we work over C, this theorem says that the complex cobordism
class of Hilb^X) depends only on that of X. Now the complex cobordism
class is determined by a much weaker structure than the complex structure,
namely the almost complex structure (or more precisely the stable almost
complex structure, that is a complex structure on Tx ® T, where T is
a trivial vector bundle). Hence this result suggests that one should try to
construct the Hilbert scheme, as a manifold or better as an almost complex
manifold, for any almost complex structure on the underlying fourfold X,
that is without using the integrability condition for the complex structure.
The main result of this paper gives an answer to this problem

THEOREM 3. — Let X be aC°° almost complex fourfold. Then there
exists for each k a manifold Hilb^X) of real dimension 4A; endowed with
a stable almost complex structure, and a continuous map

ciffilb^X^X^,

which is a diffeomorphism over X ^ ' and whose fibers over z G X^ are
naturally homeomorphic to the fibers of the Hilbert-Chow morphism c over
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 691

z for any almost complex structure on X integrable in a neighbourhood of
Sup z.

Our construction is not canonical, and provides in fact a family of
such manifolds, parametrized by a contractible basis, so that the resulting
manifold is well defined up to diffeomorphisms isotopic to identity.

This theorem is proved in Section 3. The construction, contrarily
to the construction of the Hilbert scheme in the integrable case does not
depend only on the almost complex structure, and involves the choice of
supplementary parameters. It remains open whether a construction of a
"pseudoholomorphic Hilbert scheme", depending canonically on the almost
complex structure, is possible. In Section 2, we consider this problem and
study another possible construction, which is canonical but unfortunately
leads only to the construction of an open part of the Hilbert scheme; we
study, when it is possible to define them, the "pseudoholomorphic finite
subschemes" of X. It turns out that this allows to construct in the almost
complex setting the curvilinear part of the Hilbert scheme, that we will
denote by Hilb^(X) and also the open set Hilb^(X)' of Hilb^X)
where at any of their points the schemes are curvilinear or with length
<: 3. Since a scheme of length 3 is either curvilinear or the infinitesimal
neighbourhood of a point x € X, this last set is a partial compactification
of Hilb^^(X) obtained by adding sets of the form

{X^ x Hilb^(X))o,
where the first summand parametrizes infinitesimal neighbourhoods of
points, and the two subscripts 0 again mean that we consider the open
sets consisting of cycles with disjoint supports. The construction we give
for Hilb^^(X)' can also be adapted to enlarge further our Hilbert scheme
and construct the analogue ofHilb^rv^)'7?tne ̂ ^ set ofHilb^X) where
at any of their points the schemes are curvilinear or with length <^ 4,
but we do not include the proof here, since it is not very instructive. In
any case it would be interesting to decide whether it is possible to define
pseudoholomorphic finite subschemes in a more general situation than those
we have been considering here.

Finally, this work provides a desingularization of the symmetric
products of an almost complex fourfold, with fibers as in the integrable
case. I have no idea whether a similar desingularization (a "generalized
Hilbert scheme") exists for any fourfold.

Acknowledgements: I thank the referee for his/her careful reading,
and his/her remarks and corrections.
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692 CLAIRE VOISIN

2. Pseudoholomorphic finite subschemes.

2.1. Pseudoholomorphic curvilinear subschemes.

Let X be a complex variety; we shall denote by Kilb^^(X) the (open)
subset of Hilb^X) parametrizing curvilinear subschemes of X of length k.
Our goal in this section is to prove the following

THEOREM 4. — If (X, J ) is an almost complex fourfold, the set
Hilb^v(^0 of pseudoholomorphic curvilinear finite subschemes of length
k has a natural structure of (non compact) manifold. Furthermore the
natural map

c: Hilb^(X) ̂  X^

has only smooth fibers and they are naturally diffeomorphic to the fibers of
the corresponding Hilbert-Chow map for an integrable complex structure.

We first begin defining the pseudoholomorphic curvilinear finite sub-
schemes of length k by noting that in the integrable case, z € Hilb^rv(^)
if and only if z is locally (near each point of its support) contained in a
smooth complex curve. So z = U^^ and Zi is identified with the n^ — 1-th
order infinitesimal neighbourhood of xi in some complex curve d C X.
The cycle c{z) is then equal to ^^ riiXi.

Choosing a uniformizing coordinate t on Ci centered on xi allows to
identify Zi with a n^ — 1-jet of a holomorphic map from the disk to X with
non zero differential. This space of jets being denoted by Jm -15 we see
that the curvilinear schemes of length HI supported at one point can be
identified with

Wn, :=j7n,-l/AutAn,,

where Ay^ = SpecC^]/^. It is easy to see that the action is free.

In the general case, we will define similarly the pseudoholomorphic
curvilinear subschemes of length rii supported at one point as

H^-J^i/AutA^,
where j1^._\ is the set of jets of order ni — 1 of pseudoholomorphic map
from the disk to X with non zero differential.

Now, in the integrable case, these spaces of jets are constructed
inductively as follows: J% = ^; J\ = TX ~ 0- section. In general a jet
of order k is a tangent lifting of the corresponding jet of order k — 1, i.e.

Jk C T^_,,
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 693

the lifting condition being the following:

Let TTfc-i : Jk-i —^ Jk-2 be induced by the inclusion Jk-i C Tj^_^,
and denote similarly TT^ : Tj^_^ —> Jk-i- Then
(2.1) Jk == {(/> e Tj^/(7rk-i).(/> = TTkW e Jk-i c r^_J.
Notice that these spaces of jets J^ describe as well the jets of real maps from
a real segment to X, that we will denote by J^. The complex structure
is used to interpret them as jets of holomorphic maps from the disk to X,
which allows to construct the Aut A^+i-action on them.

It turns out that we have exactly the same picture in the pseudo-
holomorphic setting (cf. [6]). Namely, let X be endowed with a C°° almost
complex structure J . We want to study the spaces of A;-jets of pseudoholo-
morphic maps from the disk to X with non zero differential. For k = 1 they
are of course identified with the data of a point of X and of a (real) tangent
vector to X at a;, with the help of the complex structure on Tx,x which
identifies real tangent vector to complex tangent vectors of type (1,0). This
situation still exists at higher order because of the following lemma

LEMMA 1. — If (X, J) is an almost complex variety, Tx admits a
natural almost complex structure J which is compatible with J in the sense
that the structural map TT : Tx —> X has a complex linear differential.

Proof. — The formula for J is the following. Let x = (xi) be
local coordinates on X, and let (x^x) be the induced coordinates on
T\. The almost complex structure J is described by a matrix J{x). For
(v^v) € T x ( x , x ' ) - > we define then

J{v, v) = (Jv, J^v + Jv).

Here, Jx means the differential of the matrix J ( x ) with respect to the
tangent vector x. One verifies easily that J2 = —1, and that the definition
does not depend on the choice of cordinates. D

We can apply inductively this lemma to conclude that each space of
A;-jets J^{X) has an induced almost complex structure. Now we have

LEMMA 2. — The elements of J]^(X) identify naturally with the
space J^ (X) of k-jets of pseudoholomorphic maps from the disk to X.

Proof. — Let us consider first the spaces J^(X) of fc-jets of dif-
ferentiable maps from the disk to X. They are built inductively as fol-
lows : J^W is contained in the fibration over J^(X) with fiber
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694 CLAIRE VOISIN

Hom(TA,r^cnff^)). Elements of J^(X) have to be tangent liftings of
the corresponding element of J^{X), that is have to satisfy the analogue
of the compatibility condition (2.1). But they also have to satisfy the fol-
lowing integrability condition: letjk C J^(X) C Hom(rA,r^cnff^^_J,
where jk-i is the corresponding k - 1-th order jet. Again view jk-i as an
element ^Hom^A,^^^^^). The integrability says:

(*) The composite

jk-i o j k : TA 0 TA -. r̂ p .̂̂
is symmetric.

Now one uses the almost complex structure on each J^(X) as follows:
assume the lemma has been proved for k - 1. Hence there is an inclusion

J^(x)=j^(x)cj^(x).
Let now

jkeJ^{X)cT^_^.
Using the almost complex structure on the space of jets, we can then extend
jk by C-linearity to an element jk of

Hom(TA,T^_^) c Hom(rA,r^^).

Because the almost complex structures on Jk-\{X) and Jk^{X) are
compatible, jk satisfies the tangent lifting condition. To see that it gives a k-
th order pseudoholomorphic jet, one notes that it satisfies the integrability
condition since the successive elements of Hom(T^,Tj,) considered are
complex linear, so that the symmetry condition (*) is obviously satisfied.
So one gets a A;-th order differentiable jet and it is immediate to verify that
it is pseudoholomorphic. Q

Now that we have identified J^(X) as the space of pseudoholomor-
phic A;-jets with non zero differential, we have on it the action of Aut A^+i,
which is free, hence gives a quotient H^+i that we interpret as the set of
pseudoholomorphic curvilinear subschemes of length k + 1 supported at
one point. The set of pseudoholomorphic curvilinear subschemes of X of
length n will then be defined as a set as the disjoint union over all par-
titions n == 77,1 + ... 4- ni, rii ^ 0 of the sets Wm^.^ni parametrizing the
data of isomorphism classes of jets ji of length rii supported at one point
Xi with the a^s all distinct. Notice that each Wn^...,m has a differentiable
structure, being the quotient of the open subset of II^IV^, ni ;> . . . ̂  m
parametrizing Z-uple of jets with disjoint supports, by the subgroup of the
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 695

symmetric group Si which permutes factors with equal multiplicities. Note
also that one recovers X^ as M^I,...,!. Furthermore the description of the
spaces of pseudoholomorphic jets given in Lemma 2 shows that the set of
pseudoholomorphic schemes with given support is diffeomorphic to the set
of holomorphic schemes with the same support for any integrable complex
structure on X defined near this support. This proves the last assertion of
Theorem 4.

To conclude the construction of Hilb^(X), it now remains to put
a differentiable structure on this set theoretic union, and this is the local
(instead of finite order) theory of pseudoholomorphic curves which will
provide the differentiable charts. Let z € Hilb^(X); then z = Lte, where
each Zi <E Hilb^(X) is supported at one point Xi, and ̂  n, = n. Clearly
K^urvW identifies naturally to II^Hilb^rv ^ar z, so that it suffices to
define the local charts for Hilb^vW near ^ and to take the product
charts for Hilb^(X) near z. In the sequel we then put n = n, and z == z^
with x = Xi supporting z.

Recall that the space Wn of pseudoholomorphic jets of order n - 1
modulo Aut Ay, is of complex dimension (TV - l)n + 1, N = dime X. Let
0 € W be a differentiable ball of complex dimension (N- l)n parametrizing
a family of pseudoholomorphic curves

^ : W x A^ -^ X
satisfying:

i) The map

(2.2) ^ : W x A, -. W^

which to (w, x) associates the isomorphism class of the n - 1-jet of ̂  at
x is a local diffeomorphism near (0,0).

ii) The isomorphism class of the n - 1-jet of ^o at 0 is the point
z G Hilb^(X).

That such families exist for sufficiently small e follows from the local
theory of pseudoholomorphic curves (see [13]). The finite order analysis
showed already that there are no finite order obstruction to its existence.
Some supplementary analysis is needed here to ensure the existence of
actual curves instead of formal jets. The charts we will use for Hilb^(X)
near z are then simply given by the maps

^(n) : W x A^) -> Hilb^(X),
(2-3) (^)^^(^

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



696 CLAIRE VOISIN

From now on we will restrict to the case N = 2, while presumably the result
remains true in any dimension. The proof that these maps provide indeed
charts for a different table structure on Hilbcurv^); compatible with the
differentiable structures on each stratum, follows then from the two next
propositions.

PROPOSITION 1. — Let '0 : W x Ac —^ X, ̂ ' : W x Ae —> X be two
families of pseudoholomorphic disks satisfying the properties i), ii) above.
Then the set

Z CWx A^ x W' x A^

consisting of couples (fw, z), (w', z ' ) ) such that ̂ ^(w, z) = ̂ '^(w', z1) is
a subvariety ofWx At70 x W x A^ near ((0, 7i0), (0, n0)), which projects
(up to shrinking W, W, Ag if necessary) isomorphically onto each factor
Wx^\W xA^.

PROPOSITION 2. — Let ^ : W x Ae —> X be a family of pseudo-
holomorphic disks satisfying the properties i), ii) above. Then for any point
( w ^ z ' ) € TV x A" dose enough to (0,n0), with z ' = ̂ ^<j<rmjxj^ x] €

Ag distinct, the map wx^^s<^w
(2.4) (^(^))^((^w)m,(%)),

where the last notation means that we consider the r—uple of the isomor-
phism classes of the mj —1-th order jets of^w ^ V j i is a local diffeomor-
phism near (w, (xj)).

Proposition 1 shows that the maps ̂ ^ are injective on sufficiently
small neighbourhoods of the considered point. It also shows that the
subsets of Hilb^y(X) given as the images of sufficiently small open
neighbourhoods of (0,n0) do not depend on the choice of ^ and that
the differentiable structures induced by ̂ ^ on these sets are independent
on the choice of ^. Proposition 2 shows first of all that the maps ^^
induce local diffeomorphisms on the strata near (0,n0), (z), where the
stratification onW x A'e is the one given by the multiplicities. It follows
then that this differentiable structure is compatible with the one on each
stratum. Finally, Proposition 2 shows also that our ^^ is in fact also
a product of charts defined similarly at any of its points, so that its
compatibility with the product charts at any of its points follows from
Proposition 1.
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Proof of Proposition 1. — It suffices to do it when ^ and ^' satisfy
the conditions that the jets of ^o and ^o at 0 coincide to order n — 1 but
are different at order n. Indeed, given -0 and ^ ' as in the proposition, there
exists a ̂  satisfying the same property, and the supplementary condition
that the n-th order jet of -0o' at 0 ls different from the one of ^o and
-^o- Then the statement for the couples (^^//) and (^',^") implies the
statement for the couple (^,^').

Now we do the following: the assumptions on ^ and ^' are now that
the smooth pseudoholomorphic disks ^o(Ae), ̂ o(^0 nave exactly a contact
of order n at the point '0o(0) = V^oW = a;- This implies in particular (see for
example [10]) that the pseudoholomorphic disks ^o(Ae) and ^o(^e) have
exactly n as local intersection number (in a sufficiently small neighbourhood
of*r), so that, by stability of this local intersection number, up to shrinking
W and W if necessary, each disk ^(Ag) meets the disk ^/(Ag) along
a cycle of length n^ still contained in the same neighbourhood of Xi, the
multiplicities being given as the order of contact +1 , or equivalently the
local intersection number near each intersection point. It follows that one
has for each w' € W a map

(2.5) r^ilV^A'^,

which to w associates the cycle of intersection ^(Ae) H '0^,(A^) or more
precisely its inverse image by the map ̂ ^ .

The following lemma, which follows easily from [13], shows that y^y,
is differentiable.

LEMMA 3. — Let C C X be a smooth pseudoholomorphic curve,
and let ^ : w x A —> X be a differentiable family of pseudoholomorphic
embeddings parametrized by w. Then locally near C, there exists a differen-
tiable function F : W x X -» C, such that each Fw : X —> C is submersive,
gives an equation for ^(A), and has holomorphic restriction to C.

We apply this lemma to C = -0^,(A^), and we use the definition of
the differentiable structure on A ^ ' to get the differentiability of r\w' •

Now the dimensions of W and A ^ ' are the same, and this map has
injective differential at w == 0 when w' = 0, since then the intersection cycle
is equal to z, so that a tangent vector anihilated by the differential would
provide a deformation of ^w still containing the cycle z^ in contradiction
with the fact that the map ̂  of (2.2) is a local isomorphism. Hence these
maps are local isomorphisms in a neighbourhood of 0 for all w/ close enough
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698 CLAIRE VOISIN

to 0. Now consider the set Z denned in proposition 1. It is clearly equal to
the graph of the map

^ ̂  W x W -^ A^) x A'^

(w,w') ̂  (^l(^w(A,)n^,(A^))^/;l(^(A,)n^,(A^))).

Now this map is differentiable by Lemma 3 above. Hence Z it is a
differentiable variety of the same dimension as W x W or W x A^ as
well.

Finally consider its projection onto W x A'^. Since the map rj^ of
(2.5) is a local diffeomorphism for all w' close enough to 0, this projection
contains w' x A'^ for all w' close enough to 0. On the other hand, since
Z is a graph, the projection on W is submersive. Hence we conclude that
Z projects submersively onto W x A^\ hence is a local isomorphism by
dimension reasons. Q

Proof of Proposition 2. — Introduce as before a family of pseudo-
holomorphic disks

^ : W x A^ -> X

satisfying properties i) and ii) and the supplementary condition that ^o
and -0o coincide exactly up to order n - 1. Let now ( w , z ' ) e W x A^
be sufficiently close to (0,n0). Then the proof of Proposition 1 shows that
there is a pseudoholomorphic disk ^/(A'J which meets ^w(AJ exactly
along ^w(^)' Furthermore the map

^ : W - Af\ w - (^-^(A,) n <,(AO)

is a local isomorphism near w.

Consider now the map (2.4) near (w,(^-)), where z ' = ̂ mjXj.
Clearly its differential is injective on the tangent space T^r(^.\ since the
disk ^(Ae) is immersed in X. So if u is a non zero tangent vector
anihilated by the differential of this map at (w,(:Tj)), the projection of
u to Tw,w provides a non trivial tangent vector to W at w which is clearly
anihilated by the differential of rjw', and this provides a contradiction. So
the map (2.4) is immersive at any point sufficiently close to (0,n0), hence
a local diffeomorphism for reasons of dimensions. D
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2.2. Hilb^(X)'.

This section is somewhat technical. We have included it because
it provides a canonically defined open part of the Hilbert scheme of an
almost complex fourfold. The reader who is only interested in the abstract
existence Theorem 3 may skip it and go to Section 3.

Recall that Hilb^rv^y is the ^^ subset of Hilb^) made of
subschemes of length k which at each point are either curvilinear or
of length < 3. We want to prove in this section a result similar to
Theorem 4 for Hilb^v(5')'- Recall that an element z of HUb^,?) which
is not curvilinear is the first infinitesimal neighbourhood of a point x of
5, that is Tz = A^, and we will denote this by z = x^. Similarly we will
denote by 5'2 the copy of S naturally contained in HUb3^). More generally
one has

Hilb^^y = Hilb^(5)|J(^0 x Hilb^(5))o,
i

which set theoretically makes sense as well if S is replaced by an almost
complex fourfold X, so that we can define

Hilb^(X)' := Hilb^JOtJp^ x Hilb^(X))o.
i

Notice that to put then a differentiable structure on Hilb^v^V? lt

suffices to put a differentiable structure on Hilb^X), since we will then
put the product differentiable structure at any point of Hilb^rv(^0'- So
from now on we will only consider the problem of defining a differentiable
structure on Hilb3^) which as a set is the disjoint union of Hilb^v(^)
and of a copy X^ of X.

The topology is the following: a sequence Zn will converge to x^
if the support of Zn converges to 3x and no subsequence converges to

/o\

a curvilinear scheme : assuming that Zn € XQ , this means in a local
C°° identification X ^ C2, with complex differential at x^ that for any
subsequence z^ = ̂  + ̂  + ̂  and sequence of numbers h^ ^ 0 such
that the limits (taken in C2)

z1 — z3
Um ^s__^

k—>oo On),

exist for any z, j, these limits are not all colinear over C (intrinsically they
are tangent vectors to X at x).
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700 CLAIRE VOISIN

We want to put a differentiable structure on Hilb^X). Let us first
analyse the case of an integrable complex structure. We have the following

LEMMA 4. — Let X be a complex surface, and let 0 be a holomor-
phic function defined in a neighbourhood Uof a point x € X, such that
d(f)^ ^ 0. Then the set

Y^ := [z C Hilb3^)/^ e C, l(z H Xt) > 2}

is a complex hypersurface ofHilb^X) which contains x^ and is smooth at
a-2. In particular Y^ contains a neighbourhood ofx^ in X^.

Here Xt is the curve (f)~^(t) which will be smooth near x for t close
to (t>{x).

Proof. — It is easy to see by a dimension count that Y^ is a
hypersurface. Since x^ corresponds to the ideal M2,, the subscheme x^Xt
of Xt, for t = (f)(x) is defined in Xt by M^ hence has length 2, so that x^
belongs to Y^. It remains finally to compute the Zariski tangent space of
y^ at a;2. Since l{x^ H Xt) is equal to 2, we can identify schematically near
a;2, via the projection on Hilb^X), the hypersurface Y^ with the subset

Y^ = {(z,w,u) € Hilb3^) x Hilb^X) x C/w C z, w C X^}.

The Zariski tangent space of Y^ at 0*2 is the projection to T^^r^^ of
the Zariski tangent space of Y^ at (x^.w.t), with w = x^ H Xt, t == 0(a;).
The last one is computed as follows:

- The Zariski tangent space T^-^s^^ is equal to Home^ (Z^, 0^)
and this is easily seen to be equal to Rom^M^/M^Mx/M^).

- Similarly, the tangent space THiib2(x),w is ̂ ual to Homo^ (2^, (9^)
that is to Homc^ (Z^ /Z^, 0^).

- Finally the tangent space to C at t sends naturally via a map which
we will denote by p to a subspace of Homo^ (2^, Ox^), by the Kodaira-
Spencer map associated to the family of curves Xu.

Consider now the following diagramm:

Homc^(Z^a,J ^ Hom<^(Z^(^)
T 7

Hom^ {Tx,, 0^) ^ Homo^ (Zw, 0^,)
a t

Hom^(Zx,,OxJ ^- C
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 701

where all the maps are the obvious restriction maps. Retracing through the
identifications

THnb,^= Hornet, C^)

used, it is immediate to see that if {u^v.e) is tangent to Hilb^X) x
Hilb^X) x C at (z, w, t) the condition 6(u) = 7(2;) is then the infinitesimal
condition on the deformations of the pair (z^ w) for w to remain contained
in z, while the condition /3(v) = a o p(e) is the infinitesimal condition on
the pair (w, t) for w to remain contained in the curve X^ In conclusion, we
have

^^2 = {u ̂  ^Hilb^x),^/3^ ^ ̂ iib^x)^^) = 7(^) and (3(v) elm a op}.
Now, choose holomorphic coordinates u\^u^ centered at x^ so that 0(^i, u^)
= ^2+^5 ^ = <^(^)« Then 0-u; admits for basis over C the elements 1, ̂ i, and
Ziy/J^ admits for basis over 0-u; the elements u{,u^. Also .A^/A^ admits
for basis over C the elements u^u^u^u^, while 0^ admits for basis over
C the elements 1,^1,^2- In these bases, the map 7 associates to

h e Homc(< ui,U2 >,< 1,^2 >) ^Hom^(Z^/Z^,,0^)
the homomorphism h' 6 Home (< u^^u^u\u^ >, < l,^i >) given by

h\ui} = /i(^), /I'^i^) = u^u^.h1^) = 0.
This follows indeed from the fact that 7 is the restriction map and that it
is C^-lmear. Next one checks easily, using the fact that the curves Xf are
given by the equations u^ = t, that h € /^(Im a o p) if and only if h(u'z)
is proportional to 1 € Ow- It follows that Ty^ ̂  identifies to the set
(2.7)
{H C Horn (<I^,ZAJ, u^u-2 >, <^i ,H2>), 3^ € Hom(<n^,n2>^ <l^i >)^
^2) € 1, ^(^) = h(u^), H(u^) = u^h(u^) and -H(n|) = 0 mod ̂ 2}.

It is obvious that this is the (proper) hyperplane of the tangent space

^ilb^X),^ ==Hom(< U^U^U^U-2 > , < Z A i , ^ 2 >),

described as

(2.8) {h € Hom(< u^,u^u^U2 >,< u\,u^ >)/ h(u^) = 0 mod^},
so that Y^ is smooth at x^. D

This computation shows in fact more

LEMMA 5. — The tangent space to Y^ at x^ depends only on the
tangent space to the curve Xt, t = (f)(x) at x. Furthermore the map

f: p1 = P(0x,.) - P5 = n^Ww^)
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which to the hyperplane Tx^x associates the tangent space to Y^ at x^, is
given by the complete linear system of cubics on P1.

Proof. — We have seen that in local holomorphic coordinates u\, u'z
such that (f){u\,u^) = u^ + a, we have

^^ = {^ € Homc(< 1^,1t|,ZAiH2 > ,< HI, ^2 >)/^(^|)

proportional to u^}.
It is immediate to see that this hyperplane remains unchanged under a
change of coordinates such that u^ = au^ modM^, which proves the first
statement.

Next, the above formula says that the map / : P(fl,x x) —^
P{'H.om(S2fl.x,x^x,x)) sends rj to the hyperplane

H^ = {h e tiom(S2fl,x,x^x,x))/h(r]2) proportional to rj}.

Writing this map explicitely (or arguing by PG7(2)-invariance) shows that
it is given by the complete linear system of cubics on P1. D

COROLLARY 1. — The locally defined hypersur faces Y^ cut out
schematically (and locally) the smooth subvariety X^ C Hilb^X).

Indeed, by Lemma 5, the intersection of the tangent spaces to the
hypersurfaces Y^ is of codimension at least 4 in THiib3(x),a;2 anc^tnis is tne

codimension of ^2^3. 0

It turns out that the analogue of the hypersurfaces Y^ (near each
point 3:2 e Hilb^X)) can be constructed as differentiable varieties in
the almost complex case, so that their intersections with Hilb^v^) are

smooth codimension 2 real subvarieties. This is done as follows : choose in
a neighbourhood U of x € X a submersive map

<^ :X - ^C , <^)=0,

such that each fiber Xf of ^ is a pseudoholomorphic curve w.r.t. J. Then
consider

Y^ := {z e Hilb3^)/^ e C, l(z n Xt) = 2}.

Here the intersection z D Xt is a subscheme of Xf defined in the natural
way : if z is not curvilinear and supported in y € Xt, z D Xt is the first
infinitesimal neighbourhood of y in Xt. Otherwise writing z = Uzi with Zi
curvilinear supported at yi the intersection z n Xt is the union for yi G Xt
of the subschemes of Xf supported at yi and whose length is equal to 1+
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the order of coincidence of the equivalence class of the jets of Xf and ^. It
is easy to see that Y^ is a locally closed subset of Hilb^X) which contains
U'z. We have now another description of Y^. Let ^ : U —> C be a submersive
map satisfying the conditions that its fibers are pseudoholomorphic curves
and that for any y eU, the curves X^ := (f)~1 {(t)(y)) and Xy' := -^(^Q/))
meet transversely at exactly one point (namely y). Define then

Y^=([j(Xy)^xXy)\
yeu

where the symbol ~ means the blow-up along the subvariety (y+X^) x {y}
and the upperscript 0 means that we consider the complementary set of
the proper transform of the surface (X^)^ x {y} (this surface is made of
subschemes which are contained in (X^)^). Clearly Y^^ has a natural
differentiable structure. Furthermore, if E = Uy^u^y is the exceptional
divisor, there is a natural map

/:y^-E^Hilb^(X),

which is easily seen to be an immersion whose image is contained in Y^.
We have now

PROPOSITION 3. — The map f extends to a continuous homeomor-
phism

Y^ -^ C Hilb^X)

which restricts to a differentiable immersion

Y^ -U^^ Hilb3^) - U2.

In particular, Y(/) has a natural differentiable structure.

Here Uyo is a copy of U contained in the exceptional divisor of Y^^
and is defined as follows: for each y , consider the exceptional divisor Ey
which is a P^bundle over X^. Its fiber over y € X^ is isomorphic to P(Ny)
where Ny is the normal bundle of (y+X^) x {y} in (X^)^ xXy' at {y, y , y).
Then P(A^) contains the hyperplane tangent to the surface (X^ 4- y) x X'y
at y , and this defines the point y^o.

Proof. — Indeed, for each y € X, the singular curve Xy := X^UyX^
has a natural holomorphic structure, for which the inclusion iy into X
is pseudoholomorphic. Hence we have the Hilbert scheme Hilb^v^i/)^
Hilb {Xy) and inside it the open sets of certain irreducible components

Hilb^(X,), Hilb2'1^)
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which are the sets of subschemes z C Xy such that l(Xy n z) = 2. Now it
is immediate to check that
mb^(Xy) - ((X^x X^)° - y^m^^Xy) - ((X^x X^)0.

Now, since iy is a pseudoholomorphic immersion, we have a differentiable
immersion

iy : Hilb^v(Xi/) —^ Hilbcurv(X)

which extends the map /. It is indeed defined using the definition of
Hilbcurv(X^) using jets, and the differentiability is proved using the de-
scription of Hilbcurv(X) given in the previous section.

This extension varies differentiably with the parameter y , hence
provides the desired extension of / to Y^^ — Uoo. Looking at the topologies
near the non curvilinear points, one shows that this extension extends
continuously to a map

f'.Y^-^mb3^).

It is obvious that / takes value in Y^. That / is a homeomorphism onto
Y^ follows from the fact that one can invert it: an element z € Y(^ meets
some curve Xf along a subscheme w of length 2, and t is unique since
Xf n Xf = 0, t -^ t1. On the other hand, there is a well defined residual
point x == z—w and z is contained in the singular curve XfuX^ which is a
curve Xy for some y. But then z 6 'H.ilb2'1 (Xy) hence determines a point of
y^. The fact that / is an immersion along the curvilinear part Y^^ — Uoo
is not difficult to prove using the description of the differentiable structure
of Hilb^rv(X) given in the previous section. D

The hypersurfaces Y^ will be used to construct a differentiable struc-
ture on Hilb^l/) near Uoo as follows. First of all, one constructs a map

< S > : U x P1 -^ S
over P1, where P1 = P(^°J and S —> P1 is the total space of the bundle
0(1), satisfying the following properties:

i) Each <l>t : U —•> C, t € P1, is submersive, takes value 0 at a; and
has pseudoholomorphic fibers.

ii) The map P1 -^ P(TJ^), which to t associates Tx _i ,x C TJ^

is the natural isomorphism P(TJ^) ^ P(^^), u ̂  u1-.

Notice that property ii) will then also imply that the map which to t
associates Tx i v C T1'0 is an isomorphism for y close to x. Hence

^(^tW- ^^
we may assume this property to be true in U.
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Then for each t € P1 we have the "hypersurface" Yt := Y^ of
Hilb (X) which contains £/2, has a differentiable structure and is immersed
in Hilb^X) away from [/oo. Now let y e U, t C P1 and denote by Ky^
the complex threefold ((X^*)^2) x Xy')0 which is contained in Yt by the
previous lemma. Here '0 : U —>• C is an auxiliary map which is submersive,
and has pseudoholomorphic fibers transverse to the fibers of <I>t. We can
make explicit infinitesimal computations in Ky^ = HUb251^^* Uy X^)
exactly as in the proof of Lemmas 4, 5, which gives the following result;
introduce first the surface Sy^ C Ky^f> parametrizing length 3 subschemes
of Xy = Xy U Xy' which are the union of a point of Xy and of a length
2 subscheme of Xy supported on y. Notice that there is a one dimensional
family of such length 2 subschemes, since the Zariski tangent space of Xy
at y has rank 2. We have

LEMMA 6. — The subsets Yf 0 Ky^ for t ^ t1 are codimension
two real subvarieties of Ky^ containing the point y^o and smooth at y^.
Furthermore their tangent space at y^o is a complex hyperplane ofT^ <,i/oo •
This remains true for t = t' if one defines Yt H Ky^ near the point y^o as
the surface Sy^- Furthermore the map

PI m
—^ ^.t^oo

which to t' e P1 associates the tangent complex hyperplane to Yfi H Ky^
at yoo is given by the complete linear system of quadrics on P1.

The proof is exactly the same as for Lemmas 4, 5. The only point to
note here is the smooth convergence of the hypersurfaces Yf H Ky^ near
Voo to the surface Sy^i, which is easy. D

COROLLARY 2. — The dimension 4 real subvarieties

Ky^t^t- :=^ny^ny^
of Ky^ are smooth at yoo ^d the natural differentiable map

[_J Ky^ , t ' , t ' 1 —^ Ky^
t ' , t"

identifies differentiably the left hand side to the blow-up of Ky^ at y^o.

Now we can let y move, and since everything varies differentiably with
y, we conclude

COROLLARY 3. — Hilb^C/) contains for each triple {t.t^t^} €
(pi)(3) the smooth real 6-dimensional variety V^ D V^ D Y^, which contains
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£/2- This variety varies differentiably with the parameter {^, t^ t"} € (P1)^.
Furthermore the natural map

J Yt^Yt^Yt^Yt
{t^f}^1

identifies the left hand side to the blow-up ofYt along X^.

This blow-up indeed makes sense in the differentiable category, since it
is clear that the normal bundle of X^ in Yt has a natural complex structure :
it is indeed isomorphic at y^ to the tangent space to Ky^ at yoo. D

Now we are almost done. From the last corollary, we get a 12-
dimensional differentiable variety

y= J y,ny, /ny^
{t,f ̂ ^(p1^3)

and a map
g:y^m\b\u)

which is continuous and clearly differentiable where this makes sense, i.e in
^(Hilb^^X)). We show now

LEMMA 7. — The map g induces a diffeomorphism from V — F
onto V — Xa, where V C Hilb3^) is the neighbourhood ofU'z consisting
of those subschemes not contained in any fiber of one of the maps ^t, ̂ d
^:-<^l?).

Proof. — The inverse map is obtained by constructing a differen-
tiable map

X : Hilb^(X) -. (P1)^

defined in V — X^. This map is obtained by noting that for any pseudo-
holomorphic subscheme of length 2 supported in U there exists exactly one
t 6 P1 such that w is contained in one fiber of the map <S>t. Hence we get a
differentiable map

/^Hilb^X) -^P1.

Next one can use the incidence variety

Hilb^(X) = {(w,^) € Hilb^X) x Hilb^(X) | w C z}.

Using the description ofHilbcurv(X) given in the previous section, it is easy
to show that this is a smooth variety and that the natural map

pr2 : Hilb^(X) -^ Hilb^(X)
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is finite of degree 3 (i.e. every fiber is a set of 3 points counted with positive
multiplicities). It follows that we have a composite (differentiable) map

»(3)v : ffiibLvW - (ffiibLvW)(3) ̂  (p1)^.
By construction and by definition of V, z/""1^, t^ t"}) H V is contained in
Yf D Yf n Yf C y, which gives the inverse map g~1. D

Finally, over each 1/2 G X^ the fiber g~l(ylz) clearly identifies to (P1)^
since all the varieties YtC\Yt'C\Yt" contain U'z. But (P1/3) is also isomorphic
to P3 so that the subvariety (of real codimension 2) F of V is a P^bundle
over £/2. To get a differentiable structure on Hilb3^) it suffices now to
show that F can be contracted in Y onto U'z in the differentiable category.
For this it suffices to show that the Euler class of the (real oriented rank
two) normal bundle of F in V restricts on each P3^ (fiber of g over y^)
to the Chern class ci(0p3(—l)). But this follows from Corollary 3, since it
says that for each t, the subvariety

Yt := U{t'^}^Yt n Yf n Yf
is the blow-up of Yf along ^2, so that the exceptional variety Ft = Yt H F
has a normal bundle in Yf which restricts on each P^ (fiber of^iy^ over 1/2)
to the Chern class Ci(0p2 (—1)). On the other hand N p , Y t ls tne restriction
of N p / y to Ft and the last P^fibers are hyperplanes sections P3 0^. Hence
we have

^/y)|p^ -^((^(-l))

which implies
e(Np/y)^=c,(Op.(-l)).

To be more precise, one can show using the above construction that there
exists a unique differentiable structure on the contraction of F to 1/2 in y,
for which the map g is differentiable, and which induces the differentiable
structure already defined on each of the hypersurfaces

Y^ C Hilb3^).

D

To conclude the construction of a differentiable structure on Hilb3^),
it would suffice to show the compatibility of these local constructions, which
we leave to the reader.

A similar (more complicated) study can be done in the case of
Hilb^X), hence more generally for the open set Hilb^.v(^0" parametriz-
ing pseudoholomorphic subschemes which are at each of their points either
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curvilinear or of length < 4. The point is that all the length 4 finite sub-
schemes of a complex surface X can be described using only the almost
complex structure. Namely they are either curvilinear, or the union of the
first infinitesimal neighbourhood of a point and of another reduced point,
or supported at one point x and defined by a colength 4 ideal containing
Ml and contained in M^\ such an ideal is determined by an hyperplane
in

Ml/Ml ̂  S2^^
So this last set that we denote by X^ is parametrized by the P^bundle
P^flx) over X. Hence we can define similarly in the almost complex case
Hilb^X) as the disjoint union of Hilb^(X), X^ x X - Diag and X^ =
P(S2^^ ). We have a similar set theoretic description of Hilb^.^(X) as
the quotient by the adequate permutation group of an open set of a union
of products of the above with smaller dimensional Hilbert schemes.

Then in the case of Hilb^X) one can show that there is a differ-
entiable structure on this set, which makes it a 16-dimensional compact
variety. This gives immediately the analogous result for Hilb^v^)"-

3. A general construction for the Hilbert scheme.

We will consider in this section a differentiable fourfold X endowed
with an almost complex structure J of class C°°. Our goal is to construct
for each n a manifold Hilb^X) of real dimension 4n having the following
properties:

i) There is a continuous proper map

c-.Hilb^X^X^,

which is a diffeomorphism over X ^ ' . More generally the fiber of c over a
cycle z = ^^ riiXi 6 X^ admits an identification to the product over i of
the singular varieties Hilb^C2^ parametrizing subschemes of length ni
supported at 0. (This is exactly the description of the fibers of the Hilbert-
Chow map for the Hilbert scheme associated with an integrable complex
structure.)

ii) When the almost complex structure J is integrable, Hilb^X) is
diffeomorphic to the Hilbert scheme relative to the complex structure I .

iii) The construction behaves well under deformation. In particular,
the manifold Hilb^X) depends only on the deformation class of J .
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iv) Hilb^X) has a stable almost complex structure, which is in the
same cobordism class as the one given by the complex structure when J is
a deformation of an integrable complex structure.

v) The manifold Hilb^X) is well defined up to diffeomorphisms
isotopic to the identity.

Remark 1. — The symmetric product X^ can (and will in the se-
quel) be considered as a singular differentiable variety (its set of differ-
entiable functions is given by the differentiable functions on X71 that are
invariant under the symmetric group Sn)- However the map c is never dif-
ferentiable for this differentiable structure.

The construction is as follows: Consider Z C X^ x X, the incidence
subset

Z={{z,x)eX^ x X / x e z } .

We will show

PROPOSITION 4. — There exists a neighbourhood W C X^ xX of
Z, and a relative integrable complex structure I on W/X^, which varies
differentiably with the parameter z 6 X^.

Concretely, this means that for each z e X^, there is a neighbour-
hood Wz C X of Sup 2^, and a (integrable) complex structure Iz on Wzi
which varies differentiably with z. Notice that such an object implies con-
versely that X has an almost complex structure. Indeed it suffices to restrict
I to the subset Wn = pr^X^) of W, where X^ ^ X is the set of cycles
supported at one point. Then Wn is a neighbourhood of the diagonal A in
X x X and the relative complex structure I provides a complex structure
on the relative (with respect to pr^) tangent bundle TX^X/XIA' ^^hich is
isomorphic to Tx'

The proof of the proposition will in fact exhibit a family of such
relative integrable complex structures, parametrized by a contractible basis,
so that the construction below gives a family of manifolds (compact when
X is) parametrized by a contractible basis, hence, by Ehresman fibration
theorem, a manifold well defined up to diffeomorphisms isotopic to the
identity.

We use this integrable complex structure I as follows: first of all we
perform the relative construction of the Hilbert scheme for the family of
complex structures Iz on Wz. This gives a singular differentiable variety

mh^W/X^) ^X^\
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which is relatively smooth by [5]. Next consider the relative Hilbert-Chow
map

c,ei : Hilb^lV/X^) -> W^/^.

Since W is open in X^ x X and the map W —> X^ is the first projection,
we have also an open inclusion

,,WW/x^ ^x^xX^.

Defining
Cre\ := i o crei : Hilb^TV/X^) -^ X^ x X^\

we have TT = pr^ oCrei-The Hilbert scheme Hilb^X) will then be defined
as

(3.9) Hilb^X^C^Diag),

where now Diag C X^ x X^ is the diagonal. We will then define
c : Hilb^X) -^ X^) as pr^oCrel = pr^oCre\. By definition, the fiber
of c over z € X^ is equal to the fiber of c^ : Hilb^(^) -^ W^, which
proves assertion i).

Note that the construction above defines Hilb^X) only as a topolog-
ical space, since the map Cre\ is continuous but not differentiable. We have
now

THEOREM 5. — For an adequate (family of) choice of the relative
integrable complex structure I (which will be explicitely described in
Proposition 5), Hilb^X) can be naturally endowed with the structure of
a smooth manifold of dimension 4n.

Notice that by properness of the (relative) Hilbert-Chow map,
Hilb^X) is always compact, when X is compact. Finally, we will show
assertion iv)

THEOREM 6. — The variety Hilb^X) defined above has a sta-
ble almost complex structure (i.e. there exists a complex structure on
^Hilb^x) ® T, for some trivial bundle T on Hilb^X),), whose complex
cobordism class depends only on the deformation class of I .

We now turn to the proofs of these statements. Let us first introduce
the following notation: for each partition S = {5 i , . . . , Sr} of {1 , . . . , n}
into disjoint subsets, let A^ c Xn be the corresponding diagonal

As = {(^i,..., Xn) C X^ Xi = X j if i, j € Si for some I}.
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If 5" is a refinement of 5, one has A 5- C A^/. The number | S |= r is also
the number of distinct points in the n-uple corresponding to the general
point of A 5'. The symmetric product Sn acts in an obvious way on the set
of partitions of { 1 , . . . , n} and we have A^) = a{As), where on the right
Sn acts on X".

Everything will then follow from the following

PROPOSITION 5. — There exists a relative complex structure I
denned on a neighbourhood W of the incidence set Z C Xn x X and
for each partition S as above a differentiable retraction Rs : X"- —>• A^
defined in a neighbourhood ofA^, satisfying the following conditions:

1. Everything is equivariant under the action of Sn' Hence we have
a* I = I and R(T{S) = ° ° ̂ s ° °'~1 ^or <7 € 5n-

2. The retractions Rs are compatible in the sense that if S" refines
S, so that A^ C A^/, one has Rs = RS ° RS' near A^.

3. One has I = (Rs)*(Is) near A^, where Is := I^s-

4. For x € A^- the fiber Rgl(x) is a holomorphic subvariety of a
neighbourhood ofx in X71' for the complex structure induced by Ix-

(More precisely if x = (a:i,... ,a;n), Ix is a complex structure on
Vx^ U ... U Vxni where the V^ are neighbourhoods of xi in X , and we
consider the induced complex structure on V^ x ... V^.)

We postpone the proof of this proposition until the end of the section.
From now on we will denote by I the relative complex structure on
W C X^ x X obtained by passage to the quotient from a I satisfying the
properties of Proposition 5 and we perform the construction ofHilb^X) as
explained above. We show that for this J, Hilb^X) satisfies the conclusions
of Theorems 5,6.

Proof of Theorem 5. — We have to show that for I as in the Propo-
sition 5, Hilb^X) = (7^^(Diag) has a natural differentiable structure. In-
deed, let z e X^\ z = Si<,<y, riiXi and let i € X" be a lift of z. Let A^
be the minimal diagonal in which z lies, and let [7, V be neighbourhoods of
z in A ,9 and in X71' respectively, in which the retraction map Rs : V —^ U
is defined. If V is sufficiently small, the quotient V / S s is naturally an open
neighbourhood V of z in X^ and by Property 1, Rs induces a map

RS : V -> U.
Here Ss is the subgroup of Sn leaving A s pointwise invariant.
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By Property 3, the complex structure Iz, z € V satisfies the property
that there is a relative integrable complex structure Is on an open subset
W of U x X, whose pull-back by Rg is equal to J. Hence we get the
following alternative definition of Hilb^X) over V: Consider the relative
Hilbert scheme

7r:Hilb^(W7t/)^£/.

It is smooth since U is smooth, and the Hilbert scheme is relatively smooth
over U. Then we have the relative Hilbert-Chow map

4i: m\^,(w'/u) -^ w'^^
which combined with the open inclusion

^W/u ^ ̂  ̂

gives a continuous map

c^i: mb^w'/u) -^ u x x^\
Then using the Cartesian diagram

Hilb^HVVV) —— Hilb^(Tr/[/)
I I

RS : V1 —> U
which is obtained using the fact that I = R^.IS, we get a natural
identification, as topological spaces

Hilb^nc-1^^-^)
where FR C U x V is the graph of R'g.

But this can be also translated as follows: let

^Hilb^JQnc-1^')^^

denote the restriction of TT to Hilb^X) C Hilb^TV'/LO; then the fiber
p-^y) C m^^Wy) is equal to

(Rs^Cy)-l(y)=Cyl(Rs~\y)).

But by Property 4 in Proposition 5, we know that R^W is an analytic
subset of X^. More precisely it is the image in V = V / S s of the Ss-
invariant holomorphic subvariety R's1^) of A^, which passes through
z and is transversal to A^ at z. It is then easy to see that the fiber
P~l(y) = C2/'1(JR5~1(2/)) is a smooth holomorphic subvariety of Hilb^W^),
varying differentiably with y , as R^^z) C X" varies differentiably with y .
Hence

ffiib^x) n c-^y') c m^^w'/u)
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is a smooth submanifold.

To conclude that there is a differentiable structure on Hilb^X), it
suffices now to verify the compatibility of the differentiable structures de-
fined above on different open sets ofHilb^X). But this follows immediately
from the compatibility Properties 2 and 3 satisfied by the Rs, I . D

Proof of Theorem 6. — The existence of a stable almost complex
structure on Hilb^X) is proved as follows. If one forgets the singularities of
X^\ one has just to note the two exact sequences of real "vector bundles"
given by the relative tangent bundles sequence of TT : Hilb^(W/X^) —>
X^ and the normal bundle sequence of Hilb^X) in Hilb^lV/X^)):

(3.10) 0 —> rHiiby^/j^71))^71) —)> ^HilbyWX^)) -^ 7r*T^(n) —> 0,

defining the relative tangent bundle of TT, and

(3.11) 0 -^ rHilb-(X) -^ ^ilbyWX^))^^^ -^ ^X^IHilb^X) -^ °.

where Tr^x^iHiib^x) ^as been identified to the "normal bundle" of
Hilb^X) in mb^W/X^), since T^w is canonically identified to the
normal bundle of Diag in X^ x X^\

Restricting now (3.10) to Hilb^X) and choosing a vector bundle K
of even rank such that 7r*T^(n) JHHWX) ® ̂  is a trivial vector bundle T on
Hilb^X), we deduce from (3.10) and (3.11) isomorphisms

fS 12^ ^^^/^^IHilb^X)0^ ^ THilb?(H-/X(-))/X(n)|^,^e^
V0'-1--'/ m ^ r^- r^j m ^ m

^Hilb^W/X^)),^^^^ C A = iHilb-pO ® -i '

But the trivial bundle T is of even rank, hence has a complex structure
and rHiib^HVx^))/^71) nas a complex structure induced by the integrable
complex structure on each fiber of TT. Hence we conclude, combining these
two isomorphisms that

THilb^X) © T ̂  THiiby(lV/X(-))/X(-) |Hilb-(X) e T

has a complex structure.

In order to make this argument correct, that is to take into account the
singularities of X^, we do the following. Notice that by the construction
of the differentiable structure on Hilb^X), the locally defined maps

J^o^Hilb^JO^A^

introduced in the Proof of Theorem 5 are differentiable.
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Now we will prove

LEMMA 8. — There exists a differentiable map

cf>: X71 -> X71

which is arbitrarily close to Id , commutes with the action of the symmetric
group Sn and satisfies the following properties:

- Near A 5', (f) takes value in A 5' and factors through the retraction
Rs^

- The relative complex structure I satisfies (ffl = I.

Assuming the lemma, let 0 : X^ —>• X^ be map induced by (j). We
can choose then a differentiable embedding

i : X^ ^ M

into a smooth manifold and extend the relative complex structure I to
a relative complex structure IM on WM — ^ M , a neighbourhood of Z in
M xX.

We then have the relative Hilbert-Chow map

Orel : Hilb^lVM /M) c-^ W^^ --> M x X^

and there is a natural homeomorphism

X : Hilb^X) ^ C^O^) C Hilb^WM/M),

where F^ C M x X^ is the graph of i o 0. Here \ is obtained as the
composite of the inclusion

Hilb^X) C Hilb^TV/X^)

and of the natural map induced by i o cf)

Hilb^TV/X^) -^ Hilb^WM/M),

using the fact that (z o </))*JM == I '

We show now

LEMMA 9. — The continuous map \ is a differentiable immer-
sion. Furthermore the normal bundle of Hilb^X) ^ ^(Hilb^X)) in
Hilb^TVM/^Q is naturally isomorphic to ((f) o C)*TM'

Proof. — Let z € X^ and let z be a lifting of z in X71. Let A^ be the
smallest diagonal in which z lies, and let U^V be small neighbourhoods of
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z in A^ and X71 respectively so that the retraction Rs induces a retraction
RS : V —> U. Then the notations being as in the proof of Theorem 5,
we have an open set c-^V) of Hilb^X) containing c-1^), which is a
differentiable submanifold of Hilb^I^/U). We will give the proof when
(f) is equal to Rg near z. (In general, one can by assumption write locally
(f) = (f)' o Rg with ( J ) ' a differentiable map from U to A^ preserving the
relative complex structure Is and the result follows in the same way.)

Now, when 0 = Rg, the map ^ is simply the composite of the
differentiable inclusions c-^V') ^ Hilb^TVyLQ (written above) and
Hilb^ir/^) ^ Hilb^lVM/M). This proves the first statement.

It remains to compute the normal bundle of the immersion \. Even
if ^(Hilb^X)) = C^r^), it is not obvious that its normal bundle is
isomorphic to (</> o C)*TM, that is to the pull-back of the "normal bundle"
of the graph of F^, because Cre\ is not a differentiable map for the product
differentiable structure on the open set W^^ of M x X^\ However, using
the relative complex structure IM we get a relative analytic structure on
T ^ 7 ' , hence a differentiable structure on it. (The differentiable functions
are defined locally as the restrictions of differentiable functions on C^ for
some local differentiable imbedding over M

^)/M ̂  M x C^

which is holomorphic on the fibers.)

Then since Crel is holomorphic on fibers, Orel is clearly differentiable
for this differentiable structure. On the other hand, we note that the subsets
M x z, z C X^ of M x X^Y are also differentiable subvarieties of M x X^
for this differentiable structure, (but they do not vary differentiably with
z). Hence there is a natural continuous inclusion

PT^TM C TMXX(-)

where the right hand side is the "Zariski" tangent sheaf for the refined
differentiable structure.

Finally we note that 1̂  is a differentiable subvariety of M x X^ for
this differentiable structure: indeed we have inclusions

r^cu xx^ cMxx^\
where the second inclusion is an immersion, and the fiber of F^ over z ' C U
in the first inclusion is equal to W^^), which is an analytic subset of
X^ for the complex structure 1^' by property 4 in Proposition 5.
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This description of T^ shows also easily that it can be locally denned
in M x X^ by dim^ M equations with independent differentials for the
refined differentiable structure. Indeed each fiber R^ (^/) C W/w is a
local complete intersection of complex codimension equal to dim U and
transversal to the singularities of W ^ ) . Hence V^ C U x X^ is clearly
a singular differentiable subvariety for the refined differentiable structure.
Furthermore F^, has a locally free normal bundle and one sees easily that
the composite map

pr^ TM C T^xx(71) ~~^ ^^
is an isomorphism. Then the isomorphism
(3.13) (00C)*TM ^ ^(Hilb^WVHilb^^M/M)

is obtained as the pull-back by Crel of this isomorphism.

Note that the isomorphism 3.13 is continuous but not necessarily
differentiable although both sides have the structure of differentiable vector
bundles. D

Using Lemma 9, we conclude exactly as before. Indeed we have the
relative tangent bundle sequence for Hilb^lVM/^O and the normal bundle
sequence of Hilb^X) in W^ (W M / M)' Since by the above computation
the normal bundle is naturally isomorphic to the pull-back of the tangent
bundle of the basis, we get a stable isomorphism between T^^rz^ 8Ln(^ tne

restriction to Hilb^X) of the relative tangent bundle THiib^iVM/MVM-
Then the stable almost complex structure on Hilb^X) will come as before
from the natural complex structure on the vector bundle rHiib^WM/MVM-

The fact that the isotopy class of the variety Hilb^X) and the
cobordism class of this stable almost complex structure depend only on
the deformation class of J will follow from the fact that the data I , R S ,
which are the supplementary parameters introduced in our construction
are well defined up to homotopy preserving the properties stated in
Proposition 5. More precisely, assuming they are constructed as in the
proof of Proposition 5, one checks easily that they are parametrized by a
contractible basis, at least for those which are close enough to J^R^, a
metric g on X being fixed (here the notations are those of Proposition 5).
Hence the proof of Theorem 6 is finished, assuming Lemma 8. D

Proof of Lemma 8. — Let A^; be the union of the diagonals A^ with
| S \< k. We will construct inductively a differentiable map ̂  : X71 —> X",
defined in a neighbourhood of Afc, taking value in A/c and satisfying all the
properties stated. Since An = X71, we will then put 0 = 0n.
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To start the induction, we define <^i = Rsi where -Si is the smallest
diagonal. By the properties of I stated in Proposition 5, it satisfies the
properties needed.

Assume now that (f>k has been constructed. Let Wk be a neighbour-
hood of Afc in which (f>k is defined and let W^ be another neighbourhood
such that W'k C Wk' Let now Wk+i be a neighbourhood of Afc+i such
that Wk+i — W^ is a disjoint union of components W^-^ indexed by the
partitions S with | S [= k +1. We may assume that Rs is defined in H^_i.

We will define <^+i to be equal to (f>k in W^ and to Rs in H^_i. It
remains now to construct ̂  in Wk+i H {Wk - W'^) = UsW^ 01^. To
do this we construct on each Wj^^ H Wk a homotopy {Ht)te[o,i} between
(f>k and Rs', then choosing a function /, which takes value 0 near 9W^ and
1 near QWk-, we define (f>k-^i in Wj^^ H M ;̂ by the formula

(3.14) 4>k^i=Hf^(x).

It clearly will glue with the previously defined ^+1 to give a differentiable
map defined in H^+i- This differentiable map satisfies the properties stated
in the lemma outside Wk+i H (Wk - W^) because (f>k and the RgS do.

It remains to see that we can construct the homotopy and the function
/ in order to satisfy these properties in WA;+I H (Wk - W^). But we know
that (f>k takes value in AA; and factors locally through the retractions Rs' on
A^/, \ S/ \<^ k. Since by Proposition 5, each retraction Rs' factors through
RS in each W^_i H Wk we can write (up to shrinking Wk)

4>k=^S° RS

in Wj^^ H Wk, where ^s is a differentiable map from AA; into itself which
satisfies the property that ^(I^g) = ^|As-( Here we use the fact that
by choosing Wk-\-i sufficiently small we may assume that in each W^ we
have I = R ^ I S ' )

We then simply choose a homotopy (^)<e[o,i] between ̂ s and Id on
Afe so that K^(I^) = J|Afc and define

(3.15) H t = K t o R s .

Furthermore we ask that the function / factors through Rs which is
possible if Wk-\-i is sufficiently small.

It is not difficult to see using the inductive construction of <^, that
such a homotopy exists and that everything can be choosen to commute
with the 5^-action. Then it is immediate to see, using the fact that Kt leaves
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I invariant, and the fact that in W 8 ^ the relative complex structure I is
of the form Rgis^ that the differentiable map ^k-^-i denned by the formulas
(3.14), (3.15) in H^+i n (Wk - W^) leaves I invariant and factors locally
through the retractions Rs' D

To conclude, it remains now only to prove Proposition 5.

Proof of Proposition 5. — Let g be a riemannian metric on X. For
each <?, let A^ be the open set of points of A s which do not belong to a
smaller diagonal. We first construct a relative complex structure I°g defined
in a neighbourhood of the incidence set Zs C A^ x X, and a retraction
R^ : X71 —> AS defined in a neighbourhood of A^, satisfying the property
that for each x € A^ the fiber (J?!)"1^) is holomorphic for the complex
structure induced by 1^ ^.

For this we use the exponential map
(3.16) exp : A^/x- -^ Xn^
which is a diffeomorphism in the neighbourhood of the 0-section. Then we
set R9^ = expo-^ oexp~1, where TTS '- ^VAS/X" —)> ^s ls the natural bundle
map. Also for x = (a;i, . . . , Xn) with x^,..., Xi^ distinct, k ==| S \ we define
W^ as the disjoint union of exponential balls W^ ^ B^T^^xi centered
at Xi and we define 1^ to be exp(Ja;J on W^^ where J^ is the constant
hence integrable complex structure on Tx,xi given by the almost complex
structure J.

It is easy to see that the following properties are satisfied:

- Everything is 5'n-equi variant. Namely we have aoR^oa'1 = R^gy
for a € 5'n, and (T^I^-i^s = ^j.

- For x € A^ the fiber (.R^)"1^) is a complex subvariety of X71 for
the complex structure induced by 1^ near x.

Unfortunately, the R^ 1^ do not satisfy the conditions R^ = R^oR^,
near A^, for A^ C A^/ and Jj, = (R^YIJ near A^.

So we will modify the R^, 1^ near the smaller diagonal A^/ contained
in A^ in order to satisfy these properties. To do this, note that we can define
more generally for each pair of diagonals A^ C A^/ a retraction Rj, of X71

to A^/, defined in a neighbourhood of A^. For this denote by
^5,lin : N^s/Xn —> ^VA^/A^/

the linear invariant projector associated to the ^/-action on N ^ g / ^ n . Then
exp being as in (3.16) we put

RJ, == exp oRJ^ o exp~1.
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Note that for S = S", we have R^f = R^. The relative complex structure

4 ''= TO*(^)|A,,
and the retraction Rj, also satisfy the property that for x € As/, the
fiber (J^j/)"1^) is a complex subvariety of X71 for the complex structure
induced by (ijlf)x near x. Furthermore they also satisfy properties 2 and 3
of Proposition 5. (More precisely property 2 is satisfied by Rj^ and R^,
near As// for As// C As C As/.)

So what we will do now is to modify inductively the ^j//'s and
Rj'^s near a smaller diagonal As C As// using the ^f/y's and J?j,'s. To
start with, let As be the smallest diagonal, i.e. | 5' |= 1. We first put
Rg = R^ Ig = Jj. Next consider the diagonals As// with | 5"' |= 2: we
want to construct a relative complex structure I s " on As// xX defined in a
neighbourhood of the incidence set in As// x X, and a system of retractions

Q//

R^, on A^/ defined near As// for any As/ containing AS//. We ask that

1. Ign = jj,, and jR'^/ = J?|/ in a neighbourhood V of As.

2. 7s// = I^ff and J?'s/ == R^f' away from a neighbourhood W containing
VofAs .

Qlf O//

3. The retractions J?'s/ satisfy the compatibility relations R' g / =
R'8^ o R'^ for As// C As/ C As///.

Q//
4. For x € As/ close to As// the fiber (-R's/)~ {x) ls a complex

subvariety of X^ for the complex structure on X71 defined near x
Q//

and induced by the complex structure J's/ (x) := Is"^^//(^)) on -X
near Sup a;.

5. Everything is equivariant with respect to the Sn— action.

(Note that the three last properties are satisfied already in V and
o//

outside TV). Now we will put Rs" = R' s " ^ which is a retraction of X71 onto
As// defined in a neighbourhood of As//. At the next step, we will modify
the R^n,, for | S"" |= 3 near the diagonals As// C As/// using the R'^in
and so on.

The relative complex structure Js" so defined satisfies by property 1
the condition 3 of Proposition 5. Also the property 4 for 5" = 5"' will give
condition 4 of Proposition 5. Finally the compatibility conditions 3 will
give the compatibility conditions 2 of Proposition 5 for the diagonals AS/

Q// o

containing As//, and the fact that -Rs" = K s" = ^-s" near ^s will also
imply that RS o -RS" = f^s near As.
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So it remains only to explain the construction of the R^'^s and I s " .
For this one shows easily that the relative complex structures JjL, J|,,,
and the systems of compatible retractions CRJ^A^CA^,, C^A^CA^,
defined in (W - V) H A^/ and W - V respectively have the following
common construction.

Let pr^ : ^s" —^Xbe the composition of the inclusion A^// C X71

and the z-th projection. Start with a complex structure Ki on the vector
bundle pr^(Tjc) and from a local diffeomorphism over /^s"

^:pr;Tx^A^ x X

denned in the neighbourhood of the 0-section, onto a neighbourhood of
(pr.Jd^^diag). We assume that ̂  = ̂  for x G A^/ such that
Xi = Xj and similarly for the JQ's. Then we deduce from the ^'s a
local diffeomorphism over A^// from a neighbourhood of the 0-section to a
neighbourhood of the graph of the inclusion

^=(^):(rxn)i^,,^A^x;r1.
Now on 7x^|As// we have the linear projector onto the invariant part

^lfn^X-|A5,, ^^A^,^,,

given by the ^/-action. Then ^ o TT^ o ̂ -1 gives a differentiable map

•\,s1 '' ^s" x X1'1 —> A^/ x A^/

defined in a neighbourhood of the graph of the inclusion of A^ into X71,
such that for each x e A^//, \y, is a retraction on A^/. Next

X^(diag)cA^x;r1

is easily seen to be diffeomorphic to a neighbourhood of A^ in X71 by the
second projection. We get then a retraction T^ : Xn —^ A^/ defined in a
neighbourhood of ^s" by the formula

Ts' = pr2 oxs' -i (diag), ^(diag) % X71.ix^//
One constructs a relative complex structure I s " using the ^'s and J^'s
by the formula I s ' ^ x ) = (^i)^(Ki) in a small neighbourhood of x^, where
Ki(xi) is seen as a complex structure on Tx,xi'

In the case of Rj, , zpf is the exponential map for g and Kf" is
given by J. In the case of fij,, we have the following description : let
y = Q/z)t==i,..,n e A^/ and let R^y) = x = (a;z)z=i,...,n C A^. Then
Vi = exp^(ui) for some u, e Tx,a;,, and the differential (exp^),, : Tx,^, ^
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TTX x-,ui —^ Tx,y^ is an isomorphism. Then Kf^y) is the complex structure
on Ty^ induced by J on TX^ , and ̂ f is the composite exp^ ^. o(exp^. )^1

where exp^^Q;) := exp^(^ + zQ.

Note that conversely, any set of retractions (T^^^^y/cAo/ ana complex
structure I s " defined as above satisfy the properties 3 to 5 above.

Now we note that if W is sufficiently small, the Kf and Kf are very
close, and similarly for the ^f and ^s . So to construct the I s " and the

o//

R ' s ' we just do the following: we choose a homotopy (JQ)^ro,i] between
Kf and Kf and a homotopy (^)<e[o,ij between ^s and '05 . Next we
choose a function / on W — V which takes the value 0 near 9V and the
value 1 near 9W. We then define ^i(x) = ̂ (^(x) and Ki(x) = ̂ ^(x).
The retractions TS' constructed using these Ki's and -0^s will agree with
RJ, near 9V and with 7?|, with 9W, hence together with them will give
our R'^, . Similarly the relative complex structure I s " constructed using
these Ki's and ^'s will coincide with R^IS near 9V and with Jj|,, near
9W. Hence we get our I s " '

So the proof of Proposition 5, and hence of Theorem 3 is now
finished. D

Remark 2. — It would be interesting to compare the approaches
given in Sections 2 and 3, the first one providing only a construction
for an open part Hilb^^(X)j or Hilb^v(^)j °^ tne Hilbert scheme,
depending only on the almost complex structure J on X. The construction
provided in Section 3 also provides non-compact manifolds Hilb^rv(^0^
and Hilb^v(^0^ Namely inside

Hilb^X) := |J Hilb^H^) H c^^z)
z^XW

we can consider the open sets

Hilb^(X)j:= J Hilb^(^)nc;1^)
zexw

or
Hilb^TO- U Hilb^TO'nc;1^).

zexw

The question is whether they are diffeomorphic to the corresponding
manifolds Hilb^(Z)j or Hilb^^X)^.
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