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WHEN IS A PSEUDO-DIFFERENTIAL
EQUATION SOLVABLE?

by Nicolas LERNER

1. Introduction.

In this introduction, we survey informally the state of the art in
matters of solvability for pseudo-differential equations. The second section
of the paper contains a technical result which is used in the third section
to prove a new solvability result. We start with

The Hans Lewy operator and condition ('0). — In 1957, Hans
Lewy^ published a paper entitled An example of a smooth linear par-
tial differential equation without solution [Lw], The Hans Lewy operator
LQ is

r\ r\ r\

(1.1) LQ == -— + i-— + i{xi + ix^)-—.
dx\ dx'z 0x3

One proves that there exists / € C°° such that the equation LQU = f has
no distribution solution, even locally ̂ . Several things were quite shocking
about this example. First of all, LQ has a very simple expression and is not
a cooked-up example since this is the Cauchy-Riemann operator on the
boundary of the pseudo-convex set

{\z^+21mz^<0}.

Keywords: Solvability - Energy estimates - Condition (VO- Pseudo-differential operators.
Math. classification'. 35S05.
(^ Hans Lewy (1904-1988).
(2) In fact H. Lewy proves in his paper that there is no C'1'" solution and this version
was obtained in 1960 by L. Hormander [HI].
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Morever, the symplectic geometry of the characteristics is amazingly sim-
ple: the symbol of —zl/o is

(1.2) ^i + ̂ 2 + i{xi + ̂ 2)6 = ^i - ̂ 3 4- ̂ 2 + ̂ i6)

and the Poisson bracket of the real and imaginary part is

(1.3) {^i- x^ ̂  +^3} =2^3.

In particular one can note that at (x'^) = (^1,^2^3; ^25 ~x\^ 1)? the
symbol vanishes and the Poisson bracket (1.3) is positive. This implies
that the bicharacteristic curve of the real part $1 — x^ goes from a region
where the imaginary part $2+^1^3 is negative to a region where it is
positive (with a simple zero in this case). Also LQ is a non vanishing vector
field, so no multiple characteristics pathology is to be expected for this
operator. It is certainly interesting to notice that this example triggered the
efforts of many mathematicians to get an understanding of the geometrical
conditions on the symbol of an operator which could be equivalent to the
property of local solvability for the quantization of this symbol. We refer
the reader to the survey paper [H3] for a historical perspective on this topic.

Let us restrict our attention for a while to smooth non-vanishing
complex-valued vector fields, like LQ is. If the vector field is real-valued
and non vanishing, there is no difficulty finding local solutions, using for
instance the flow of the vector field. When the vector field is complex-
valued, Nirenberg and Treves [NT1] gave a complete geometric explanation
for the solvability properties of two-dimensional models studied also by
Mizohata [Mi]

(1.4) Mk = Dt + ̂ D^ Nk = Dt + it^D^ k € N.

Note that Nk is a pseudo-differential operator. It turns out that for A; € N,
the operators M^^ N^k^ N^^ are solvable whereas M2fc+i, N^k-\-i are non-
solvable. The geometric explanation was made transparent on these models
in [NT2]. The integral curves of the real part are straight lines with direction
9/9t and the imaginary part of the symbol of Mk (resp. Nk) is ^^ (resp.
^|^|). For fixed ^, the function t \—> tk\^\ changes sign from — to 4- when
k is odd which implies that M^k^-i^N^^i are non-solvable. On the other
hand, for M^k, N^k^ -^2fe+p we "^Y ^ave a ^ange of sign, but not from —
to +. This led Nirenberg and Treves to define condition ('0) for p as the
imaginary part of p does not change sign from — to + along the oriented
bicharacteristics of the real part of p. These authors conjectured (this is
the Nirenberg-Treves conjecture) that local solvability of a principal-type
operator with principal symbol p should be equivalent to condition (^) for
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p. An elementary way to get a crude understanding of this condition is to
look at the ODE-like^

i(Dt^it\D^\Y =Ot^t\D^.
The non-solvability of Dt + ^l-Drcl is linked to a non-injectivity property of
the adjoint operator 9t +t\Dx\ which indeed has a non-trivial kernel, given
by the inverse Fourier transform of

e-^i/2.
Note that for 9f —t\Dx\ it would not be possible to construct such a solution
since one would have to take the inverse Fourier transform of e"1"* l^l/2 . A
more refined intuitive approach is linked to propagation of singularities for
the adjoint operator P* with P satisfying condition (^). Whenever this
condition is satisfied, following the integral curves of Rep = Rep, we can
get from negative values of — Imp = Imp to positive values of Imp. Since
the open set {Imp < 0} is a backward region for propagation and {Imp > 0}
is a forward region, the singularities should go away. On the other hand, if
following the integral curve of Rep, one can get from the forward {Imp > 0}
to the backward {Imp < 0}, we obtain a trapped singularity, which will
provide an (approximate) solution of P*u = 0, triggering non-solvability
for P.

Main results on the Nirenberg-Treves conjecture.

• The necessity of condition (^) for solvability was proved by Moyer
in two dimensions and by Hormander in the general case (see [H2], section
26.4).

• Condition ('0) is sufficient for solvability of principal type differential
operators. This result was proved by Nirenberg and Treves [NT2] under an
analyticity assumption which was removed by Beals and Fefferman [BF].
In fact for differential operators of order m with principal symbol p, since
(1.5) p0r,-0= (-1)^,0,
condition ('0) for p is equivalent to condition (P): the imaginary part of
p does not change sign along the bicharacteristics of the real part of p.

(3) One should take a look at the models (1.13-14) below to get an actual PDE behaviour.
In fact, the operators (1.4) provide useful but oversimplified examples. The same remark
holds for subellipticity: the operators Njc are easily shown subelliptic with loss of k/(k-{-l)
derivatives whereas it is more difficult to tackle the models

Dt + it^^D^ + ̂ ^ID^I),

where p, g, r are non-negative integers, precisely because they actually correspond to a
PDE, here the vector field with large parameter A, Dt + ̂ (Z^i + t^^x^A).

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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Condition (^) was proved sufficient for solvability in two dimensions in
[LI] (see also [S]) and for the classical oblique-derivative problem ([L2]).

• The Nirenberg-Treves conjecture is proven true for differential
operators and in two dimensions, but the sufficiency of condition (^) for
solvability of pseudo-differential equations in three or more dimensions is
an open problem. We describe below the reasons for which condition (^)
does not imply the "natural" estimates (1.6-7).

Counting the loss of derivatives and optimal solvability. — We shall
say that the equation Lu = /, where L is a pseudo-differential operator of
order m is locally solvable with a loss of fi derivatives if for / € Hfoc^
one can find a solution u C H^771"^. The loss is 0 iff the operator is
elliptic. The "optimal" loss is 1 since this is the loss for a real-valued non-
vanishing vector field: the equation Qu/Qx\ = / has a (local) solution
u € L2 = Jf°+1-1 for / e H° = L2. In fact, when L satisfies condition
(P) and is of order m, the adjoint operator^ satisfies the estimate with
optimal loss 1,

(1.6) 11^11^ >G||u||^n-i,

where u is smooth compactly supported, with a small support, C is a
"large" constant. The existence of smooth solutions for smooth right-hand-
sides, as well as semi-global existence results for operators satisfying con-
dition (P) were obtained by Hormander (see [H2], chapter 26). Moreover,
the known semi-global existence theorems only give existence with loss of
1 + e derivatives for all e > 0.

Going back to (1.6), if we consider a first-order pseudo-differential
operator satisfying condition (P) the following estimate is true, for u
smooth compactly supported, with a small support:

(1.7) \\L-u\\^>C\\u\\^.

Since the constant C could be made arbitrarily large by shrinking the
support of IA, the estimate (1.7) is rather natural in the sense that one can
absorb without difficulty L2 bounded perturbation of L in the right-hand
side of (1.7). In particular, one should not expect lower order terms to play
any role in the solvability of a principal-type operator. The hopes of getting
estimate (1.7) assuming condition (-0) for L were ruined by the paper [L3],
in which it is proved that one can find L satisfying condition (^) such that

^ Since then L* also satisfies condition (P), (1-6) is true for L as well.
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(1.7) is not true (see also Section 6 in [H3]). This means for this example
that one can find / € L2 such that

Lu=f

has no local solution u in L2. However, Dencker [Dl] proved that for this
example, one can find a solution in H~1, that is loosing two derivatives.
Finally solvability holds for this example but not optimal solvability with
loss of one derivative as it is true under condition (P) and in many other
cases ([L4], [L5], [H3]).

Miscellaneous results. — Let us consider operators L such that^

(1.8) L*=Pt+zg(^,A,)

with L satisfying condition (^), i.e. q is a first-order real-valued symbol
such that

(1.9) q(t, x, $) > 0 and s > t imply g(s, x, $) > 0.

The estimate (1.7) is actually true ([L4], [L5]) under the following addi-
tional assumption (assuming q is first-order homogeneous): there exists a
constant C such that

(1.10) \6q\2 = I^I-^V^I2 + |$|[V^|2 ^ Cq[ at q = 0.

It means that the regular points of {q == 0}, that is the points at which
6q -^ 0 are transversal for 9/9t. In fact one can check directly that (1.10) is
violated for the counterexamples in [L3] as well as generically for operators
satisfying condition (P) such as degenerate Cauchy-Riemann operators e.g.

(1.11) Dt+iaQ(t,x,D^)D^
where OQ is non-negative of order 0. On the other hand, if (1.7) is not
satisfied, the set on which q changes sign should be symplectically non
trivial: whenever in the above setting, for all (t, x, ?/,$), one has

(1.12) q^x^)q(^y^)>^

it was proved in [H3] (Theorem 8.4) that the estimate (1.7) holds. This
result generalizes the theorem in [L2] for the oblique derivative problem.
Condition (1.12) is satisfied for operators such as (1.11) and thus appears
as some kind of extension for condition (P). However as soon as changes of
sign occur on a symplectic plane as it is the case for

(1.13) Dt^iaQ(t,x,D^(D^^txi\D^\)

^ It is in fact the general case, using the Malgrange preparation theorem and the
Egorov theorem on quantization of canonical transformations.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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where 0,0 is non-negative of order 0, condition (1.12) is violated. As a matter
of fact, the example in [L3] (for which (1.7) is violated) has a structure quite
close to the previous operator, and can be written as
(1.14)

Dt+iao(t,x,D^(D^+V(t,x)\D^), with 9V/9t > 0, ao(^,0>0.
Summing up, one can say that transversal changes of sign related to
condition (1.10) are too far from condition (P) and that condition (1.12)
stays symplectically too close to condition (P). So it is a significant
difficulty to find a condition weaker than condition (P) and accepting
operators such as (1.14). Of course, it is then natural to expect a weaker
estimate than (1.7), since the latter does not hold for (1.14). A precise
result in this direction will be given in Section 2 (see also [D3]). We shall
see in particular that operators (1.14) are locally solvable with loss of two
derivatives. Even for the simpler models (1.13), no better result seems
available, if no additional assumption is made on the non-negative symbol
OQ.

A perturbative result is given in [L5]: if L is a first-order pseudo-
differential operator which satisfies condition (^), there exists an L2

bounded perturbation R such that L + R is solvable with loss of two
derivatives. This result was proved using a factorization theorem for
operators satisfying condition (^). We could use this result of factorization
to get sufficiency of condition ('0) for solvability of the general "two-step"
case. The operator L is solvable (with loss of 3/2 derivatives) whenever
L* = Dt + iQ(t), Q(t) = q^x, D^) for t < 0, Q(t) = q^x, D^) for t > 0,
where ^ are first-order real-valued symbols such that L satisfies condition
(^) which should mean here that

<7i(^0 > 0 implies 92(^0 ^ 0.
The rather technical details on this matter will be given elsewhere.

Acknowledgement. I thank L. Hormander for helpful comments on a
first version of this paper.

2. Factorization and the energy method.

Let us give some notations before proceeding with our statements.

DEFINITION 2.1. — Let n be an integer and m e R. A function
a : E = Rt x Ki x ̂  x [1, oo) —> C
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belongs to S^ if it is measurable with respect to t, smooth with respect to
the variables x, ̂  and such that for each integer k

(2.1) 7^(a) = sup \D^a^x,^K)\K-^-^ < +00.
E,\a\+\/3\<k

Since the dimension n is fixed throughout the section, we omit
it everywhere. The elements of S^ will be called symbols of order m.
Moreover, we shall also omit most of the time the dependence of the symbols
on the large parameter A, and refer to the constants 7fe(^) as the semi-norms
of a. We recall also that the Weyl quantization associates to a symbol
a(t,x,^A) C S^ the C^L2^)) operator given by v e L2^) ̂  a^v,
with

(2.2) (a(trv)(x) = ffe21^ - ̂  a(t, x-^- ̂  A)v(y)dyd^.

Of course there the /^(L^IR71)) norm is bounded by 7A^(^) x A771, kn ==
[^] + 1. Our main result for this section is the following

THEOREM 2.2. — Let ao be a symbol of order 0 taking non-negative
values, 61 in S1. We assume that 11-» b\ (^, x, £,) is real-valued non-decreasing
for each (a-, $) € M271. Let ro be a (complex-valued) symbol of order 0. Then,
there exists Co, To > 0 depending only on the semi-norms of do, 61,7*0 such
that for any u e ̂ ^(Rt,!/2^)), supply C {\t\ ^ To},

(2.3) Co 111)^+^(0061)^)^(^+^0(^^)11^^^^))

> A-1 ||dIlL^Rt,!^]^))?

where Df = —io/Qt.

It should be emphasized that we do not require any smoothness in
the ^-variable for the symbols involved in this theorem. It gives a proof of
solvability with a loss of two derivatives for a class of operators satisfying
condition (^). In fact, (1.9) is obviously satisfied by q = aob\ since ao > 0
and obi/at > 0. In particular, it contains the counterexamples of [L3] and
is a generalization of Lemma 5.2 in [Dl]. It is interesting to notice that it
contains somewhat naturally operators satisfying condition (P) (requiring
q(t,x^)q{s,x,^) > 0 instead of (1.9) above): it was shown by Beals and
Fefferman in [BF] that a non homogeneous microlocalization led to such
a factorization (with b\ independent of ^), where the smoothness in the
t-variable was lost along the way (in fact, after this microlocalization no
new control of the ^-derivative of the symbol q was available). We prove
next a Hilbertian lemma.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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LEMMA 2.3. — Let H be a Hilbert space, Ao(t), B^(t), No(t) boun-
ded operators in HI, depending measurably on a real parameter t and on
A > 1. We assume that there exist non negative numbers (7j)i^j<6 such
that for any A ^ 1 and any real t,

(2.4)ReAo(t)+7iA-2 ^ 0, B,(t) = £?^), Bi(^)+72 > 0, No(t) = N^t)^

(2.5) || [ImAoM,^)] || < 73, ||Ao(^)|| < 74. ||Bi(<)|| < 7sA,
II [M)(^Bi(^)] ||<76,

where || || stands for the C(M) operator-norm, ReQ == (Q+0*)/2, Im Q =
{Q — Q*)/(2i), [,] is the commutator, B\(t) is the weak derivative. Then
there exists a constant CQ and a positive constant TQ (depending only on
the (7j)i^-<6^ such that for any u € C^OR,!!) with snppu C {\t\ ̂  To},

(2.6) Co \\Diu + No(t)u + iAo(t)B,(t)u\\^^ > A-1 M^^y

Proof. — We compute the L^R, HI) dot products, Y standing for the
Heaviside function (characteristic function of]R+),

2 Re {DfU + No(t)u + iAo{t)B^(t)u, iB^(t)u + iY(t - T)u}
= {B^u} + |n(r)|^ + {i[No(t^B^t)]u,u} + 2{B^t)ReAo(t)B^t)u,u)

+ 2(Y(t - T) Re(Ao(t)B^t))u, u)
= ((Bi +72)^^) + \u{T)^ + {(i[No(t)^B,(t)} +76M

+2(Bl(^(ReAo(^)4-7lA-2)Bl^)^^}

+(y(t-r)((ReAo(^))Bi(<)+^i(^)ReAo(^)n,n)

- ((72 + 76) IMÎ H) + 27iA-2 \\B,u\\^^)
^{Y{t-T)[ilmAo(t),B^t)]u,u).

Let us check, with A == ReAo + 7iA~2 > 0,
2BiABi + r(ReAo)Bi + VBiReAo
= 2^i A^i + VABi + YB^A - 2Y^A~2Bi
= (BiA1/^1/2 + 2-l/2yAl/2)(21/2Al/2Bl + 2-l/2yAl/2)

- JVA - 2y7iA-2^ > -JVA - 2y7lA-2Bl.
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From the assumptions of the lemma and the previous identities, one gets
2 \\DtU + No(t)u + iAo{t)B^t)u\\^^ (^A + 1) ML^W
^ 2Re{DtU + No(t)u + zAo(t)Bi(^, iB^(t)u + zV(t - T)n)

^ INll-(R,H) - IHli^H) (72 + 76 + 27i752 + 73 + ̂ ^

+27i7sA-1)

> IMlioo^H) (l - 2To(72 + 76 + 27i752 + 73 + 7iy21 + 27175)).
We can then choose To positive small enough to get

1 - 2To(72 + 76 + 27i752 + 73 + ̂ R- + 27175) > 1/2,

yielding Co = 2(75 + 1) in (2.6). The proof of the lemma is complete. D

We need now to recall some facts on the so-called Wick quantization,
as used in [L4], [L5].

DEFINITION 2.4. — Let Y = (y, rf) be a point in R271. The operator
Sy is defined as [^e'"27''!'"^2]^ This is a rank-one orthogonal projection:
Syu = (WU)(Y)TY^ with (Wu)(Y) = (n.Tyy?)^^), where (p(x) =
2n/4e-7^1a;12 and

(ry^){x)=^x-y)e2^^x-^^.

Let a be in L00^271). The Wick quantization of a is defined as

(2.7) o^'^ = f a(y)SydV.
JR2n

The following proposition is classical and easy (see e.g. [L4], [L5]).

PROPOSITION 2.5. — Let a be in I/^R271). Then a^'1^ = W*a^W
and 1^̂  = Jd^2(Kn) where W is the isometric mapping from L^R71) to
L^IR271) given above, and o^ the operator of multiplication by a in L^R271).
The operator TTH = WW* is the orthogonal projection on a closed proper
subspace H ofL^R272). Moreover, we have
(2.8)
II^^IL^Rn)) ^ IHIz-(R2n) and a(X) > 0 for all X implies o^^ > 0.

PROPOSITION 2.6. — Let m be a real number and p be a symbol
in ^m (see Definition 2,1). Then p^'1^ = p^ + r(p)w, with r(p) € S'771-1

so that the mapping p ^ r{p) is continuous. Moreover, r(p) = 0 ifp is a
linear form or a constant.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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Proof. — We omit the dependence on t and A of the symbols. From
the definition above, one has p^^ = p^ with

(2.9) p{X)= I p(X+Y)e-2^Y\22ndY
JR2n

= p(X) ̂  f [ (1 - e^p^X + 0Y)Y2e-27^\Y\22ndYd0.
JQ JR2n_____________

r(p)(X)

Thus we get from the estimates on p that,

K^Wl ̂ ^A--^ [ lype-^i^-^y,
JR2n

which implies r e S'771-1. The last point in the proposition follows from the
formula (2.9) showing that r(p) depends linearly on p " . D

We are now able to prove Theorem 2.2. Using the notations of this
theorem and of Proposition 2.6, we look at

(2.10) (ao6l) w 4-ry=aW+^+^
= (a^ - r(a,r) (6^ - r^)^ + ̂
^a^^^+T^,

where so,ro,r(6i) G 6'° and r(ao) € 6f-l so that r € 5'°, with semi-norms
depending only on those of ao, 61, ro. To apply Lemma 2.3 we need only to
get rid of the real part of r. We shall conjugate Df by a suitable operator to
obtain this, up to operators of order -1. We set, with r defined by (2.10),

(2.11) uo{t,X) =exp(- f Rer(s,X)ds\

The symbols UQ, I/UQ belong to 5'° locally in t (i.e. (2.1) is satisfied for t
in a bounded set) with semi-norms depending only on those of r, that is in
fact on semi-norms of ao, 61, ro. We calculate

(2.12) (u^Dt (l/^o)" = W^lu^Dt -i^f^Y
\ UQ /

=(^o)w(l/^o)WA-^(Rer)w+a;w l ,

where ^_i e S~1, with semi-norms depending only on those of ao,^i,ro.
We obtain from (2.10), (2.12), with = standing for equality modulo
operators with symbols in 5'"1 with semi-norms depending only on those
ofao.&i.ro,

(2.13) (u^ (Dt + z^o&i)" + <) (l/^o)"
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= (uoF (Dt + ia^b^ + ir^) (1/uo)"'

= W^/uorDt - ̂ (Rer^ +0^1 + W

(ia^b^ + ̂ (Rer)"' - (Imr)1"^!/^)"'

= (^(l/uo)"'̂  - (Imr)"' + K,^"*] ('wick (l/"or
+awck [u ,̂̂ ] (l/^+^ '̂W/^o)"'.

Let us now recall the following simple formula from the Weyl symbolic
calculus: forpi,p2 € S"11, S"12, one has

( 1 \w

(2.14) p^ = (p^r = pip2 + 4^{Pi^2} 4- p) , p € 5ml+m2-2.

Since the Poisson bracket {uo.UQ1} =0, we get

(2.15) u^(l/uo)w = Id + A-2^, with 0:0 € 5'°.

In fact, with Uo(t) =(^o(^)w^o(^) =(1/^0^))^ we have

£/o(^)Vo(^) = id + A-2^oW, Vo^^oM = Id + A-^oW*,

where the /^(.L^R71)) norm of ^o(^)ls estimated by semi-norms of ao, ̂ i, ro.
Consequently, there exists Ao depending only on the semi-norms of
^(h^i^o? such that for A > Ao, UQ^^VQ^) are (bounded) invertible oper-
ators with norms of the inverse operators controlled by the semi-norms of
^o?^i^o- Since (2.3) is obvious for bounded A, we can assume from now
on that A > Ao. Moreover from Proposition 2.6 we get

[u^m ]̂ b^ (1/uor = {{u^aMl-KU^',
real—valued

o^ [t^,^"*] (1W = (^Ma^^)".
real—valued

This implies from (2.13), (2.15)

(2.16) (uo)"' (Dt + i^aob^ + ̂ ) (l/u^

= (^(l/tto)^ + ̂  + m^fr^,
— ^TrI J- A~2 / 1w\f^ -L ^w -L ^,,WickLWick^= (^10 + A 0;o ; l^t + Po • ^0 ^l J

with pQ e 5'° and real-valued. We can now apply Lemma 2.3 with
HI= I/PIT), and with

AoW = a^t)^ = AoW* > 0

from (2.8) since aQ(t^X) ^ 0 : one can take 71 =0. We take

B,(t)^h(t)w[ck=B^t)^

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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since 61 is real-valued. Moreover, from (2.8) and the fact that b^(t^X) is
non-decreasing as a function of t for fixed X, we get that

{B,(t)-B^s))(t-s)>^

so we can choose 72 = 0. We set No(t) = po^^ which is self-adjoint since
po is real-valued. Going on to the line (2.5), we can take 73 = 0 since AQ
is self-adjoint. Now 74,75 can be chosen respectively as semi-norms of the
symbols ao, &i. Eventually, the commutator [p^, 6wlck] is an operator with
a symbol of order 0, whose semi-norms are controlled by those of ao, ̂ i, ro.
From Lemma 2.3 and (2.16) we get the estimate

(2.17) GiA-1^!! ^ +Go||(Id+A-2^)- l(^o)w(A+^(ao&l)w+^^)
11 JL/ ^JK,Jru.^ \ /

^^Lw)^^1^00^
where C\ is a constant depending only on the semi-norms of ao,&i,ro.
Shrinking the TQ given by Lemma 2.3, one can absorb the term
<7iA~1 ||'^||^I^]H[) in the right-hand-side. To reach the conclusion of The-
orem 2.2, one just needs to look back at (2.15), which ensures that u^,
{1/UQ)'W and (Id 4- A"2^) are invertible operators, provided A is large
enough with respect to a finite number of semi-norms of ao,&i,y*o- Then
using (2.17) with u(t) replaced by VQ(t)~^u(t), we get the result. The proof
of Theorem 2.2 is complete.

3. Patching together weak estimates.

We consider the phase space R271 = R^ x M? equipped with its
canonical symplectic structure a = ^i<.<^ d^j/\dxj. For a positive definite
quadratic form g on ̂ 2n we define the symplectic inverse (f of g as

9a{T)= sup a(T^U)2.
gW=i

DEFINITION 3.1. — Let X e R271 ̂  gx be a mapping from M271 to
the set of positive definite quadratic forms on R271. The metric g is said to
be admissible if for each X € R271, gx <: 9'x, ^d ifg is slowly varying and
temperate: there exists C > 0 and N > 0, such that for all X, Y, T € R271,

9x(Y - X ) < C-1 =^ C-1 ^ gx(T)/gy(T) ̂  C,

gx(T)/gy(T) <, C(l +^(X - Y)^.
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A positive function m defined on M272 will be called a weight if there exists
TV' such that

supm^Myr^i+^x-y))-^ <oo
X ^i

and if there exists a positive C such that
gx(Y - X) ̂  C~1 =^ C~1 < m(X)/m(Y) ̂  C.

The class of symbols S(m,g) is defined as the functions a € C^R271) such
that for all integers k, sup^ ||a^(X)||^m(X)-1 < oo. These quantities
are called the semi-norms of the symbol a.

We refer the reader to chapter 18 in [H2] for basic properties of such
metrics as well as for the following lemma.

LEMMA 3.2. — Let g be an admissible metric on R21"-. There
exists a sequence (X^)^^N of points in the phase space R271 and positive
numbers ro, No, such that the following properties are satisfied. We define
Uy.U^U^ as the g^ = gx^ balls with center Xy and radius ro,2ro,4ro.
There exist two families of nonnegative smooth functions on R271, (x^)^eN,
(V^)^eN such that

J^X^W = 1, supp^ C ̂ , ^ = 1 on U^ supp^ C £7;*.
i/

Moreover, \^,^ G S(l,g^) with semi-norms bounded independently oft/.
The overlap of the balls U^ is bounded, i.e.

n ^**^0 =^ #^<M).
i^eA/'

Moreover, gx ~ Qy all over U^ (i.e. the ratios g x ( T ) / g ^ ( T ) are bounded
above and below by a fixed constant, provided that X e U^).

The next lemma in proved in [BC] (see also [L6]).

LEMMA 3.3. — Let g be an admissible metric on R271 and I^X^O
= 1 be a partition of unity related to g as in the previous lemma. There
exists a positive constant C such that for all u e L^R71)

C-11|<^) < Ell̂ <W <C\\u\\2^^
v

where d^ stands for the Weyl quantization of the symbol a.

Let us consider now q(t, x, ̂ ) a real-valued continuous function defined
on R x R71 x W1 satisfying (1.9) and such that q ( t , ' , ' ) e S(\,g) where g is
an admissible metric and
(3.1) A(X)=i^(T)/^(T))1/2.
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We set, using the notations of the previous lemmas,

0^)=^)", O.^QMMr.
We assume that we have a weak energy inequality and more precisely that
for all v, there exists an operator M^(t) with a real-valued Weyl symbol
uniformly (6) in S(\^ = \{Xy),gy) such that (7) with a uniform C,

(3.2) M^(t) + Q^(t)M^(t) + M^(t)Q^(t) > 8(t - T) - C.
We consider now

(3-3) M(t)=^x^M^t)x^^
v

From the symbolic calculus, we get that M{t) is an operator with Weyl
symbol in S(\,g). We obtain with Qy(t) = (^g^))^ and R with symbol
in S(\-°°,g) = ̂ NS(\-N,g), the identities
(3.4) M + Q(t)M(t) + M(t)Q(t)

== ̂ xA(t)^ 4- Q(t)x^M^t)x^ 4- X^M^(t)^Q(t)
v

= E^w^ + (v'^(<))W^M,(f)^
i/
+ X^M^t)^^^))" + fi

= ̂ ^{M,(t) + Q^t)M^t) + M^t)Q^t)]x^
V

+ EIQ.W, X^]^(t)x^ - X^M^t)[Q^(t), ̂ ] + R.
V

At this point we notice that the principal symbol of the first-order operator

(3.5) [Q.W.xW^t)^ - X^M^Q^t)^}
actually vanishes, which makes it an operator with symbol in 5(1,^).
Eventually, we get from (3.4) that

M 4- Q(t)M{t) + M(t)Q(t) > r^ + ̂  x^S(t - r)x^
v

with ro € S(l,g). Consequently we have with a fixed constant Co
(3.6) 2Re{DtU + iQ(t)u(t),iM(t)u(t))

> -Go / \\u(t)\\i^dt + E ||x^^(T)||i.(^).
7 ^

(6; It means that the semi-norms of the symbol of Mv are bounded above independently
of v.
(7) A(t) > 6(t-T) means f{A(t)u(t),u(t)}^^dt > \u(T)\2^^ for all „ €
c^R^or1)).

ANNALES DE L'lNSTITUT FOURIER



SOLVABILITY 457

Moreover, using Lemma 3.3 and the Bony-Chemin definition of the Sobolev
spaces H{m,g) in [BC], we obtain with positive C\,C^ P = Df + iQ(t),

2Ci f \\Pu(t)\\^^ dtsnp \\u(t)\\^^ + Co f Kt)||î n) dt

^C^ sup K^ll^n).

Shrinking the support of u in the t-variable, we get

(3.7) C, I \\Pu(t)\\^^ dt > sup |K )̂||̂ ),
J t

yielding solvability for P*. Now, if we assume that ^q(t) = ao^(t)b^{t)
with dQv € 5(1,^), 61^ e S(\y,g^) uniformly, and with ao > Q,Qb^/9t > 0
(as in theorem 2.2), we have, with L = 2%7r,

(3.8) ao4^ = aQv^y + — {aQy,b^y} +p-i, with p_i e S'(A^1,^).

Thus we get

2Q. = 2^^)- = a^^. + ̂ < + -R'-i., with ^_i, e Op5(A;1,^).

Using the Fefferman-Phong inequality, we have with a uniform constant Co

(3.9) Ao^a^+CoA;2^,
so that
2Q. = 2(^9)- == (Ao. - CoA;2)^, + ̂ (Ao. - CoA;2) + ̂ _i,

= Ao^ + %Ao. + R-^, with ^-i^ e Op5(A;1,^).
We define now Ty to be the unique positive definite quadratic form such
that

(3.10) ^ < r, = r^ < <

and we use the Wick quantization related^ to Ty. We set then

Bi. = ̂ ick = b^ + r^, with ro. € 5(1, ̂ ).
We obtain

2Q. = AO.BI. + BI.AO. + Ao.^oi. + RO^AQ^ + ^-i^,
-Ro. = R^ e Op5(l,^),Ji_i, = ̂ 1^ e Op5(A;1,^),
AOI/ =:= A.O. > 0, B^y = -B^, ~j~B\y > 0,

dr
Ao. G Op5f(l,^),Bl. e Op5'(A.,^).

(8) In Definition 2.4, one should take as Sy the Weyl quantization of 271 exp -27iT^(X-
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As in the proof of Lemma 2.3, we calculate with

(3.ii) M,=Bi,+y(^-r),
the expression in which R^,R^ € OpS'(l,^),

M^+2Re(M^Q^)

= B^ -h 6(t - T) 4- Re {B^(A^B^ + B^A^ + AQ^R^ + Ro^

+-R-I.))
+ r(^ - T)(AQ^B^ + Bi^Ao^ + Ao^Ro^ + i?o^Ao^ + ̂ -i^)

= B^y + <^ - T) + B^AQ^B^ + Re(Bi^Bi^Ao^)
+ Re (B^Ao^Ro^ + Bi^^o^Ao^) + ̂  + Y(Ao^B^ + Bi^Ao^)

= B^ + ^(t - T) + 2Bi^Ao^Bi^ + Re (B^AQ^R^ + Bi^^o^Ao^)
~1~ ^oi/ ~^ ^(Aoi/-8ii/ + B^A^y)

= Bî  + <$(^ - r) + 2B^Ao^B^

+ Re (Bi^Ao^J?oi. + [Bi^ J?oi.]Ao^ + -Ro^[-8ii., Ao^] + ^oi/Ao^Bi^)
+ ̂  + V{A^B^ + Bi^Ao^).

Using the identities (omitting the subscripts)

BAB + SAB + BA^ = (BA1/2 + 5A1/2) (A1/2^ + A1/2^) - 5A^ > -^A5,

we obtain with a uniform constant C\

(3.12) M^ + 2Re(M^) > 6(t -T)- Ci.

This implies the solvability of the adjoint of

(3.13) A+zQW+^)+5-i(^

where Sj € OpS^X^g) and S'o has a real-valued symbol; in fact the left-
hand-side of (3.6) is modified by an operator with symbol in S(l,g), when
iQ is replaced by iQ + So + 5'-i since the term 5o will generate a bracket
[5o,M] € Op S(l,g). Finally, we have proved the following

THEOREM 3.4. — Let G be an admissible metric on R2^ and
q(t, X) a continuous real-valued function defined on Rf x R^1 such that
q(t, •) C 5'(A, G) uniformly in t (A is denned by (3.1) for G) and such that
(1.9) is satisfied. Let us assume that there exists an admissible metric g >. G
on R271 such that q(t, •) € S(\, g) uniformly in t and for each Y e M271, there
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exists aoy(^,-),^iy(^ •), respectively uniformly in 5 f(l,^y),S f(A(y),^y),
with CLQY > 0, 11-^ 6iy(^ -) non-decreasing

q(^X) = aoy(^X)&iy(^X) &r^y(X - V) < ro, \t\ ̂  1.

Then the operator P = Df 4- ^(^, ̂  satisfies the estimate (3.7) and thus
P* is locally solvable.
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