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SYMPLECTIC SUBVARIETIES OF
PROJECTIVE FIBRATIONS
OVER SYMPLECTIC MANIFOLDS

by Roberto PAOLETTI

1. Introduction.

Suppose that (M,w) is a compact symplectic manifold of dimension
2n, such that the cohomology class [w] € H?(M,R) lies in the integral
lattice H?(M,Z)/Torsion; we shall say that (M, w) is almost-Hodge. It has
been recently proved by Donaldson that for any sufficiently large integer k
there exists a symplectic submanifold W C M representing the Poincaré
dual of any fixed integral lift of [kw], [D].

In this paper, we specialize this result to the case of a symplectic
fibration p : E — M whose fibre is a projective manifold F' with a fixed
Hodge form o on it. For instance, E could be the relative projective space,
or a relative flag space, associated to a complex vector bundle on M. Then,
as follows from well-known symplectic reduction techniques ([W], [GLS])
E has an almost Hodge structure w restricting to o on each fibre of p,
[MS]. We adapt Donaldson’s arguments to show that the symplectic divisor
guaranteed by his theorem may be chosen compatibly with the vertical
holomorphic structure. More precisely,

THEOREM 1.1. — Let (M,w) be an almost Hodge manifold. Let
F C PV be a connected complex projective manifold and set L = Op(1),
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Math. classification: 53C15 — 57R95.
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the restriction to F of the hyperplane bundle on PN. Denote by o the
restriction to F of the Fubini-Study form on PN. Suppose that G is a
compact group of automorphisms of PV preserving F. Let p: E — M be
a fibre bundle with fibre F' and structure group G, so that in particular
there is a line bundle Ly — E extending L — F'. Then E admits an almost
Hodge structure w vertically compatible with o. Furthermore, perhaps after
replacing @ by kp*(wp) + @ for k > 0, any integral lift of [@] is Poincaré
dual to a codimension-2 symplectic submanifold W C E, meeting any fibre
F,, =p~Y(m) (m € M) in a complex subvariety.

In general the submanifold W may not be transverse to every fibre.
For example, if £ is a rank-2 complex vector bundle on M and E = P&*
with general fibre (P, Op1(1)), then W is the blow-up of M along the zero
locus Z of a section of a suitable twist of £, and therefore contains all the
fibres over Z.

In practice one may have a fibre bundle £ — M with fibre a complex
projective manifold (F, Jg) and structure group G preserving the complex
structure Jr and some fixed Hodge form o on F, and complexification
G C Aut(F, Jg). If L is a line bundle on F such that ¢;(L) = [o], then by
general principles from geometric invariant theory a lifting to L®* of the
action of G exists if k > 0. Therefore,

COROLLARY 1.1. — Suppose that (F,o), M and E are as just
described. Then for r >> 0 and k > k(r) any integral lift of [rw + kp* (war)]
is Poincaré dual to a codimension-2 symplectic submanifold intersecting
each fibre F,, in a divisor of the linear series |L®7|.

Again, W is not transversal to every fibre. In the case of a P!-bundle
E =P&* — M, the projection W — M is a branched cover with non-empty
ramification locus.

The theorem also yields that top Chern classes of symplectically very
positive vector bundles have symplectic representatives, as already shown
by Auroux, [A]:

COROLLARY 1.2. — Let (M,w) be a 2n-dimensional almost Hodge
manifold and let £ be a complex vector bundle on M of complex rank
r < n. Let H be a complex line bundle on M with ¢;(H) = |[w]. Then for
k > 0 there is a transverse section s of £ ® H®* whose zero locus Z is a
connected symplectic submanifold of M; in fact, H;(M,Z) =0ifj <n—r.
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As we shall see, these sections are also asymptotically almost holo-
morphic in the sense of [A].

Notation. — For any integer r > 0, we shall denote by w(()r) = (i/2)
T
5 dzy A dZ, the standard symplectic structure on C". Furthermore, by

a=1
C we shall often indicate an appropriate constant, appearing in various
estimates, which is allowed to vary from line to line.

Acknowledgments. — 1 am grateful to Professor Donaldson for
sending me a preprint of [D], and to the referee for suggesting various
improvements in presentation.

2. Proof of the theorem and corollaries.

Let # : P — M be the principal G-bundle associated with the
fibration. ‘Given a connection for 7, the existence of a compatible almost
Hodge form on E follows from well-known symplectic reduction arguments,
[MS]. In fact, minimal coupling produces a compatible closed 2-form
¥ = Ymin on E, [GS]. Explicitly, let the induced connection be given by the
horizontal distribution H(E/M) C TE and denote by V(E/M) C TE the
vertical tangent space. Let g be the Lie algebra of G and view the curvature
F as a g-valued 2-form on M. Let y : F — g* be the moment map for the
action. If e € F and z = p(e), let U C M be an open subset over which P
trivializes and let y : U x F' — p~1(U) be the corresponding trivialization.
Then H(E/M) and V(E/M) are mutually orthogonal for o. Furthermore,
with abuse of language, 9|y (p/ar) = 0, while if X,Y € T, M and Xt Y are
their horizontal lifts at e = ~y(z, f), then 9.(X*, Y¥) = (u(f), Fx(X,Y)).
Therefore &) = ¥ + kp*(w) is a compatible symplectic structure on E
if & > 0. However, in order to adapt Donaldson’s construction we shall
need to describe —2mi as the curvature of a connection on a suitable line
bundle on E.

Clearly, the action of G lifts to L and preserves the unit circle bundle
Sr C L. Let V1, be the unique covariant derivative on L compatible with
the complex and hermitian structures, that is, the restriction to F' of the
connection on Opn(1). Let H(SL/F) C TSL be the corresponding S*-
invariant horizontal distribution, which by uniqueness is also G-invariant.
The line bundle Lg := P xg L over E restricts to L on every fibre of
p and has an hermitian metric extending that of L. Then the unit circle
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bundle S;, = P x¢ S C Lg has a connection over E, as follows. Let
p’ : SL, — M be the projection, a fibre bundle over M with general fibre
Sr. Given s € Sp, mapping to e € E, set x = p(e) and choose as above a
trivialization of P in a neighbourhood U of z, with induced trivializations
y:UxF - p}(U)and v : U x S, — p~}(U). If e = ¥(z, f) and
s =7'(z,£) (¢ € St lies over f € F), then the horizontal space of S, at s
is H(SLp/E) = H(SLg /M) ®dy(, 4 ('Hg(SL/F)). This gives a well-defined
connection Vi, on Lg, and we leave it to the reader to check that ¥,
may also be obtained as the normalized curvature of Vp,:

LEMMA 2.1. — Let 9 be the normalized curvature form on E of
the connection H(Sg/E). Then for k > 0 the 2-form &y = ¥ + kp*(w)
is a compatible symplectic structure, and H(E/M) is the symplectic
complement of V(E /M) for &. In particular, the subbundle H(E/M) C TE
is symplectic with respect to @.

We shall need an auxiliary non-degenerate 2-form w,,x on E. The
vertical tangent bundle V(E/M) has an obvious symplectic structure, the
restriction of @, that we shall also indicate by o, and an obvious com-
plex structure Jyert, inherited by that of TF. The horizontal distribution
H(E/M), on the other hand, carries the symplectic structure p*w. Then
Waux € Q2(E) will denote the orthogonal direct sum of ¢ and p*w. In
general wyyx will not be closed, and in view of the minimal coupling hor-
izontal component of ¥ we see that waux 7 W(1) when P is not flat. Let
us pick some Jy; € J(M,w) and view it in a natural manner as a com-
plex structure on H(E/M); then Jaux := Jp D Jvert € J(F, Waux). Thus
Gaux(*y ) = Waux (‘s Jaux:) is & riemannian metric on E. On the other hand,
we have Wy = G(hk) ® Wy, where &'zz‘k) and &, = o denote, respectively,
the horizontal and vertical components. Now ay, := (1/ k)&f‘k) is a sequence
of symplectic structures on the vector bundle H(E/M), converging to p*w
in the C!-topology, namely ||ax — p*w| < C/k and ||V (ax — p*w)|| < C/k.
Given a vector bundle F on a manifold and any symplectic structure 7 on
F, there is a retraction r,, : Met(F) — J(F,n) depending pointwise ana-
lytically on 7, where Met(F) is the space of all riemannnian metrics on F,
and J(F,n) denotes the space of all complex structures on F compatible
with 7 ([MS], ch. 2). Denote by g%, the restriction of gaux to H(E/M), and
let JP =714, (92x) € T(H(E/M), ) for each k; then || JF — Ju|| < C/k,
IV(J} = Jum)ll < C/k. Therefore Jiy = J! @ Jyert € J(E,Wx) and
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(1,0) (0,1)

IV — Jauxll < C/k, [[V(Jk — Jaux)|| < C/k. Let A\ T§ and A T} de-
Jaux Jaux

note, respectively, the C-linear and C-antilinear complex functionals on

(1,0) (0,1)
(Tg, Jaux), and let pg : A\ Tp — A Tg be the morphism of vector bun-

Jaux Jaux
dles relating Ji to Jaux, [D]. Then ||ux|| < C/k and |Vuk|| < C/k.

The riemannian metric gy = w(+,Jy-) on M induces a distance
function d; for k a positive integer, let dy denote the distance function
associated to the pair (kw,Jps), that is to the metric kgps. Similarly,
let dr be the distance function on F' associated to the pair (o, Jr).
Furthermore, on M there is an hermitian line bundle H together with a
unitary connection on it having curvature form —2miw. Replacing & by W)
amounts to replacing Lg by B = p*(H®) ® Lg with the tensor product
connection. Thus we are looking for a section s of B for some k >> 0 whose
zero locus is a symplectic submanifold Z C E with respect to @, meeting
each fibre F;, in a complex subvariety.

Let Vp be the covariant derivative on B. Given the almost complex
structure Jg, we have a decomposition Vg = 8 + 0. The zero locus
Z = Z(s) of a smooth section s of B will be symplectic if [0, ps| < |07, 55|
at every point of Z ([D]; Lemma 4.30 of [MS]); the two latter terms
represent, respectively, the (0, 1) and (1,0) components of V gs with respect
to the almost complex structure Ji. Following the path of Donaldson’s
construction, we shall produce such a section as a linear combination of
certain “concentrated” building blocks. In order for ZN F; to be a complex
subvariety of F;, for every x € M, these basic pieces must be chosen in an
appropriate way.

DEerFINITION 2.1. — If U C F is an open set, a smooth function
f : U — C will be called vertically holomorphic (in short, v-holomorphic) if
its restriction to UNF}, is holomorphic, whenever the latter set is non-empty.
Let A be any complex line bundle on E. A v-holomorphic structure on A is
the datum of an open cover U = {U,} of A, together with v-holomorphic
transition functions g.g : Uy N Ug — C*. With such an assignment, H
will be called a v-holomorphic line bundle. There is a natural notion of
equivalence of v-holomorphic structures. Clearly, the restriction of A to
any fibre F, is a holomorphic line bundle A;. A local section of A on
U C E is called v-holomorphic if it restricts to a holomorphic local section
of A, for every x € M for which U N F, # 0. Let O% denote the sheaf of
rings of v-holomorphic functions on E; the sheaf of v-holomorphic sections
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of A, denoted O%(A), is a sheaf of Of-modules.

Let f : U — C be a smooth function on an open subset U C E,
and let (df)vert € V(E/M)* @ C be the restriction of its differential to the
vertical tangent bundle. Let j denote the complex structure of C. Then f
is v-holomorphic if and only if Oyers.f := (df )vert + 7 © (df )vert © Jvert = 0;
the left hand side is the C-antilinear component of (df)vert- Now the line
bundle Lg is naturally v-holomorphic, and restricts to L on each fibre.
Thus Theorem 1.1 is a consequence of the following:

PROPOSITION 2.1. — For k > 0 there is a v-holomorphic section s
of B such that |0;, ps| < |0s,.ps| at all points of the zero locus of s.

To prove the proposition, we shall first produce a suitable choice of
compactly supported v-holomorphic sections, peaked at points of E in an
appropriate sense, to be used as the basic buiding blocks in Donaldson’s
construction. Next we shall give an appropriate open cover of E on which
to perform the inductive part of his argument.

Fix ey € E and let Uy C M be an open neighbourhood of zo = p(ep)
over which P is trivial; perhaps after replacing w by some multiple, there
is a Darboux cooordinate chart y : B?2* — Uy C M centred at zg for w,
which is C-linear at the origin. Let n be a unitary section of H over Uy
such that the connection matrix a; of H on Uy with respect to 7 satisfies

X*0r = A, where A =: (1/4) Y (Zodzo — 20dZa), [D]. We have an induced
a=1

trivialization v : Up x F — p~!(E|y,), under which v*(Lg) = ¢3(L),
where ¢o is the projection on the second factor; suppose ey = (o, fo)-
We may assume that V f € F the local section v¢(y) = v(y, f) defined
over U satisfies dy,vf (T3, M) = He, where e = v¢(x9). The product map
¢ =yo(x,idr) : B?™ x F — E is holomorphic along F,, with respect to
Jaux, i.€. d(g,5y¢ : C*" X Ty F — Ty (5 5 E is C-linear for all f € F.

The picture may be rescaled on the base. If 6 (2) = z/Vk for z € C™,
define Xi = x 0 8 : VkB?" — Uy, [D]. There are product maps
b VEB? x F O o p L R
The function ¢ maps diffeomorphically onto p~(Up), and is holomorphic
along F, and on B?" x F we have ¢}&(x) = wo+0+O(1/k). One can check

arguing as in [D] that it is approximately holomorphic, in the following
sense.
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LEMMA 2.2. — Let Jp; denote the product complex structure Jo x
1,0 0,1

Jr on VEB™ x F, and let pji(z,f) : A\ (C* x TyF) — A (C" x T F),
Jor Jpr

(2, f) € VEB?" x F, be the bundle morphism relating 5;(],6) to Jpr. Then
|ui| < Clal/VE, |Vi| < C/VE.

If v € H9(F,L), the product n®* ® v may be regarded as a v-
holomorphic section of B on p~!(Up). We may choose vy € H°(F, L) and
an open neighbourhood V4 3 fo so that 1/2 < |yg| < 1on V, || < 1/2
on F\Vy and |v(f)| =1 < f = fo. The connection matrix § of V with
respect to the trivialization vy satisfies 6(fp) = 0.

Let 0, and 6 be the connection matrices of Vie and Vp with
respect to the trivializations vy and n®* ® vy, respectively. We may assume
that 0,(eg) = 0; let o denote the resulting section of B over Up. If
the t;’s are local coordinates on F' centred at fo and the zi,---,xzs, are
the local coordinates on M centred at z given by the chart x, in the
resulting trivialization on X (B?" x F) we have $Z€B =0+ A+ B, where

Bk = O(1/Vk).

The function g(z) = exp(—|z|?/4) is a holomorphic section of the
trivial line bundle £ on C™ with the connection A, [D]. If 3 is the
standard cut-off function centred at the origin and Bx(z) = B(k~1/6|z|),
then ¢r = (kg is the compactly supported, approximately holomorphic
section of (§,A) constructed in [D]. The following lemma shows that
Yo(e) = vr(Xz ' (z))so(e), where e = 7(z, f), is a good candidate for the
seeked concentrated v-holomorphic section of B.

Let us consider, as in [D], the following real function on M x M:

"2 .
o) = [ ) <
0 if di(z,2') > k4.
LEMMA 2.3. — Ifz = p(e) then |¥9g(e)| < Lk(z,zo). If di(z,z0) <

k'/6/4, then |9o(e)| > exp(—dk(x,20)?/3)|vo(f)|; in particular, for a fixed
R>0and all k> 0, if dp(z,z0) < R and f € Vp then |¥y(e)| > 1/C. For
all e € E, we have

|V3190(6)| < C(l + dk(zo,x))ek(mo,x),
10,,8Y0(e)| < Ck™'2(1 + di(20, z) + di (20, z)?) £k (20, T),
and

VB3, 8Y%(€)| < C’k‘l/z(l + di(, zo) + di (0, )% + di (0, )3) i (0, z).
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Proof of Lemma 2.3. — We may introduce an additional almost
Kahler structure on E|y, as follows. Given the trivialization v : U x F =
E|y, for each e = y(z, f) € E|y we have T.E = d,v¢(Tp E) ® V.. We define
a horizontal distribution H" C TE over U by setting H. = d,vs(T: E), so
that TE = H'@®V. Let us pull back the almost complex structure Jys to an
almost complex structure Jj, on H' and then set J' = J}; &' Jyert, where @’
is the direct sum with respect to the latter decomposition. By construction
H! = H, and so Joux(e) = J'(e) V e € Fy,. Similarly set v’ := w @' o,
where w is implicitly pulled-back to H’. Then «’ is a nondegenerate 2-
form on E|y and J' € J(E|y,w’). Hence ¢’ := u'(+,J"*) is a riemannian

1,0 0,1
metric on E|y and g}, = gaux on Fy,. Let p/ = p/(z,t) : N\TE - ANTE
J! J

be the morphism of vector bundles relating Joux to J'. Thus p'(e) = 0
Ve € Fp, and so |p'| < C|z|. Let pj be the vector bundle morphism
relating ¢t Jouy to ¢FJ; then ) = &5uy, hence || < Cdi(z,z0)/vk and
|Vu}| < C/vk. Similarly, replacing w by kw in the above construction
but leaving the vertical component o unchanged, we get non-degenerate
92-forms wtk and w'®, and riemannian metrics g{¥) and ¢’®; perhaps
after restricting U for k£ > 0 the corresponding quadratics forms q&ﬁi and
¢'® are equivalent on E|y. In turn, ¢{¥% is equivalent to ¢(¥) (the quadratic
form associated to gx). On the upshot the claimed estimates may be proved
using ¢’(*), by an adaptation of the arguments in [D]. Let us give some
detail for 99 and Vgdy. As to the former, the claim follows direclty from
the definition. As to the latter, the proof is straightforward on the region
T where dy(z0,2) < k'/%/4 and f € V;. Fix e; € T. Let ¥; be a section
constructed as above, but with reference point e;. Then ¥y = s1; near e; for
a suitable v-holomorphic function s, and therefore |Vpdo(e1)| = |ds(er)].
The claim easily follows from this.

The estimates on 9, gy and Vpdj, Yo also follow by similar
arguments, in view of the fact that, up to (1 — @' ™!) etc,

35,890 = 07,5,890 — 1k(07,,890),
3 Jaue,8% = 037,890 — i (07, 890),
8Jpux,8% = 057,890 — 14 (8,,.,8%), [D]. =
‘We now need to describe a suitable open cover of E. This is obtained
by locally taking products of open sets in an open cover of M depending on

k as in [D] and in a suitable fixed open cover of F'. For k > 0 let U = {U;}
be an open cover of M by a collection of gx-unit balls U;, with centres z;,



SYMPLECTIC SUBVARIETIES OF PROJECTIVE FIBRATIONS 1669

i=1,---, Mg, satisfying the properties stated in Lemmas 12 and 16 of loc.
cit. In particular, for every e € F and r = 0,1, 2,3 one has

M
(1) de(xi,x)rfk(xi,x) <C.
=1

N

For D > 0, let N = CD?" and the partition of I = |J I,, where
a=1
I={1,---, My} be as in the statement of Lemma 16 of loc. cit.

For each ¢ fix a trivialization 7; : U; x F' & E|y,. Consider an open
cover V = {V;}es of F, J = {1,---, R}, by balls of a suitable gp-radius
& > 0 centred at points f; € V;, so that for each j there exists v; € H(F, L)
satisfying 1/2 < |v;lv;| < 1 and |v;(f)| = 1 if and only if f = f;. We
thus obtain an open cover W = {W;;} of E, where W;; = ~;(U; x V;).
For each (i,7) there is a v-holomorphic section ¥;; of B supported near
F,, and peaked at e;; = 7;((xi, f;)). Partition the index set I x J as

NR
I xJ = |JIs x {j}, which may be rewritten as I x J = |J Sg, where
o,j B=1
SkNta =Io x{k+1},k=0,---,R—1,1 < a < N. Now let us insert the
¥;;’s in Donaldson’s construction. Given any @ € CVE, with |wg| < 1 V8,
set s = Y_ w;;¥;j;; since s is v-holomorphic, its zero locus Z;; meets any

fibre F, inZ a complex subvariety. For any (%, ) € I x J, the local functions
fij = s@/VUi; are defined on W;;, and by Lemma 2.2, when viewed as
functions on a suitable multidisc At of fixed radius in C*+¢, they satisfy
properties as in lemmas 18 and 19 of [D]. We may then proceed by adjusting
the coefficients wg’s in NR steps to obtain a Wy € CNE such that S,
satisfies |0psg,| > |0psg,| on Zy, so that Zy is a symplectic submanifold
of E. o

Let us prove Corollary 1.1. If L is a holomorphic line bundle on F'
with ¢;(L) = [o], there are an hermitian structure on L and a unitary
connection on it whose normalized curvature form is o. For r > 0, the
action of G on F admits a linearization 7 : G x L& — L& ([M], section
1.3). Let s be the section of B = L®" ® H®* for k > k(r) provided by the
theorem, Z its zero locus. Given a v-holomorphic line bundle A on E we
define its v-holomorphic direct image, p?(A), as the sheaf of modules over
the ring of smooth functions on M given by p?(A)(U) = O%(p~'U, A) for
any open subset U C M. Then F := p¥(B) is a smooth vector bundle on
M of rank r = h%(F,L®") and O%(B) & A(M,F), the latter being the
space of smooth sections of F. Let V be the vector space of v-holomorphic
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sections of B spanned by the ¥;’s and let W D V be a finite dimensional
space of C* sections of F that globally generates F. Then s € W has an
open neighbourhood @ consisting of v-holomorphic sections of B whose
zero locus is a symplectic submanifold of E. On the other hand, except for
those in a subset of W of measure zero the elements of W are transversal
to the zero section and this is true in particular for some section s’ € Q.
But for 7 > 0 certainly rank(F) = h°(F, L®") > dim(M) and therefore s’
is nowhere vanishing. O

Finally let us come to Corollary 1.2. Fix an hermitian metric on &
and thus an associated principal U(r)-bundle. With E = PE*, Lg is the
relative hyperplane line bundle and p?(Lg) = £. Let H be the connection
on Lg induced by the compatible connection on L = Op--1(1). Replacing
£ by £ ® H®, Lg changes to Ly ® p*(H®*). When k > 0 the theorem
yields a v-holomorphic section o of B = Lg ® p*(H®*) with zero locus D
at each point of which |9, go(e)lx < Ck~/2|9;, po(e)|k, where | - | is
the norm induced by gi. By perturbing o slightly, the section & of £ ® H®*
corresponding to it may be assumed transverse, with smooth zero locus
Z C M. Now Jaux and Jj, differ by O(1/k) and a®) is equivalent to ¢().
Thus |0, .80(€)|auxk < [07,0,B0(€)|aux,x at all e € D, where | - |aux k
denotes the norm associated to qz(,ﬁi, and therefore wéﬁl restricts to an
everywhere non-degenerate 2-form on D. I claim that this implies that Z is
a symplectic submanifold of M. If not, there exist z € Z and v € T, Z such
that w, (v, w) = 0¥ w € T Z. The restriction p|p : D — X is a P"~2-bundle
off Z, while Dz = pp!(Z) is PE*|z. Identify a tubular neighbourhood of Z
in M with a neighbourhood of the zero section in &|z. If v+ C T, M is the
symplectic annhilator of v and W = E(z) Nvt, then dim W > 2r — 1 and
dim W N (iW) > 2r — 2, where 7 is the complex structure of E(z). Thus
there is a complex hyperplane A of E(z) with A C v+. If A € p~!(z) is
the corresponding point, 75D is generated by ThDz and 2(r — 1) vectors
wy, - - -, War—g Projecting to a real basis of A. Let v! € H, be the horizontal
lift of v; by construction v* lies in the kernel of wf,ﬁl)n D, a contradiction.
Now essentially the same argument as in the proof of Proposition 39 of [D]
(with wky in place of kw) shows that E is obtained topologically from D
by attaching cells of dimension > n + r — 1, so that by Lefschetz duality
H¥(E\ D) =0 for k > n+r. Since E\ D is a C"~!-bundle over M \ Z,
this implies H;(M,Z) =0 for j <n —r (cf. [S] and [L], §1). O

We now examine the almost complex geometry of the sections of
€ ® H® produced in Corollary 1.2. Let us write F for £ ® H®* and, in
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the notation of the proof, fix £ € Z and a unitary frame fi,---, f. for F
in a neighbourhood U of z. Then & = )_ a;f;, where the a;’s are smooth

functions and ZNU = {a; = 0 Vi}. There%ore Vzo(z) = Z d,a;® fi(x) and
s0 95,75(z) = 3 050:(z) ® fi(x), 8470 () = 3 dsai(z) ® fi(z) whence
105,75 (@)II> = 3 105a:(@)II?, 10s,75(z)* = X [|8sai(2)|*. Given that

1 3
B = Opz+)(1), we have on P(£*) = P(F*) the short exact sequence
0— Qe ®B — 1(F) 25 B — 0, where Q! is the relative cotangent
bundle. In loose notation, on 7~ 1(U) we have ¢ = a(6) = Y a;F,,

where F; = a(f;). At any e € 7~ !(z), we have Vgo(e) = > deai ®
Fi(e), and therefore 0,,,.,50(e) = 3 0;,..ai(z) ® Fi(e), 07....80(e) =
Zafauxai(w) ® Fi(e). Now [|04,,,,80(€)llau,k < Ck™2(10;,00,80(€) lawx,k

at every e € P(Fr). For i = 1,---,r let ¢, € P(F}) = P™! be the
point where all the F}’s except F; vanish. Evaluating the latter inequality
at e;, we obtain [|07,,.ai(z)|lauwxk < Ck~?|8;,..0:i(T)||lauxx and thus
195,,ai(z)|| < Ck=/2||8;,,ai(z)|| on M for every i, whence |0 £5(z)| <
Ck~1/2||05,75()||- In fact, we also know that [|0,,.. 50(€)|laux,k > 7 at all
x € D for some n > 0 independent of k, and the argument just given then
shows that |0 7o (z)|| > n for all z € Z.

Furthermore, these sections are asymptotically almost holomorphic

in the sense of [A]. By construction, ¢ = > wjje; ® oy, where |w;;| < 1
i,

for all %, j, while the o;’s are compactly supported sections of H®* as in

Proposition 11 of [D], and the e;’s are local sections of £, chosen once for all

and thus independent of k. A slight modification of the arguments proving

Lemma 14 of [D] then leads to the estimates stated in Definition 1 of [A].
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