
ANNALES DE L’INSTITUT FOURIER

HENRI GILLET

CHRISTOPHE SOULÉ
Direct images in non-archimedean Arakelov theory
Annales de l’institut Fourier, tome 50, no 2 (2000), p. 363-399
<http://www.numdam.org/item?id=AIF_2000__50_2_363_0>

© Annales de l’institut Fourier, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_2000__50_2_363_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
50, 2 (special Cinquantenaire) (2000), 363-399

DIRECT IMAGES IN NON-ARCHIMEDEAN
ARAKELOV THEORY

by Henri GILLET and Christophe SOULE

In this paper we develop a formalism of direct images for metrized
vector bundles in the context of the non-archimedean Arakelov theory
introduced in our joint work [BGS] with S. Bloch, and we prove a Riemann-
Roch-Grothendieck theorem for this direct image. The new ingredient in
the construction of the direct image is a non archimedean "analytic torsion
current".

Let K be the fraction field of a discrete valuation ring A, and X a
smooth projective variety over K. In [BGS] we defined the codimension p
arithmetic Chow group of X as the inductive limit

Ctf(X) = lim CWW

of the Chow groups of the models X of X over A. Assuming resolution of
singularities (cf. 1.1 below) we proved that these groups can also be defined
as rational equivalence classes of pairs (Z,^), where Z is a codimension
p cycle on X, and g is a "Green current" for Z. Here a "current" is
a projective system of cycle classes on the special fibers of all possible
models of X. We have shown in [BGS] that many concepts and results in
complex geometry and arithmetic intersection theory [GS1] have analogs
in this context: differential forms, <9<9-lemma, Poincare-Lelong formula,
intersection product, inverse and direct image maps in arithmetic Chow
groups etc.

The first author is supported by NSF grant DMS-9801219.
-Keywords: Arakelov theory — Resolution of singularities — Birational maps — Riemann-
Roch-Grothendieck theorem — Chow groups.
Math. classification: 14G40 - 14C40 - 14E05.



364 H. GILLET & C. SOULE

On the other hand, we defined a metrized vector bundle on X to be a
bundle E on X, together with a bundle E^ on some model X of X which
restricts to E on X. The theory of characteristic classes (resp. Bott-Chern
secondary characteristic classes) for hermitian vector bundles on arithmetic
varieties [GS2] is replaced here by characteristic classes with values in the
Chow groups of X (resp. the Chow groups of X with supports in its special
fiber) ([BGS], (1.9), and §2 below). These classes are contravariant for maps
of varieties over K.

However, we were not able in [BGS] to define direct images of metrized
vector bundles. Recall that in Arakelov geometry, if / : X —> Y is a map of
varieties over Z which is smooth on the set of complex points of X, and if
E is an hermitian vector bundle on X, once we choose a metric on Tf, the
L2-metric on the determinant line bundle det(Rf^ E) needs not be smooth
in general. For this reason, following an idea of Quillen [Q], one is led to
modify the ^-metric on the determinant line bundle by multiplying it by
the Ray-Singer analytic torsion of the Dolbeault complex, which results in
a smooth metric. One of the key features of the Quillen metric, is that it
gives a Riemann-Roch formula for the first Chern class of the determinant
line bundle which is an equality of forms. More generally, if one chooses
a complex of vector bundles F., a quasi-isomorphism F. —>• Rf^E and
hermitian metrics on all the F^s^ one can define a form 0 on the complex
points of V, called the higher analytic torsion ([GS3], [BK]), which is well
defined up to boundaries, and such that —dd0^) is equal to the difference
between the Chern character form of F. and the direct image of the product
of the Chern character form of E with the Todd form of Tf. This form
6 is the key ingredient when defining direct images for the "arithmetic
Grothendieck groups" [GS2] [GS3].

In the non-archimedean case we face a similar difficulty. Assume
/ : X —> Y is a morphism of projective varieties over JC, induced by a map
of models / : X —> y. Let E^ be a vector bundle on X^ with restriction
E to X. A natural candidate for a (non-archimeadean) metric on Rf^ E
is then the complex of vector bundles Rf E^ on y. But this choice will
not, in general, be compatible with changes of models for both X and Y.
Indeed, consider a commutative diagram of models

X' -^ X

L-l IL
y — yp

where both / and /' induce f : X —> Y ^ when TT (resp. p) induces the
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DIRECT IMAGES IN NON-ARCHIMEDEAN ARAKELOV THEORY 365

identity on X (resp. V). The canonical map

Lp^R^Ex-^R^L^E^

need not be an isomorphism. We are led to use the Chern character with
supports of a cone of this map to define the Y '-component Oy of the "higher
analytic torsion" 0^ which is a current on Y (see (50) and Prop. 4 for a
precise definition).

v
We then define a Grothendieck group Ko(X), generated by triples

(£1, /i, rj) where E is a bundle on X, h is a metric on E and T] is a sum of
v

currents of all degrees on X. The relations in Ko(X) come from exact
sequences of vector bundles on X (§2.6, (37)). By imposing that 77 be
smooth (i.e. 77 consists of an inductive system of cycle classes and not
only a projective one, see [BGS] and 1.2. below), we also define a subgroup
^ v
Ko(X) C Ko(X). Now let / : X —^ Y be any morphism, and choose a
(virtual) metric on the relative tangent complex Tf. We attach to these
data a direct image morphism

/. : Ko{X) -. Ko(Y).

If / : X —> y is a map of models inducing /, if E is a bundle on X, if the
metric h on E (resp. the virtual metric on Tf) is defined by a bundle E^
on X (resp. by Tf), and if J?9/ Ex == 0, q > 0, the direct image f^{E, h, 0)
is the class of (/^ -E, / E^, 0), where 0 is the higher analytic torsion of E^
(Prop. 4, Th. 1).

When / is flat, /* maps Ko{X) into Ko(Y) and a Riemann-Roch-
Grothendieck theorem holds for Chern characters with values in CH 0 Q
(Th. 1, i) and Th. 2, ii)). This is not so surprising, as it follows from the
definition of 0 and the Riemann-Roch-Grothendieck theorem with values
in Chow groups of projective schemes over A. What is more involved is,
first, to show that the family 0 = (Oy) does define a current on Y (a
form when / is flat) (Prop. 4) and, second, to check that the expected
anomaly formulae for the change of metrics on either E or Tf are true
in our case (Th. 1, (64) and (66)). These facts rely upon the vanishing of
the direct image of the relative Todd class with support of birational maps
(Prop. 3 ii)). This key lemma is itself a consequence of the proof by Franke
of a refined Riemann-Roch formula conjectured by Saito (this proof of
Franke [Fr] remains unfortunately unpublished). When A is the localization
of an algebra of finite type over a field of charactristic zero, we also give an
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366 H. GILLET & C. SOULE

alternative proof using the recent proof of the weak factorization conjecture
by Wlodarczyk et al. ([W], [AKMW]). Finally we prove, in Thm. 2 i) and
iii), that our direct image is functorial and satisfies the projection formula.

The paper is organized as follows. In §1 we review the arithmetic
v

intersection theory of [BGS], and we also introduce a group CB.P(X)

containing CH (X) which is always covariant (this definition was inspired
by similar definitions by Burgos [B] and Zha [Z]). In §2 we develop the
theory of secondary characteristic classes for metrized complexes of vector
bundles, we introduce a notion of virtual metric for objects in the derived
category of vector bundles X, and we define arithmetic Grothendieck

^ v v
groups Ko(X) C Ko(X) together with Chern characters from Ko(X) (resp.

Ko(X)) to C^oCH^X) (g) Q (resp. e^oClf(X) 0 Q). In §3 we prove
several facts about the secondary Todd classes ofbirational maps of models.
In §4, after defining the higher analytic torsion currents (Prop. 4), we define

v
the direct images f^ on KQ^ and we give properties of this map, including a

v
Riemann-Roch-Grothendieck theorem with values in CH (Th. 1 and Th. 2).

We thank S. Bloch for useful discussions, and D. Abramovich for
helping us with the proof in §3.4. We are also grateful to the Newton
Institute where most of this work was done.

1. Cycles.

1.1. We first recall some definitions and results in "non-archimedean
Arakelov theory", from our joint work with S. Bloch [BGS], to which we
refer the reader for more details.

Let A be an excellent discrete valuation ring with quotient field K
and residue field k. Let X be a smooth projective scheme over Spec(K).
Let X be a regular scheme, projective and flat over Spec(A), together
with an isomorphism of its generic fiber XK with X. We denote by
XQ = ^ x Spec(A;) the special fiber of X and by i : XQ —> X its

Spec(A)
closed immersion into X. We shall say that X is a model of X when ̂ ed is
a divisor with normal crossings (such a scheme was called a "DNC model"
in [BGS]).
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A map of varieties X —> Y will mean a morphism over K between
smooth projective schemes over K. When X and V are models of X and
Y respectively, a map of models X —> y is any morphism defined over A.
When X = Y, a map of models X —> y which induces the identity on X
will be called a morphism of models. A morphism between models is good
when it is the composite of blow ups with integral regular centers contained
in the special fiber.

We shall assume that axioms (Ml) and (M2) of [BGS] (1.1) hold.
Axiom (Ml) says that, given any scheme X, projective and flat over A,
with smooth generic fiber X, there exists a model X' of X and a morphism
X' —> X over A. Axiom (M2) says that, given two models X and X' of
X, there exists a third model X11, a morphism of models X" —> X ' , and a
good morphism of models X" —> X.

By Hironaka [H], these axioms are satisfied when A is a localization
of an algebra of finite type over a field of characteristic zero.

We write M{X) for the category of models of X.

1.2. Under the assumption of 1.1, let X be a model of X and let p > 0
be an integer. Denote by CHp(<Yo) the Chow homology group of dimension
p algebraic cycles on X^ modulo rational equivalence, and by CIP^o) the
Chow cohomology group of codimension p of XQ, i.e. the bivariant group
CIP^o^^ofp], 17.1.

When X is fixed, any morphism TT : X' —^ X between models of X
induces both direct images

TT, : CHp(^o) -^ CHp(^o)
TT* : CHF^o) ̂  CIF^o)

and inverse images

TT* : CRpW -^ CHp(^o)

TT* : CIP^o) -^ CHF^o)

([BGS] (1.4). Notice the existence of ^ : CHP^o) -^ ClF^o) and
TT* : CHp^o) —> CHp(^o) is due to the fact that the map TT is a local
complete intersection morphism These were denoted TH and TT respectively
in [BGS]). The projection formula implies

(1) 7T,7r*=:id.
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368 H. GILLET & C. SOULE

If d is the dimension of XQ over k^ we may consider the inductive limits
with respect to TT*:

^FosedW •'= I™ CIP(Ab)
^(X)

A^(X) := Hm CHd-p(^o),
A^X)

as well as the projective limits under TT^:

%sedW ̂  ^m CHW)
.M(X)

^(X) :== Hm CRd-pW-
Mm

By analogy with Arakelov theory [GS1] these groups are called, respectively,
closed (p,p)-forms, (j?,p)-forms modulo boundaries, closed (p,p)-currents,
and (j?, p)-currents modulo boundaries.

From (1) it follows that there are canonical inclusions

AXsedW C Î LedW

and
A^X) c D^W

of forms into currents.

We shall also denote by A^g^(X)o, A^^Q, ... the tensor products
^LedW 0 ̂  ^(X) (g) Q, ... Furthermore we let

z z

Aclosed(X)Q = C A^WQ'
p>0

and we define similarly A(X)(Q) etc.

1.3. Given a model X^ there is a morphism

z* z, : CHa-pW -^ CH^^^o),

obtained by composing the direct image in Chow homology

^ : CHd-p(^o) ~~> CHd-p(^),

the Poincare duality

CHd-p^^CH^1^),
and the restriction map in Chow cohomology

,* ^CH^1^) -^ CH^^o).
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When X varies, these maps are compatible with TT* and they induce a
morphism

dd° : D^W -> DP^P^W

on projective limits. Using resolution of singularities, one gets the following
result ([BGS], Th. 2.3.1):

PROPOSITION 1.

i) A current g C D^^X) lies in A^X) if and only ifdd°{g) lies in
the subgroup A^^X) ofD^-^X).

ii) The kernel (resp. cokernel) ofdd0 coincides with the kernel (resp.
cokernel) ofi*i^ on any model of X.

1.4. Let Y C X be a closed integral subvariety of codimension p. For
any model X we may consider the Zariski closure Y of Y in X^ and the
restriction i^[Y] C CHF^/^o) °f its cycle class on X. These are compatible
with TT+ and we get this way a closed current

6y=(i-[Y})eD^W.

When Z = ^^ n^ Ya € ZP(X) is any algebraic cycle of codimension p on
X, we let

6z =^^a^y,.
a

A Green current for Z is any current g € Z^"1^"1^) such that ddc(g)-\-6z
lies in A^(X).

For example, let W C X be a closed integral subvariety of codimen-
sion p — 1 and / € A;(W)* a non trivial rational function on W. Let div(/)
be the divisor of / on TV, viewed as a codimension p cycle on X, let div(/)
be its Zariski closure on a model X, and let div^(/) be the divisor of / on
the Zariski closure of W in X. Consider the difference

div,(/)^=div(/)-div^(/).

The family —div^(/) = (—div^(/)^) is then a Green current for the cycle
div(/) ([BGS], (3.1)).

1.5. For any p ^ 0, the arithmetic Chow group CH (X) is defined
as the quotient of the abelian group of pairs {Z^g\ where Z € ZP(X) is
a codimension p algebraic cycle on X and g is a Green current for X, by
the subgroup generated by the set of all pairs (div(/),—divi/(/)), where
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370 H. GILLET & C. SOULE

/ is a non zero rational function on a codimension (p — 1) closed integral
subvariety in X.

v
Let us also introduce the group CHP^X), equal to the quotient of

ZP{X) C I^-1^-1^) by the group generated by pairs (div(/), -div^(/))
as above (compare [B] and [Z]). Clearly there is an inclusion

Clf(X) C CH^X).

Let
^ : CTF(X) - D^(X)

be the morphism sending the class of ( Z ^ g ) to ddc(^) + 6z (this kills

the relations in CHP^X), cf. [BGS] Prop. (3.1.1)). The subgroup CH^X)
v

consists of those x in CHP^X) such that uj{x) lies in the subgroup A^g^(X)
ofD^(X).

We also denote by

a^-^-^X^CH^X)

the morphism sending 77 to the class of (0, rj). By Proposition 1 i), 77 lies in
AP-1^-1^) if and only if its image a(rj) lies in CH^X).

As shown in [BGS] Th. 3.3.3, there is a canonical isomorphism

(2) hm CHF^) ^-> Clf(X)
.M(X)

and (taking inverse limit in the diagram of op.cit., p. 461) it extends to an
isomorphism

(3) hm C^W -^ CH^X).
M(X)

Given 77 = (77^) e DP~lfp~l(X) this isomorphism sends (^77^) to 0(77),
and if Z e Z^(X) it sends the projective system of Zariski closures of Z in
X to the class of(Z,0).

1.6. Let / : X —» Y be a map of varieties. We know from [BGS] 1.6
that forms are contravariant and currents are covariant. Furthermore, it
follows from (2) that / induces pull-back morphisms

/* : OH^Y) -> C^(X)
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DIRECT IMAGES IN NON-ARCHIMEDEAN ARAKELOV THEORY 371

and from (3) we get direct image morphisms
v v P~6

A : CH^X) -^ CH (X),

where 6 is the relative dimension of X over Y. We may also describe /*
as mapping the class of ( Z , g ) to the class of (f^(Z), /*(^)), where /*(Z)
is the usual direct image of the cycle Z [F]. Given two maps of varieties
/ : X -^ Y and h: Y -^ Z, we have (/i/% = h^ /„ and (/i/)* = /* h\

Assume furthermore that / is flat. Then, as was shown in [BGS],
Thms. (4.1.1) and (4.2.1), the morphism /„ maps forms to forms and
respects CH:

^(A^X)) CA^-^-^X),

AWosedW)cA^^(X),

f^Clf(X)) cClf'^X).

1.7. From formula (2) we also deduce a graded ring structure

(4) Gif(X) 0 CH^X) -. CH^^X)

on arithmetic Chow groups. From (3) and the projection formula

7r^(x^(y)) =7r^(x)y

for any morphism TT : X' —^ X between models of X, x C CHP(^/),
y C CH9(^), we deduce a pairing

(5) CIF(X) (g) cif(X) ̂  CH^^X)

v ^^
extending (4), and turning CH(X) into a graded module on CH(X).

When / : X —> Y is a map of varieties, the formulae

r(xy)=r(x)r(y)
and

Mxr(y))=f.{x)y

hold when x lies in CH^V) (resp. ^^(X)) and y lies in CH^V).

Similar facts are true for pairings between forms and currents ([BGS]
1.5 and Proposition (1.6.2)).

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



372 H. GILLET & C. SOULE

2. Vector bundles and characteristic classes.

2.1. We keep the notation of Section 1.1. Let E be a vector bundle on
X. A metric on E is determined by the choice of a vector bundle h = Ex on
some model X of X, together with an isomorphism E c± EY|^ of E with the
restriction of Ex to X. By convention, given any morphism -K \ X' -^ X
between models of X, TT* Ex defines the same metric as Ex (see [BGS]
(1.9.1)). Notice that (by [RG] Part I, Th. 5.2.2 together with [M] Th. 7.10)
any bundle E on X has a metric.

Let (f) denote either the Chern character ch or the Todd genus. Given
any metrized vector bundle E = (E, h) on X , we can attach to E a closed
form

0(E) € AdosedWQ.

If E^ is an extension of E defining /i, this form (f){E) is defined as the
image in the direct limit of Chow cohomology groups of

<^(z* Ex) e cir^Q = e CHPTOQ.p>o
The Chern character is such that

ch(E C F) = ch(E) 4- ch(F)

and
ch(E (g) F) = ch(F) ch(F),

while the Todd class is multiplicative

Td(E C F) = Td(E) Td(F).

Here, given E = {E, Ex) and F = (F, F x ' ) , their sum E © F is defined as
E @ F extended to TT* E^ © (TT')* F^/ on any model X" with morphisms
of models -n \ X1' -. X and TT' : ̂ // -^ ^/.

From (2) we may also define a class

^CCH^Q
such that ^{(J)(E)) = <^). This is just the image of (f){Ex) e CH'(^)Q in
the inductive limit.

2.2. Let X be as above and let X be a model ofX. Consider a bounded
acyclic complex

{E^d) = (E° ̂  E1 ̂  . • . -^ E^
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of bundles over X. For every n > 0, let E^ be a vector bundle on X
restricting to ̂ n on X. Let 0 be either ch or Td - 1. We denote by (f){E^)
the elements

(6) ch{E^=^(-l)nch(E^
n=0

and

(7) (Td-l)(E',)=(^[^d(E^-l)n)-l
71=0

in CH(^)Q.

PROPOSITION 2. — There exists a unique class

^o(^)eCH.(^o)Q
with the following three properties:

i) One has
Z.0^(^)=0(^).

ii) Let f : V —> X be any map of models as in §LL Then

r^{E9,)=^(r(E^).
iii) Assume that, for all n > 0, the differential d : En —^ E^1 extends

to d x ' . E ^ - > Ey~1 and that (E^, d^) is acyclic on X. Then

^(^)=0.

Furthermore

iv) Let
0 - ̂  - E\ - Q\ -. 0

be an exact sequence of bounded complexes of vector bundles over X.
Assume that the restriction of 6^, E\ and Q\ to X are acyclic complexes.
Then the following identities hold:

(8) ch^(^) = ch^(^) + ch^(Q^),

(9)(Td - l)^(^) = (Td - l)xo(S^) • (z* Td(Q^)) + (Td - l)^(Q^)
= (Td - l)/fo(^) + i*(Td(S^) • (Td - 1W%).

v) If Fx is any bundle on X,

(10) ch^(E^ ® F )̂ = ch^(^) i* ch(^v).
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374 H. GILLET & C. SOULE

vi) If E^[l] denotes the shift by one of E^, the following two
equalities hold:

(n) ch^(£^[l])=-ch^(^)
and

(12) (Td - 1W2^[1]) = -(Td - l)^o(^) Td(^)-1.

Proof. — We use the Grassmann-graph construction [BFM] (see also
[F] §18.1, and [GS4] §1 for a variant of this construction). Let e^ be the
rank of £^, consider the Grassmann variety Gn = GrasSe^(£^ © Ey~1),
n > 0, and let

G=GQ x G?i x • x Gfc-i.
X X X

The acyclic complex (£'*,d) defines a section
,-, . y v, Tp>l _. r^ ^ •pl^P . -A X lr —>• (jr X ir

K A
of the projection

G x P1 -^ X x P1

A A

on the generic fiber X x P1. This map (p is given by the graphs of the
K

maps \d at the point ( x , A) € X x A1; the fact that it extends to X x P1

K K
is shown in [F], proof of Lemma 18.1, p. 342. We let W1 be the Zariski
closure of (p(X x P1) in G x P1, and W -^ W1 a resolution of W1. The

K A

scheme W is a model of X x P1. For each n :> 0, the tautological bundle of
K

rank en on G defines a vector bundle E^ on W, and there exists an acyclic
complex of vector bundles (E9, d) on X x P1 where, for each n ̂  0, E71 is

K
the restriction of E^ to X x P1.

K
Let W° (resp. W00) be the Zariski closure o f X x {0} (resp. X x {oo})

in W. Denote by
j0 :^-^W

(resp. j00 : X00 —> W) the composite of a resolution of singularities
^o __, yyo (^gp ^oo _, ^;oo) ^^ ̂  inclusion W° -^ W (resp.
H700 -^ W). Let p : W -^ <Y, 7r0 : ^° -> X and 7r00 : X00 -> ^ be
the projection maps. Note that both 7r° and 7r00 are morphisms of models.

One has j°*(E^) = 7r°*(£1^) and there exists a split acyclic complex
O'00*^)^00) on X00 which restricts to j°°^E\d) on X x {00} ([F],
proof of Lemma 18.1).
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The standard parameter z on P1 defines a rational function on W,
hence a class

£(z) = div^ {z)y^

such that

(14) z, £(z) = [W°] - [W°°] = j-y] - j^00].

Assume a class (J)^(E^) satisfying properties i), ii), iii) has been
defined. We get

(15) p.(z* (J)(E^) . £(z)) = p,(z* z, 0w,(^). ̂ (z))

=P*(<W^)-^*^))

=p*(w^v)a*W -j'WD)
= ̂ ^oO0* ̂ ) - ̂ ^(j00* ̂ )

-^o(^).

This proves the uniqueness of (j>xo{E^). Note that this proof of uniqueness
is the same as the one in [GS2] 1.3.2 for the archimedean analog.

Conversely, if we define (f)^(E^) by formula (15) we can check
properties i) to v) as in loc.cit.. Indeed, i) follows from the equalities

(16) z^(z* 0(^) . £(z)) = p.WE^) . U(z))

=P.WE^)Uy]-W00}))
=7rW-E^)=^E^.

Property ii) is clear. Under the assumption of iii), there exists a split
acyclic complex (^,d^) extending (E^.dx) to W, hence (f){E^} = 0
and, by (15), (J)^(E^) vanishes. To prove (10), we note that

p*(z* ch(E^ 0p*(F^)). £(z)) = ch^(^ 0 F^).

It remains to prove the identities (8) and (9) for the behaviour of ̂
in exact sequences. By deformation as in [F], proof of Proposition 18.1 b),
or by iii) and the analog of [GS2] Prop. 1.3.4, we are reduced to the case
where (J^, d^) = (5^, d^) C (Q^,, d^). But then we can copy the proof of
[GS2] Prop. 1.3.2. Namely let <^,Q^) be the cla^s

^G%^) = ch^(^) +ch^(Q^)

when ( / ) = ch, and

^(^ Q^) = (Td - 1)^ (%)(z* Td(Q^)) + (Td - l)^(Q^)
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376 H. GILLET & C. SOULE

when (j) = Td — 1. This class is functorial and such that
^(%,Q^)=<^©C?-,).

Furthermore it vanishes when there exist acyclic complexes (S^^d^) and
(Q^, dxY Let W be a model of X x P1 together with maps j° : X^ —> W,
joo ; ^oo _^ y^ 7i-° : <Y° -^ <y and 71-°° : ̂ '00 -^ X as above, where W maps
to the closures of both ^ps{X x P1) and ^pq{X x P1), where

K K
(ps '' X x P1 -^ G x P1

K A

and
^Q : X x P1 -. G' x P1

" K A

are the maps defined as in [F] 18.1 from the complexes (S^d) and (Q*,d)
respectively. Let S^ and Q^ be the bundles on W defined as was E^ at
the beginning of this proof, and let p : W —^ X be the projection map. We
get successively

<^o (-% e 0^) = p*(z* 0(5^/ e Q^v) • e(z))
=p*(z*z.0(^,Q^)-^))

= ̂ '0* 0(^, 0?v) - ̂ J00* <^(^, W

-^^.O^).
q.e.d.

2.3. Given any regular noetherian scheme S of finite dimension, we
let Db(S) be the derived category of bounded complexes of vector bundles
on S. It is equivalent to the derived category of bounded complexes of
coherent sheaves on S ([SGA6], II). When X is a model as in 1.1, we
denote by D\ (X) the full subcategory of Db{X) consisting of complexes
which are acyclic outside XQ.

Let (f) = ch or Td—1. It follows from Proposition 2 iv) that, if {E^^d^)
and (F^^d^) are quasi-isomorphic complexes which are both acyclic on X,

^(^)=^(F^).

In other words, given an object K^ in D^(^), the element (f)^{K^) €
CH.^o)^) depends only on the isomorphism class of K^. Also, given a
distinguished triangle

K^-.K^^K^-.K1^}
in D^{X), the formulae
(17) ch^(^) = ch^(^) + ch^(^)
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and

(18) (Td - l)^(^) - (Td - 1W^) TdTO + (Td - l)^(^)

hold, as well as

(19) ^oTO-^TO.
Now let

(20) S ' . Q - ^ E ' - ^ E - > E " -^Q

be an exact sequence of bundles on X and assume that E^ E and E" are
equipped with_arbitrary metrics. We can attach to these data classes ch(f),
Tdo(f) and Td(f) in A{X)q which are defined as follows. Choose a model
X and bundles E^ on X, n = 0,1,2, which restrict to E° = Ef', E1 = E
and E2 = E11 respectively on the generic fiber X. We then define, using
Proposition 2,

(21) ch(^):=ch^(^)
(22) Tdo(^):=(Td-l)^(^)
(23) Td(S):=Tdo(E)Td(E)

in A(X)(Q, where Td(E) e AciosedWo is the Todd form of E with its
chosen metric (cf. §2.1). When (j) denotes ch or Td, Proposition 2 i) implies:

(24) a^(8))=^EfeEff)-^E).

Let ho and h^ be two metrics on a given vector bundle E on X.
Consider the exact sequence E as in (20) where E" = 0, E ' = E, and
E ' —^ E is the identity. Let E ' be metrized by ho and E by /ii. When
(f) = ch or Td we define

(25) ^o^i):=0(^

hence

(26) a(0(/^ ^i)) = fe ho) - te /M).

It follows from (17) and from (11) that, given three metrics ho, /ii,
/i2, we have

(27) 0(^i) =0(Wi)+0(/^fa2)

and that

(28) 0(/k)^i) - -0(^o).
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The classes ch(£) and ch(ho,h\) satisfy all properties of the Bott-
Chern classes enumerated by Deligne in [D], (5.2.3)-(5.2.8). For example,
let us check property (5.2.5) in loc.cit., i.e. let £"3 = 0 C £"2 C E\ C £'0 = E
be a three-step filtration of a vector bundle on X and choose arbitrary
metrics on E ^ / E j ^ O <^ i < j< 3. Consider the commutative diagram with
exact rows and columns

0 0

I I
0 —> £'2 —> ^i —> E ^ / E ' 2 —> 0

1= I I
0 —> E^ —> E —> E / E ^ —> 0

1 i
E / E ^ = E / E ,
I I
0 0

Let Ci and Li, i = 1,2,3 be its columns and rows with the chosen metrics.
By the argument of [GS2] Proposition 1.3.4, we know that

'ch(L2) - ̂ ch(L[ C Is) ==• ch(G2) - ch(C\ C €3).

Using Proposition 2 iii) and iv) we get

c/i(Z7 C ~Ls) = ch(L^)

and
ch(C[^)= ch(C3).

The equality
ch(L2) - ch(L[) = ch(C2) - ch(C~3)

is the same as (5.2.5) in loc.cit. (with different notation).

2.4. If S is any regular noetherian finite dimensional scheme, we let
K_(S) be the Picard category of virtual vector bundles over 5, as defined in
[D] §4.12. By the universal property defining K_{S) in op. cit., 4.6, to any
vector bundle E over S is associated an object [E] € K(S). As explained
in op.cit., 4.10, this map extends to a functor

[ ]:(D^),is)-^GS);

this follows from the arguments in [KM] Thm. 2 concerning determinant
line bundles. In addition, using our hypotheses on S and the same proof as
in [KM] Corollary 2, given a distinguished triangle

T : K ' -> K -^ K" -^ K'\\\
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in Db(S), one defines an isomorphism

[K}=[K'\+[K"\

in K_{S)^ which depends functorially on T.

Since ch satisfies all the properties of Bott-Chern classes (5.2.3)-
(5.2.8) in [D], by §5 in op.cit. we get a Picard category KM(X) of virtual
metrized bundles on X and a faithful functor

KM(X} -^ KW

the fiber of which is A(X)q. As explained in loc.cit., to give KM(X} is the
same as giving a functor p, from K_(X) to the commutative Picard category
of A(X)Q-torsors. By definition, given any exact sequence 8 as in (20), the
identity

(29) ~E=^f+W7+ch(£)

holds in ^([E]) ([D] (5.2.2)).

Given any model X of X, there is a canonical morphism of commu-
tative Picard categories

(30) m : KW -> KM.W

which sends the class [E^\ of a vector bundle on X to the metric [h] that
it defines on its restriction to X. Given any exact sequence

0 ̂  E^ -^ Ex -^ E^ -^ 0

of vector bundles on X, the corresponding metrics satisfy

[h] = [h'] + [/^]

as follows from (29) and Proposition 2 iii). This equality has the properties
b), c), d) in [D], §4.3, therefore, by the universal property of K_{X}, the
morphism m is well defined.

Given an object K in Db{X), we call virtual metric on K any element
h in fji([K]). In particular, any K^ in Db{X) defines a virtual metric
m([J^^]) on its restriction K to the generic fiber. When K^ lies in D^ (/^),
m([K^}) lies in the fiber of KM(X) -> X(X), and (29) implies that its
class in A(X)q coincides with the image of ch^(K^).

2.5. Since the Chern character ch is additive and satisfies formula
(26), it extends to virtual metrics. Given a distinguished triangle

(31) T : K ' -> K -> K" -> K'[l}
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in ^(X), equipped with virtual metrics h\ h, h", the formula

[^]=[//]+[^]+ch(r)

in ^([K]) = ^[K1}) + ji{[K11}) defines a class ch(T) e A(X)o which
generalizes the class ch(f) defined in 2.3. In particular, given two virtual
metrics ho and h^ on K, we get a Bott-Chern class ch(/^i). Similar
constructions can also be made with the Todd class and the following lemma
holds:

LEMMA 1. — Let^f) = Td or ch. To any virtual metric h one can
attach functorial classes (f>(h) € CH9 {X)q , and to a metrized distinguished
triangle T as in (31) one can attach functorial classes 0(T) e A{X)q which
generalizes the classes (J)(E) of §2.1 and the classes (J)(£) denned in (21) and
(22). They have the following properties:

i) a(0(T)) = ̂ {K' e 7T) - ̂ (K).

ii) Let T be a distinguished triangle as in (31). Let ho, ho, h'o and
h[_hi, h'{ be^two sets of virtual metrics on K ' , K, K" respectively. Let
0(To) and </>(Ti) be the classes above for each choice of virtual metrics. If
(j) = ch we have

(32) ch(To) - ch(Ti) = ch(h^ h[) - ch(/^ h,) + ch(^, ̂ /).

iii) Assume furthermore that (f) = Td, ho = h^ and h'o = h'{. Then

(33) Td(To) - Td(Ti) = Td(/^ h[) Td(^").

Proof. — When 0 = ch we gave the definitions before stating the
lemma. These are clearly compatible with pull back morphisms. To check
ii), we use the identities

[ho] = [hi] + ch(/io, /^i) = [h[] + [h'i} + ch(Ti) + ch(/io, h^)

and

[ho] = [ho] + [h'o] + ch(To) = [h[] + [/^] + ch(To) + ch(^, h[) + ch(h^ h'i)

in ^[K]).

We deduce the case where (f> = Td from the case 0 = ch, since the
Todd class can be computed from the Chern character. More precisely,
there exists a unique universal formal power series

e(Xi, X2, • • . ) = ! + Xi/2 + X^/8 - X^/12 + . • .
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with rational coefficients such that, for any bundle V (on a smooth variety
say),

Td(y)=e(c/.i(V),c/Z2(n-)

(see for example [F] 3.2.4). The Chern character (resp. the Todd class)
being additive (resp. multiplicative), one can show that this series turns
addition into multiplication: given any graded commutative Q-algebra

r= er^,
p>0

it induces a map
e: e r^ -^ rp^i

such that e(a + f3) = e(a)e(/3).

Given any virtual metric h in KM(X). we let

(34) fd(/i) = e(ch(/i)) € ClfpOo.

On the other hand, on the graded Q-vector space

F=QeA(X)Q,

where Q has degree zero and A^)^""1^"^ has degree p, we define a
product by the formula

(35) (A, a) * (/^, (3) = (\^ \(3 + lia + add^).

Given a metrized distinguished triangle T as in (31), we let

i+Tdo(r)=e(ch(T))er
and

Td(T) = Tdo(T)Td(K) e A(X)o.

In particular, given two virtual metrics ho and h\ on K, we get a secondary
class Td(^o?^i)- This construction is clearly functorial and to check that
it is an extension (22) and (23), one can use the axiomatic description of
the Todd class with supports in Proposition 2. To check i), note that

a(Td(T)) = a(Tdo(7))fd(7?)

since u;(Td(K) = Td(7?) (see [BGS] (1.5.2)), and

1 + a(Tdo(T)) = e o a(ch(T)) = e(ch(K' e ~K") - di(K))

=Td(K/ C^/Td^).
Therefore

(36) a(fd(T)) = TdCK' C ~K1') - fd(^).
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Similarly, to check hi), notice that, under these hypotheses, ii) reads

ch(To) = ch(Ti) + ch(/io, h[).

By applying e to this equality we get

1 + Tdo(To) = (1 + Tdo(7i)) * (1 + Td(/^ h[)/Td(h[)).

Therefore, by (35),

Tdo(To) =Tdo(Ti) +Td(/io,^i)/Td(^)

+ [Td^Td^/TdCK) - l]Td(/^ h[) /Td(h[).

Multiplying this equality by Td(JC) gives

Td(To) - Td(Ti) = Td{h^ h[) Td(^"),

i.e. iii) holds.

q.e.d.

2.6. We now define the (non-archimedean) arithmetic K-groups. The
group Ko{X) is the group of isomorphism classes in KM(X}. It is generated
by triples (£', ̂ , 77), where E is a vector bundle on X, h is a metric on E, and
77 € A(X)q. These generators are required to satisfy the following relations.
Let

8 : 0 -^ S -^ E -^ Q -^ 0

be any exact sequence of bundles on X and suppose that 5', E and Q are
equipped with arbitrary metrics. Let ch(<f) € A{X)q be the corresponding
secondary class, defined as in (21). Then, for any r}' e A(X)(Q and
r ] " e A(X)o, we have

(37) G9,77') + (Q, 77") = (̂ , rf + 77" + ch(?))

in Ko(X).

If, in this definition, we allow 77, 77', 77" to be any currents in D(X)q,
v ^

we get another group, denoted Xo(X), which clearly contains Ko(X) as a
subgroup.

There are maps
a : D(X)q -. XoW

and
ch : Ko(X) -^ DciosedWo
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defined by a(rj) = (0,77) and

(38) ch(E, r j ) = ch(E) + dd° r] .

Note the equalities
choa=uoa== ddc.

v ^
By Proposition 1 i), this implies that x € Ko(X) lies in Ko(X) if and only

if ch(rr) lies in AciosedWo. Furthermore a(rj) lies in Ko(X) if and only if
T) lies in A(X)q.

Since forms and metrized vector bundles are contravariant, any map
of varieties f : Y —> X induces a pull-back morphism

r:Ko{X)^Ko(Y).

The formula

(E, T]) • (F, 0 = (E 0 F, ch(^) $ + 77 ch(F) + T? dd" Q

defines both a ring structure on Ko(X) and a module structure of Ko(X)

over KQ^X) (that this map is compatible with (37) is a consequence of
Proposition 2 v)). Note that f*{xy) = /*(a;)/*(^/) when x and y lie in
Ko{X), and that

(39) :m(77) = a(cb.(x)r])

when y/ e D(X)q and a; € ^o(^).

There is a Chern character map

ch:^oW^cir(x)Q,

defined by mapping (E.rj) to the class of ch(^) + a(rj). It induces a ring
homomorphism

chr^oW-^CH'^Q

which commutes with pull-backs. Note that
v v

(40) u o ch = ch and ch o a = a.

Our main goal will be to define push-forward morphisms /+ on
arithmetic J^-groups, satisfying a Riemann-Roch formula. For that purpose
we need preliminaries on tangent complexes.
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3. Secondary Todd classes of tangent complexes.

3.1. Given any map of varieties (p : X -^ Y (resp. any map of models
/ : X —^ y) we can attach to it a tangent complex Tip e Z^(X) (resp.
Tf e ^b(^)). Since X and Y are smooth, T(p is canonically isomorphic
to the complex of vector bundles TX -^ ^(TY) with TX in degree zero.
Similarly, when both models are smooth over some base, Tf is canonically
isomorphic to TX -^ /*(Ty); in general it is defined by the construction
dual to the one of the cotangent complex in [SGA6] Exp. VIII, §2.

Given any map of models / : X -^ y, we shall denote by

Td(/) e Cir(Ab)Q C A^,(X)Q

the Todd class z* Td(T/). When TT : X' -^ X is a morphism between models
of a given variety X, the tangent complex TTT is acyclic on X. Therefore,
as in §2.3, it defines a class

Tdo(Tr) := (Td - l)^(r7r) e CH.(^)Q c A{X)^

Finally, when f : ^ -^ y and f : ̂ f ̂  y/ are two maps of models which
induce the same map ^ : X -^ Y of varieties, we let ho (resp. /ii) be the
virtual metric induced by Tf (resp. Tf) on T^p and we define

(41) Td(/, //) := Td(/io, h,) e A(X)Q,

where the right hand side is defined as in (25), using Lemma 1 to extend
this definition to the case of virtual metrics.

When / : X -^ y and g : y -^ Z are two maps of models, there is a
distinguished triangle in Db(^):

(42) Tf-^T(gf)-.rTg^Tf[l}.
It follows that

(43) Td(^)=Td(/)/*Td^).
This also implies that, if TT : X' -^ X is a morphism between two models
of the variety X and / : X -> y is any map of models, by (23) and (41),
the following identity holds true in A(X)q:

(44) Tdo(Tr) 7r*(Td(/)) = Td(/7r, /).

Similarly, if g : y -> X' is any map of models, the identity

(45) ^*(Tdo(7r)) . Td(^) = Td(7rg,g)
holds in A(Y)q.
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Finally, when TT : X9 —^ X and p : X" —> X' are two morphisms
between models of a given variety X, we deduce from (42) and (18) that

(46) Tdo(TTp) = Tdo(p) p* Td(7r) + p* Tdo(Tr).

3.2. PROPOSITION 3. — Let TT : X' —> X be a morphism between
two models of X.

i) For any K € Db{X) the adjunction map K —> RTF,, LTT* K is an
isomorphism.

ii) Let Tdo(Tr) = (Td - l)^(T7r) e CH.^Q. Then, in CH.^Q,
we have

(47) 7r,Tdo(7r)=0.

Proof. — To prove i), note that RTT^ -LTT* K is the derived tensor
product of K with RTT^ Ox' i hence it is enough to consider the case where
K = Ox. If we assume furthermore that TT is the blow up of a closed regular
subscheme in X ^ the assertion follows from [SGA6] Exp. VII, Lemme 3.5,
p. 441. Therefore i) is true when TT is a good morphism of models in the
sense of §1.1. Using the axiom (M2) of loc. cit., we may find two models
X\^X^^ and morphisms of models X^ —> X\ and X\ —> X' so that the
composite morphisms X^ —> X' and X\ —» X are good. Let TTI : X\ —^ X
and 7T2 : ^2 -^ ^ be the two obvious morphisms of models. We get a
sequence of morphisms in Db{X)\

Ox -^ R^ Ox' -> R^ 0^ -^ R^. Ox^

The composite of the first two maps is the isomorphism Ox —^ R^I^OX^
(since TTi is good) and the composite of the last two maps is also an
isomorphism R'K^.OX' —^ f^i^Ox^ since X^ —» X' is good. It follows that
all morphisms in the sequence above are isomorphisms. This proves i).

To prove ii), we apply the refined Riemann-Roch formula conjectured
by T. Saito [S] p. 163, and proved by J. Franke [Fr] §3.3 (at least when
V = T). Consider the statement in [S] loc. cit. when Y = T = X, R = XQ,
Z = X' ^ h = idxi TT = (/, and F = Ox' By i) above, the canonical map

Rh^F -^ Rg^L^F

is an isomorphism in that case, so the left hand side of [S], loc. cit., vanishes.
On the other hand, the right hand side is precisely 7r^Tdo(7r).

q.e.d.
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3.3. When TT is a good morphism of models, one can also prove
Proposition 3 ii) directly. Indeed, by definition, TT is then the composite
of a sequence of blow ups with integral regular centers contained in the
special fiber. By (46) and the projection formula, it is enough to check (47)
when TT is one of these good blow ups. Let y be the center of this blow up.
We let JQ : V —> XQ and j : y —» X be the obvious inclusions and denote by
y ' = 7r~1 (V) the exceptional divisor of TT. If N is the normal bundle of V in
X, we know that V = P(7V). Let / : V -> X' be the inclusion. According
to [F], Lemma 15.4 (iv), the tangent complex TTT, when shifted by one,
is canonically isomorphic the direct image j^(F) of the universal quotient
bundle F on P(7V). Therefore, if we apply the Grothendieck-Riemann-Roch
theorem with supports to j^, we see that Tdo(Tr) is ^(r), where r is a
universal polynomial in the Chern classes of p*N and the Chern class of
the canonical line bundle 0(1) on P(7V). It follows that TT^ Tdo(Tr) == jo^(o')i
where a is a universal polynomial J?(ci(7V),..., Cr(7V)) in the Chern classes
of TV, where R depends only on the rank r of TV.

On the other hand, if we apply the Grothendieck-Riemann-Roch
theorem to TT and O^i, since R-K^OX' = 0^, we obtain

l=ch(^)=7r,Td(7r),

therefore, by (19),

^ 71̂  Tdo(Tr) = 7^(Td(7r) - 1) = 0.

In particular Proposition 3 ii) holds as soon as i^ is injective, and a = 0
when j^ is injective. The polynomial R is the same for any regular closed
immersion j {X need not defined over A), for instance the standard section
j : y —> P(7V © 1) of the completed projective bundle of TV, for which j^
is injective. Therefore this universal polynomial R must vanish. Hence we
always have a = 0, and Proposition 3 holds.

3.4. When A is a localization of an algebra of finite type over a field k
of characteristic zero, the general case of Proposition 3 ii) follows from §3.3
and the weak factorization conjecture for birational maps proved in [W] and
[AKMW], Th. (O.I.I). Indeed, by a standard inductive limit argument, one
is reduced to proving (47) when TT : X' —> X is a birational map between
two smooth projective varieties over k which is the identity on the open
complement U of the closed subset XQ C X. But then, according to op. cit.,
there exist a a sequence of smooth projective varieties A^, 1 < i < n, where
X^ = X' and X\ = X^ and, for each z, a map Xi —> X which is the identity
on U\ with the following property: for any index i < n there exists either
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a morphism Xi —» ^+1 over ^ or a morphism ^+1 —> <^ over <^ which
is a blow up of a smooth center disjoint from [7. By §3.3, the identity (47)
is true for such blow ups. Using (46) and the projection formula, it follows
that (47) holds for the map X^ —^ X if and only if it holds for Xi -^ X.
So, by induction on %, we conclude that each morphism Xi —^ X satisfies
(47).

4. Direct images.

4.1. Let (p : X —> Y be a map of varieties and consider a commutative
diagram of maps of models

7Tyl __^ -y

(48) fl , If

y -^ y
where X and X' (resp. V and y') are models of X (resp. V) and both /
and // induce the same map (p from X to V, when TT and p are morphisms
of models. Let Ex be a vector bundle on X. The elements Lp* J?/^ £^
and Rf^ LTT* ̂  in D^O^') both restrict to R(p^ E on V, when £J is the
restriction of E^ to X. Furthermore there is a canonical morphism

(49) Lp* ̂ /, Ex -^ Rf, LTT* ̂ .

Indeed, let X\ be the fiber product of X and V over y, and £ : X' —^ X\,
71-1 : X\ —> X and f\ \ X^ —> V the obvious maps. By adjunction, as in
§3.3, there is a morphism of functors id —^ Re^ Le* in the derived category
of perfect complexes on X^. This gives a map

Rf^ LTTI* Ex -> Rf^ LTT* Ex = Rfi^ Re. Le' LTTI* Ex.

The map (49) is the composite of this map with the base change morphism

Lp* Rf^ Ex -^ Rfi. L^ Ex

([SGA4] XVII 4.1.4). Let Ky, € ^(V) be a cone of the map (49). All
such cones are isomorphic in the derived category, therefore the Chern
character with supports chy^(Ky') is independent of choices (see §2.3). We
define

(50) 0y,:=chy^Ky,)-Td(p)

+p*(ch(A/,£;^))Tdo(p)
-/:[7r*(ch(£'^)Td(/)).Tdo(7r)]
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in CH.(yo)Q.

Note that, when V = y, we have

(51) 0y = 0.

PROPOSITION 4.

i) When / : X —^ V and Ex are fixed, and when f : X' -> V varies,
the classes 0y are the components of a unique current 0 e D(Y)q.

ii) The following identity holds in CH(y')Q:

(52) z* 0y. = /; 7r*(ch(^) Td(/)) - p* ch(7?/, Ex}.

Proof. — It follows from the axiom (M2) in §1.1. that, to check i),
it is enough to prove the following. Consider a commutative diagram

^ JL, ^ ' ^ ^
(53) r [ f[ f[

y — y — y,
r p

where p and TT (resp. r and p) are morphisms between models of X (resp.
Y) and let E^ be a vector bundle on X. Then

(54) r^0y. =0y^

where 0y is defined using TT and p, while 0y" is defined with a = Trp and
s = pr.

Let Ky" be a cone of the map

L s ^ R f ^ E x - ^ R ^ L ^ E x .

Note that
Rr, L5* = Rr, Lr* Lp* = Lp\

Indeed, we know from Proposition 3.i) that Rr* Lr* = id. Therefore

(55) Rr^ Ls^ Rf^ Ex = Lp* Rf. Ex.

Similarly Rp^ Lp* = id, hence

(56) Rr^ Rf^ La* Ex = Rf^ Pp. La* Ex = Rf^ LTT* Ex.

From (55) and (56) it follows that Rr^ Ky" and Ky are isomorphic.
The Riemann-Roch-Grothendieck theorem with supports ([F] Th. 18.2 and
§20.1) implies that, since Td{s) = Td(r)r* Td(p),

(57) r^chy^Ky.) Td(s)) = chy^Ky.) Td(p).
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Let us look at the other summands of Qyn (see (50)). If we apply r^
to the identity

Tdo(s) = Tdo(r) r* Td(p) + r* Tdo(p)

(see (46)) we obtain, by Proposition 3.ii) for r,

r* Tdo(s) = Tdo(p).

It follows that

(58) r-*(s*(ch^/,^)Tdo(s)) =p*ch(A/,^)r.Tdo(s)
=p*ch(fi/*^)Tdo(p).

Similarly r« f,' = f, p» and p, Tdo(o-) == Tdo(Tr), therefore

(59) r,/;(<7*(ch(^)Td(/))Tdo(<r)) = /:p,(<7*(ch(^)Td(/))Tdo((r))
= /:(7r*(ch(^)Td(/))7r,Tdo((7))
=/:(7r*(ch(^)Td(/))Tdo(7r)).

From (57), (58) and (59) we conclude that r* 0y" = Qyi, as was to be
shown.

To prove ii) we use (17) and (50) to get

(60) z. 0y = (ch(/: TT* Ex) - ch(p* /» Ex)) Td(p)
+p*(ch(/.^))(Td(p)-l)
-/:[7r*(ch(^)Td(/))(Td(7r)-l)]

=ch(/:7r*^)Td(p)
-p*ch(/,^)
+/:7r*(ch(^)Td(/))
-/:[^(ch(^)Td(/))Td(7r)],

where we wrote /, instead of .R/», p* instead of Lp* etc. The relative Todd
class of f OTT =po f is

7r*(Td(/)) Td(Tr) = Td(/') r (Td(p)),

therefore the Riemann-Roch-Grothendieck theorem, when applied to /',
gives

(61) /:[7r*(ch(^)Td(/))Td(7r)] = /:[7r*(ch(^))Td(r)r (Td(p))]
=ch(/:7r*^)Td(p).

Combining (60) and (61) we get (52). q.e.d.
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Let E (resp. R(p,, E) be the bundle E (resp. R^^ E) equipped with
the metric (resp. the virtual metric) denned by Ex (resp. Rf^ E^).

COROLLARY 2. — The following identity of currents holds in
^closed^Q:

(62) At 0 = ̂ (ch(E) Td(/)) - ch(R^E).

This corollary indicates that 0 plays the role of the higher analytic
torsion in Arakelov geometry ([GS3] or [BK]). Note that, when / is flat, it
follows from (62), Prop. 1 i) and [BGS] Th. 4.1.1, that 0 lies in A(X)q.

4.2. THEOREM 1. — Let f : X —> Y be a map of varieties. Choose a
virtual metric hf on the tangent complex Tf. There exists a unique direct
image morphism

/. : Ko(X) -^ Ko(Y)

such that

i) When x = Oi(rj) with rj G D{X)q, the following formula holds:

(63) /,(a(77))=a(A(77Td(T7))).

ii) Assume there is a map of models

/ :^-^y
v

such that hf is defined byTj^, and that x 6 Ko(X) is the class of(E, E^,0),
where E^ is a bundle on X with restriction E to X. Let 0 be the current
defined in Proposition 4, i). Then f^(x) is the class of (Rf^ E, Rf E^,0)

in Xo(V).

iii) Suppose we choose two different virtual metrics hf and h^ on Tf
and let /„, f^ be the corresponding direct image morphisms. Then, for any

v v
x e Ko(X), the following identity holds in K()(Y):

(64) U(x) - f'^x) = a(Mch(x) Td(hf, /^))).

V
Furthermore, for anyx in Ko(X) the following Riemann-Roch identity

holds:

(65) ch(/,(a;)) = /,(ch(:c) fd(T7)).
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4.3. To prove uniqueness in Theorem 1, first notice that the identity
(63) fixes f^ on the image of a.

Next, if h and h' are two metrics on a vector bundle E over X, the
v

relation (37) in KQ^X) together with (63) imply that if x is the class of
v

(£', h, 0) in KQ {X) and x ' is the class of (E, h', 0), we must have

(66) f.(x) - f^x') = a(/.(ch(^^)Td(r7))).

On the other hand, given any map / : X —> Y of varieties and any
vector bundle E on X, we may find a map of models / : X —> V inducing
/ on X, and a bundle Ex on X inducing E on X [RG]. If Tf is equipped
with the virtual metric defined by Tf_, Theorem ii) will then specify the
value of f^(x), where x is the class of (E,Ex,0)' This, together with (63)
and the anomaly formulae (64) and (66), proves the uniqueness of /*.

To prove the existence of f^ we have to show that the formula (63)
and ii) are consistent with the anomaly formulae (64) and (66). This boils
down to the following two facts. First, let (53) be the diagram considered
in the proof of Proposition 4, and let Ex be a vector bundle on X. Let

x C Ko{X) be the class of (E,Ex,0) and let (p : X -^ Y be the map of
varieties induced by /, /' and ///. We want to compare the direct images
of x when the virtual metric on T(p is defined by Tf or Tf. Let 6 be
the current defined by Ex and the virtual metric T/, and 0f the current
defined by TT*EX and Tf (Proposition 4). Let HQ be the virtual metric
Rf^ Ex on R^p^ E and h\ be the virtual metric Rf^ LTT* Ex on the same
complex. Combining (37) and (64), the identity

0 - e ' ^ ch(/io, h,)=^ (ch(x) fd(T/, Tf))
must be true, at least after applying a to it. To prove this equality, writing
K for a cone of Lp* Rf^ Ex —> Rf^ LTT* Ex, all we need to check is the
following identity in CH^yoQQ^
(67) 0y. - 6y. - r* chy^K) = /:(ch(a* Ex) p* Td(f\ f)y^).
Conversely, by the cofinality axiom (M2), this identity will allow us to
define f^(x) for any choice of virtual metrics on Tf, and (64) will hold
always.

v
Second, to check that /^ defines a map on K()(X)^ consider the

diagram (48) in 4.1, let S x , Ex, Qx be bundles on X, which restrict to S,
E, Q respectively on X. Assume there is a complex

ex : o ̂  Sx -^ Ex -^ Qx -^ o
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on X which restricts to an exact complex on X. Consider the associated
Chern character with supports

ch^(^)GCH.(^o)Q

(Proposition 2) with image ch(£) in A(X)(Q. On the other hand, the derived
direct image of the exact sequence Ex gives a distinguished triangle on y

Rf. Sx -^ Rf. Ex -^ Rf. Qx -^ Rf. ̂ [l],
hence a metrized distinguished triangle in Db(Y) and, by the construction
in §2.5, a Chern character with supports in Vo. We denote this class by
chy,(Rf,£x) e CH.(yo)o. Finally, let Oy(Ex), 0y'{Sx) and Oy^Qx) be
defined as in (50) from Ex, Sx and Qx respectively. From (37) and (63)
we must have
(68)
ey^E^-ey,(S^-0y^Q^Wchy,W^£^ = /; 7T*(ch^ (^) Td(T/)).

Conversely, (67) and (68) will show that /„ : Ko(X) -^ Ko(Y) exists,
satisfying i), ii) and iii) in Theorem 1. After that, to check (65), we are
reduced to the situation considered in ii). For any diagram (48) as in 4.1,

v
the element ch(p^c x) is then the projective system (p* ch(J?/+ E^} -\- i^ 0y)
in Im^CH^y^Q. From Proposition 4, ii) we get

p* ch(^/. Ex) + i. Oy = /; 7r*(ch(^) Td(/)),

which is precisely the y'-component of

^(ch(rr)fd(TV)).

We are thus left with checking (67) and (68).

4.4. Let us now check the equality (67). By the definition (50), if K ' 1

is a cone of

(69) L5* Rf. Ex -^ Rf^ L^ Ex,

we have

(70) 0y. = chy^K") Td(s) + s^chW Ex)} Tdo(^)
-/:[a*(ch(^)Td(/))Tdo(a)],

and if K ' is a cone of

Lr* Rf, TT* Ex -^ Rf^ Lp^ (TT* Ex)
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we have

(71) By,, = diy^(K') Td(r) + r* (ch(A/;(7r* Ex))) Tdo(r)
- /:V(ch(7r*^) Td(/')) Tdo(p)].

Since .E^ is locally free we have

L p ' ( - K * E x ) = p*^Ex = a* Ex = La* Ex.

Therefore the map (69) factors via Lr* R/^TT* Ex) and, by the octaedron
axiom of triangulated categories, there exists a distinguished triangle in
D'y^y")

Lr* ( K ) - ^ K " ^ K ' -^Lr*(K)[\\.

By (15) this implies

(72) chy^ (K") = r* ch^ (K) + chyy (K ' ) .

Since chy^K") is supported on VQ we have (by (17))

(73) chy^ ( K " ) Td(s) = chy^ ( K " ) Tdo (s) + chyy (K").

Similarly

(74) chy^K') Td(r) = diy^(K') Tdo(r) + chy^K').

Furthermore

(75) s*(ch(Rf,Ex)) Tdo(s) = ch(Ls*Rf^Ex) Tdo(s)
=ch(A/;£<7*^)Tdo(s)

-ch^(^")Tdo(s)
and
(76)
r*(ch(^(7r*£^)))Tdo(r) = ch( '̂£(7*^) Tdo(r) - chy^(K')Tdo(r).

From (72)-(76) we conclude that

(77) Qyn - 6'y,, - r* chy^ (7<r) = chWLa*Ex) Tdo(r)

-/:[<7*(ch(£'^)Td(/))Tdo(<7)]

-ch(7^/;/£(7*^)Tdo(r)

+ /:V(ch(7r*£.v) Td(/')) Tdo(p)].

Applying the Riemann-Roch-Grothendieck formula to /// and a* Ex, we
get from (77) that

(78) 6y,, - 0y,, - r* chy^ (K) = /;(ch(<7*^). A)

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



394 H. GILLET & C. SOULE

with
A^TdCn/^Tdc^-Tdo^))

-a*(Td(/)) Tdo(a) + p^Td(f')) Tdo(p).

To compute A, we use the identities (44) and (45) from §3.1 to get

Td(f")rTdo(r)=Td(rf",f"),

Td(f") f"* Tdo(s) = Td(sf", f"),

<7*(Td(/))Tdo(a)=Td(/<7,/),
^(Tda^Tdo^fda-^.r).

Since s/" = /o- and r f " = /'p, we get from this and (27)

(79) A = Td(sf", f") -_Td(rf", f") -Td(fa, f) + Td(f'p, f)

== Td(/", /) - Td(/", /') = p" Td(r, /)^.

From (78) and (79) the equality (67) follows.

4.5. To check (68) in §4.3 we let K(Ex) be a cone of

Lp^Rf^Ex -^ Rf'^Ex
and we define K(Sx) and K{Qx) similarly. Since these maps fit in a
morphism of distinguished triangles
Lp*Rf,Sx —— Lp*Rf,Ex —> Lp*Rf^Qx —— Lp*Rf,Sx[l}

[ I I I
Rf'.L^Sx —— Rj',Lv*Ex —— Rf'.L^Qx —— Rf',LiT*Sx[l},

where all lines and columns are acyclic on Y, we get from (32) in
Lemma 1 ii) that

(80) chy^(K(Ex)) - chy^K(Sx)) - chy^K(Qx))
= chy^Rf, LTT* £x) - chy^Lp* Rf, £x),

where Rf^ LIT* £x is the upper triangle and

(81) ch^(£p* Rf, £x) = p* chy^Rf, £x).
On the other hand,

(82) p* [ch(Rf, Ex) - ch(J?/, Sx) - ch(Rf, Qx)\ Tdo(p)
=p*chy,(Rf^£x)Tdo(p}

= p* chy,{Rf, £x) Td(p) - p* chyĵ  £x).

Since /TT = pf we have

7r*(Td(/)) Td(Tr) = Td(/Q r*(Td(p)),
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and this implies that
(83) /:[7r*((ch(^) - ch(^) - ch(Q^)) Td(/)) Tdo(Tr)]

=/;[7T*(ch^(^)Td(/))Tdo(7r)]
= /;[7r*(ch^(^) TT* Td(/) Td(Tr)] - /; 7r*(ch^(^) Td(/))
= /;[7r*(ch^(^)) Td(/') r Td(p)] - /; 7r*(ch^(^) Td(/))
= ch^W; LTT* f^) Td(^) - /; 7r*(ch^(^) Td(/)),

where the last equality follows from the projection formula for /' together
with the Riemann-Roch-Grothendieck formula with supports. Putting (50),
(80), (81), (82) and (83) together, we get
0y^E^) - 0y{S^) - 0y{Qx) +p* chy^Rf^ 8^ = /: 7r*(ch^(^) Td(/)),
i.e. (68) holds true. This ends the proof of Theorem 1.

4.6. Here are a few more properties of the direct image morphisms
defined in Theorem 1.

THEOREM 2. — Let f : X —> Y be a map of varieties, equipped
with an arbitrary virtual metric on Tf.

v v
i) When x C Ko{X) and y C Ko{Y), we have

Uxr(y))=f.(x)y.

ii) Iff is flat, f^ maps Ko(X) into Ko(Y).

iii) Let g : Y —^ Z be a map of varieties. Choose arbitrary virtual
metrics on Tg and T{gf). Let Td be the secondary Todd class of the
metrized distinguished triangle on X

T:Tf-.T{gf)-.rTg^Tf[l\.
v

Then, for any x € Ko(X), the following identity holds:

(84) (gfUx) - g.(Mx)) = -a((gfUch(x) Td)).

4.7. To check Theorem 2 i) when x or y is in the image of a, we just
use the fact that the projection formula is true for forms and currents (§1.8
and [BGS] 1.5), together with (63).

We may then assume that x is the class of (£1, h^ 0) and y is the class
of (F, /z',0). By the previous argument, and the anomaly formula (66), the
difference

z=f^r{y})-Ux)y
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does not depend on the choice of the metrics h and h ' . Furthermore, if we
change the virtual metric on Tf and if we denote by Td the corresponding
secondary Todd class, it follows from Theorem 1, iii) that z gets replaced
by _ _

z + af. {ch{x r(y)) Td) - a(/*(ch(^) Td)) . y .

This is equal to z since, by (39),

a(/.(ch(^)Td)) . y = a(f^ch(x) Td)chQ/)) = af.(ch(xr(y)) Td).

Consequently we may assume that there is a map of models / : X —> y
inducing / on X and defining the virtual metric on Tf, and that the metric
on E (resp. F) is defined by a bundle Ex (resp. Fy) on X (resp. V). Since
Rf^(Ex 0 f*Fy) is isomorphic to Rf^E^ (g) Fy we know that z can be
written

z = 0(77), r] e D(V)Q.

On the other hand, the Riemann-Roch formula (65) in Theorem 1, together
with the projection formula for arithmetic Chow groups (§1.8) imply that
ch(z) == 0. Therefore

d^r] = uj{ch(z)) = 0.

By Proposition 1, ii), if rjy vanishes we can conclude that 77 = 0 and z = 0.
But the analytic torsion 6y for both E^ and E^ 0 f*Fy are zero by (51).
Therefore rjy = 0.

4.8. Assume / is flat and x € Ko(Y). Since ch(x) Td(r/) lies in
Aciosed(^)o and /„ maps forms into forms (§1.7, i.e. [BGS] (4.1.1) and
(4.2.1)) f^ch(x)Td(Tf)) lies in Aciosed^Q. But it follows from the
Riemann-Roch formula (65) that

/.(ch(a;)Td(r7))=ch(/,(^)).

Therefore f^x) lies in Ko(Y) (see 2.5).

4.9. The proof of Theorem 2, iii) is similar to Theorem 2, i). Namely,
let

z = {9fUx) - g.(f.(x)) + a{(gf). (ch(^) fd)).

When x = a{rj), it follows from (63) that z = 0. Indeed, since, by (26) and
(43), ___ _ _ _

Td(T(gf)) = Td(Tf)r Td(Tg) - dd^Td),
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we get
(gf).W = a(g^(rjTd(Tf))Td(Tg))

-a^gf^rjdd^Td)))

^g.f.W-^fU^dd^fd)))
and z == 0 by the "Stokes formula"

rjdd0^) = dd0^)^.

Therefore it is enough to check that z = 0 when x is the class of
(£',-£^,0) for some extension of E to a model of X. When the virtual
metric hf on Tf is replaced by hf, from Theorem 1, iii) and (63) we know
that z gets replaced by

z' = z - ag^(ch(x) Td(hf, ̂ )) Td(Tg)} - a(gfUdi(x)(Td - Td)],

where Td (resp. Td ) are the secondary Todd classes of the distinguished
triangle T, where the virtual metric on Tf is hf (resp. /i'r), and we do
not change the virtual metrics on T{gf) and /* Tg. From Lemma 1 iii) we
know that

Td - Td' = Td{hf, h}) /* Td(Tg),

therefore z ' = z.

One checks in a similar way (by shifting (31)) that z does not depend
on the virtual metrics on Tg and T(gf). Finally one may assume that there
are maps of models / : X —> V and g_:y —^ Z which induce / and g^ that
the metric on E is given by a bundle Ex on X^ and that the virtual metric
on Tf (resp. Tg, resp. T(gf)) is given by Tf_ (resp. Tg, resp. T(gf)). The
distinguished triangle

T^-.T(gf)^rTg-^Tf[l]

implies in that case that Td = 0. Since Rf_ Rg = R(fg)^ we can write
z = a(rj), rj € D(Z)q, and from Riemann-Roch we deduce that

dd^rj) =ch(z) = (gfUch{x)Td{T{gf))) - g^(ch{x)Td(Tf))Td(Tg))=0.

To check that 77 = 0 (hence z = 0) it is enough that r]z = 0. But this
follows from (51) applied to the maps /, g and gf. This ends the proof of
Theorem 2. "~ "
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