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EIGENVALUE ASYMPTOTICS
FOR THE PAULI OPERATOR

IN STRONG NONCONSTANT MAGNETIC FIELDS

by Georgi D. RAIKOV

1. Introduction.

Let n(/x) = (IIi(^),...,II,n(^)) := -zV -/^A, m = 2,3, be the
magnetic momentum operator, A € ^^(IR771;^771) being the magnetic
potential, and ^ > 0 - the magnetic-field coupling constant. The operators
n^(/^), j = 1,.. . , m, are defined originally on C^R771) and then are closed
in T/^R771). Introduce the Pauli matrices

/O 1\ /O -z\ /I 0 \
al :=^ (J^2^ (J^^O -J-

and the unperturbed Pauli operator

/ m \ 2

Ho(^)= ^>,n,(/.)
v=1 /

defined originally on C^ffr1; C2) and then closed in L^R771; C2), m = 2,3.
In what follows we shall denote the two-dimensional Pauli operator by
hQ^\ and the three-dimensional one - by Ho(ijt).

Let at first m = 2. In this case the magnetic field b is defined as

w-^-^. ,̂,)rf.
Keywords: Pauli operators - Eigenvalue asymptotics - Strong magnetic fields.
Math. classification: 35P20 - 35Q40 - 81Q10.
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Throughout the paper we assume that the estimates

(1.1) c i < & ( X ) < C 2 , |V^(X)[<C3, X € R 2 ,

hold for some positive constants ci, 02, and 03.

Introduce the operators

a(/^) := IIi(^) - zl^), a(^)* := ni(/^) + zIL^).

Then we have
hfn^-f^^ 0 ^
^-l 0 k^))

where

(1.2) ^(/,) := a(/,)a(/,)*, /^(/,) := a(/,)*a(/2).

Note that h^- > 0. Moreover, Ker/io"(^) == Kera(/^)*. On the other hand, it
follows from 0 < ci < b(X) (see (1.1)), and a general result of I. Shigekawa
(see [Sh], Lemma 3.3), that dimKera(/^)* = oo. Hence,

(I-3) 0 e aess(M/^)) c ^ess(^o(^)).

Further, the commutation relation [ni(/^),Il2(^)] = iiib implies

(i-4) ^(^)=^l(^)2+^2(/.)2±^.
Therefore, h^(^) = h^^p) + 2/^ ^ 2/ACiId, which entails

(1-5) a(^(/,))C[2/,ci,oo).

An elementary supersymmetric argument yields

a(/^)) = <7(^(^)) \ {0} = a(^o(^)) \ {0}

which together with (1.5) implies

(1-6) ^(W)\{0}C[2/.ci,oo).

Let now m = 3. In this case we define the magnetic field as

B(X) := curlA(X), X = (X^z) = ( x ^ y ^ z ) e R3.

Throughout the paper we assume that B has a constant direction, i.e.

(1.7) B=(0,0,6).

Since div B = 0, b is independent of z. Performing, if necessary, a gauge
transform, we find that without any loss of generality we may assume that
^j^ = I? 2, are independent of z, and As = 0. Moreover, we again suppose
that (1.1) is valid.
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Introduce the operators

(1.8) H^W:= [(Bh^^dz,
JR

3

H^W := H^W + nj = ̂  n,2 ± ^b,
3=1

acting in L^K3) (see (1.2) and (1.4)). Then we have
(H^W 0 \

7W^ 0 HW)-

Note that H^(p,) ^ 0, the operators HQ^) and IIs = —i-^- commute,

cr(nj) = [0,oo), and (1.3) entails inicr(^o~(^)) = 0. Thus we get

(1.9) ^o(AO) = <Tess(^W) = [0, +oo).
Further, let V : W —^ R, m = 2,3, be the electric potential. We shall
say that V is in the class Cp, p >_ 1, if and only if for each e > 0 we can
write V = Vi + V2 with Vi € L^R^, and sup ^(x)! < e. Introduce the

xeR7'1
Heaviside function ^)=P ^ ^ ^(- 0 otherwise
and set y{s) :== —f^0(\V(x)\ — s) dx. Then V e Cp is equivalent to
f^° sp di^(s) < oo, for each e > 0.

Let V € Cp with p > 1 if m = 2, and p = 3/2 if m = 3. Suppose that
(1.1) and (1.7) ( i fm= 3) hold. Then the operator |y|l/2(-A+ I)-1/2 and
hence, by the diamagnetic inequality, the operator

TH _1 /0

^(E11^)2^1)j=i
is compact. Since the magnetic field is bounded, we easily find that the
operator lyp/^Ho^+l)"1/2 is compact as well. Introduce the perturbed
Pauli operator

H(/,) := Ho(/^) + Vh = Ho(/^) + V,

acting in L^R^C2), m = 2,3. Here I-z is the unit 2 x 2 matrix, and the
sum should be understood in the sense of the quadratic forms. We shall
denote the two-dimensional perturbed Pauli operator by h{^), and the
three-dimensional one - by H(ii). Since the operator IVI^^HO^) +1)~1/2

is compact, the essential spectra ofH(/^) and Ho(/^) coincide. In particular,
if m = 2, then (1.3) and (1.6) imply

0 € Oess(^)), (Tess(^)) \ {0} C [2/^Ci,Oo),
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while if m = 3, then (1.9) entails

(7ess(^))=[0,00).

However, the perturbation ofHo(^) by V may generate some discrete
spectrum in a vicinity of the origin. The aim of the present article is the
analysis of the asymptotic behaviour as ^ —> oo of the discrete eigenvalues
of H(/^) adjoining the origin.

2. Statement of the main results.

2.1. Let T be a selfadjoint operator in a Hilbert space. Denote by
Pj(r) its spectral projection corresponding to the interval Z C M. Set

^(Ai,A2;r):=rankP(;^)(^ ̂ 2 € M, Ai < \^

7V(A;T) := rankP(_^)(T), A € M,

n±(5;T) := rank P^^)^) ,5 > 0.

If T is a linear compact operator which is not necessarily selfadjoint, put

n,(5;T) := rankP(,2^)(r*r),5 > 0.

2.2. Let m = 2. Throughout the subsection we assume that (1.1)
holds. Let V € Cp, p > 1. For A ̂  0 set

( -1- f (9(A - V(X))6(JC)dX if A < 0,
(2.1) 6(X) ̂  27r JR2

-_ / (9(V(X) - A)6(X)dX if A > 0.
27T JiR2

Evidently, ^ is a non-decreasing function on (—oo,0) and (0,oo).

THEOREM 2.1. — Let m == 2. Assume that (1.1) holds, and V € Cp,
p > 1. Let A < 0 be a continuity point of 6. Then we have

(2.2) lim ^"^(A; h{^) = <5(A).
/-A—^00

THEOREM 2.2. — Let m =2. Assume that (1.1) holds, and V € ^2-
Let Ai, A2 € R, 0 < Ai < Aa. Suppose that Ai and As are continuity points
of 6. Then we have

(2.3) lim /^-W(Ai, As; h{a)) = 6(\^) - 6(\,).
/A—»00
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Remark. — Under the hypotheses of Theorems 2.1-2.2 the as-
sumption that A -^ 0 be a continuity point of 6 is equivalent to
vol [X e R^l^X) = A} == 0, where vol ^l denotes the Lebesgue measure
of the set ^ c R2.

We shall prove only Theorem 2.2 since the proof of Theorem 2.1 is
quite similar and only simpler in comparison with that of Theorem 2.2 (see
also the proof of Theorem 2.3 below).

2.3. Let m = 3. Throughout the subsection we assume that V € £3/2,
and (1.1) and (1.7) hold. Fix X € R2 and set

xW=xvW:=-^+v(x,.).

PROPOSITION 2.1. — Let V e £3/2 • Then for almost every X e R2

the operator \{X) defined as a sum in sense of the quadratic forms is
self adjoint in L^R). Moreover, for almost every X e R2 we have

(2.4) <Tess(xW)=[0,+Oo).

The proof of the proposition is contained in Section 5.

Let A < 0. Introduce the magnetic integrated density of states

P(A) = VvW ^=— ! N(\^vW)b(X)dX.
Z7r JR2

PROPOSITION 2.2. — Let V € £3/2, and A < 0. Then
(2.5) P(A) < oo.

The proof of this proposition can also be found in Section 5.

THEOREM 2.3. — Let m = 3. Assume that (1.1) and (1.7) hold,
^ ^ £3/2- Let X < 0 be a continuity point of P. Then we have
(2.6) lim /^^(A; H{p)) = P(A).

Remark. — The condition that A < 0 be a continuity point of V is
equivalent to

vol [X G R2! dimKer (^(X) - A) > 1} = 0.

2.4. The present paper is closely related to the works [Rl] and [R2]
containing results on the asymptotic behaviour of the discrete spectrum
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for the Schrodinger, Pauli and Dirac operators in strong constant magnetic
fields. In those articles the explicit spectral description of the unperturbed
magnetic Hamiltonian played a crucial role at a certain stage of the proof.
Since no such explicit description is known in the case of non-constant
magnetic fields, significant modifications of the arguments of [R1]-[R2]
were needed. Some of the main difficulties in this respect were overcome
by using a result of L. Erdos on the strong-magnetic-field asymptotics of
the diagonal values of the heat kernel associated with ^(/^) (see below
Lemma 3.1). Moreover, as in [R1]-[R2], we reduce the analysis of the
eigenvalue asymptotics as ji —> oo for H(/x) to the study of the spectrum
of certain Wiener-Hopf families of compact operators. However, since
only constant magnetic were considered in [R1]-[R2], it sufficed to apply
there relatively simple arguments close to the ones used in the pioneering
work [KMSz] for the investigation of semiclassical spectral asymptotics for
Wiener-Hopf operators. In the present paper the absence of an explicit
spectral description ofHo(/^) forced us to use somewhat different techniques
similar to the commutator calculus developed in [W] for the study of
the spectral asymptotics for operators of Toeplitz type (see also [Ho],
Theorem 2.9.17, Lemma 2.9.18). It should be also noted that the present
article is influenced by the recent papers [IT1]-[IT2]. In [IT1] the authors
impose restrictions on the magnetic field quite similar to (1.1) and (1.7),
and study the asymptotics as A T 0 of N(\', H(l)) in both cases m = 2,3, as
well as the asymptotics as A [ 0 ofA/'(A, Ao; h(l)) with a fixed Ao € (0,2ci)
in the case m = 2. The assumptions in [IT1] concerning V are more
restrictive than those of Theorems 2.1-2.3 which is natural and due to
the different type of asymptotics considered. However, the results in [IT1]
for the two-dimensional case are equivalent to

7 V ( A ; / z ( l ) ) = ^ ( A ) ( l + o ( l ) ) , A T O ,
which resembles formally (2.2), and

A^(A, Ao; h{l)) = -^(A)((l + o(l)), A i 0, Ao € (0,2ci),
which is similar to (2.3), while the result in [IT1] concerning the three-
dimensional case could be written as

^V(A;^( l ) )=P(A)( l+o( l ) ) ,AiO,
which recalls (2.6). In [IT2] the magnetic field is assumed to be locally
strictly positive but decaying at infinity and the asymptotics as A T 0 of
7V(A; H(l)) is investigated in the cases m = 2,3. The results of the present
paper will be possibly extended in a future work to the cases of magnetic
fields which decay, or grow unboundedly at infinity.
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The paper is organized as follows. Section 3 contains miscellaneous
auxiliary results: in Subsection 3.1 we reveal some necessary facts concern-
ing the heat kernel of the operator /i^(/^), in Subsection 3.2 we formulate a
suitable version of the Kac-Murdock-Szego theorem, and in Subsection 3.3
we recall the classical Birman-Schwinger principle and certain generaliza-
tions of its. In Section 4 we establish some preliminary estimates. In Sec-
tion 5 we demonstrate Propositions 2.1-2.2. Section 6 is devoted to the
asymptotics as ^ —> oo of the traces of the positive powers of certain op-
erators of Toeplitz type which depend on the parameter p,. The proof of
Theorem 2.2 can be found in Section 7, while the proof of Theorem 2.3 is
contained in Section 8.

3. Auxiliary results.

3.1. In this subsection we summarize several estimates of the kernel
/C^(t;X,Y) of the operator e-^o'(^), t > 0.

LEMMA 3.1. — Let m = 2. Assume that (1.1) holds. Then for every
t > 0 the kernel /C^(t; X, Y) is locally uniformly continuous with respect to
(X,V) €R 2 xM 2 .

Moreover, for every t > 0 and (X, Y) e R2 x R2 we have

(3.1) |/^(t; X, Y)| ^ ̂ e-^^^2^.

Finally, for every compact K C R2 there exists a number SK > 0 such that
for each s > SK the limiting relation

(3.2) ^^,(1^;X,X)=^(X)

holds uniformly with respect to X € K.

Sketch of the proof. — The continuity of /C^ (t; X, Y) is proved in [E],
Theorem 2.1. The estimate (3.1) follows immediately from the Feynman-
Kac-Ito formula for the heat kernel of /lo(^) (see e.g. [E], (65)-(66)).
Finally, (3.2) is demonstrated in [E], Main Lemma 2.2. D

3.2. In this subsection we formulate a suitable version of the Kac-
Murdock-Szego theorem.

In the sequel we shall denote by 5oo the space of linear compact
operators acting in a given Hilbert space, and by <Sp, p € [l,oo), - the
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Schatten-von Neumann spaces of operators T € 5oo for which the norm
||r||p := (Tr im^ is finite.

LEMMA 3.2. — Let {T(/^)}^>o be a faultily of self adjoint compact
operators satisfying the estimate \\T(p.)\\ < to with to > 0 independent of ji.
Assume that the function v : K\{0} —^ M is non-decreasing on (-00,0) and
(0,oo), non-negative on (-00,0), and non-positive on (0,oo). Let f(t) = 0
for \t\ > to. Suppose that there exists a real number p > 1 such that the
following three conditions are fulfilled:

(i) T(/z) G Sp for each ^ > 0;

(ii) the quantity J^vroi 1̂  dv(t) is finite;

(iii) the limiting relations

lim /^-1 Tr T(/^ = [ t1 dv(t}
^00 JR\{O}
lim fji-1 Tr T(/^ = / ^

^-'°° M{O}
hoJd for each integer I > p.

Let t 7^ 0 be a continuity point of v. Then we have

lim /^-1 n+(^;r(/2)) = -i/^), if t > 0,
/A—><X)

lim /^-1 n_(-^;r(^)) = z/m, if t < 0.
^—^00

The proof of the lemma can be found in [Rl], Subsection 3.1. In this
article we shall use it only with t < 0.

3.3. This subsection contains a formulation of the classical Birman-
Schwinger principle concerning the number of the eigenvalues of a self-
adjoint operator situated below the bottom of its essential spectrum (see
below Lemma 3.3), as well a generalization of this principle (see below
Lemma 3.4) suitable in the case where the discrete spectrum lying in a gap
of the essential one is investigated.

LEMMA 3.3. — Let "Ho > 0 and V be two self adjoint operators in
Hilbert space, such that IVp^^o + I)"172 € 5oo. For A < 0 set

(3.3) ^(A^-^o-A)-172,

(3.4) T(A; U^ V) := 7Z(A; ̂ o)V7Z(A; H^.

Then we have

7v(A;^o+V)=n_(l;r(A;^o,V))



EIGENVALUE ASYMPTOTICS FOR THE PAULI OPERATOR 1611

where the sum HQ + V should be understood in the sense of the quadratic
forms. Moreover,

dim Ker (Ho + V - A) = dim Ker (T(A; HQ, V) + 1).

LEMMA 3.4 [R2], Lemma 4.1. — Let Ho be a linear selfadjoint
operator in Hilbert space, and \i,\2 be real numbers such that Ai < A2
and [Ai,A2] C p(7io). Set

(3.5) 7Z(Ai,A2;^o) := ((Wo - \i)(Ho - A2))-1/2,

(3.6) ^(Ai,A2;Wo) := f^o - ̂ (Ai + A2)) ^(Ai,A2;^o).
V z /

Further, let V be a symmetric operator on D(Ho) such that V(HQ +%)~1 e
5'oc. Put

^(Ai, A2; Ho, V) :=7Z(Ai, A2; Wo)^2^!, A2; Wo)
(3-7) +2Re^(Ai,A2;Wo)V7Z(Ai,A2;Wo).
Then we have

^(Ai ,A2;Wo+V)=n-( l ; t (Ai ,A2;Wo,V))
where the sum HQ + V should be understood in the operator sense.

4. Preliminary estimates.

4.1. Let m = 2. Denote by p(/^) the orthogonal projection on
Ker^(^) = Ker a*.

LEMMA 4.1. — Let W € L2(R2). Then Wp{fi) e S^, and the
estimate

(4.i) HHWIIJ < c 4 ^ / > iiypol2^
^R2

holds with €4 independent of p. and W.

Proof. — For every t > 0 we have

IÎ WIll = ll^-^o(^(^)||| ̂  HTVe-^^lli

(4.2) = / / [WWJC^X^dXdY.
JR2 JR2
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Employing (3.1), we get
r r o p2c2/^
/ / ^(X^IC^X^dXdY^———

./R2 7lR2 IGTr2^2

/• „ /" in2 />2c2/xt /•
(4.3) / IWTOI2^/ e—^-dY=e—— ^(X^dX.

JR2 JR2 87Tt ./R2

Minimizing the function f(t) := t~le2c2p't by choosing t = l/2c2/i, and
combining (4.2) with (4.3), we get

(4.4) \\WpW\\l<^2^ [ \WWdX^
47T 7]R2

which is equivalent to (4.1) with 04 = ec2/47r. D

Fix the real numbers Ai and Aa such that Ai <_ \^ and AiA2 > 0.
Assume that p, is large enough. If Ai < \^ set r^ ^(/^) := %(Ai, A2; ̂ (^))
(see (3.5)); if Ai = A2, extend the definition by continuity.

COROLLARY 4.1. — Let Ai ,A2 € R, Ai < A2, AiA2 > 0, and
W C L2(R2). Then the estimates

(4.5) \\Wr^W^ < c^ ( \W\^dX^
JR2

(4.6) n.(5; Wr^ ^)pW) ̂  w-2^ t \W\2 dX, e > 0,
JR2

hold for p, large enough with 05 = C4/\/AiA2.

Proof. — In order to check (4.5), it suffices to note that r^ ^ (/^)p(^)

= —===p(p), and to apply Lemma 4.1. Estimate (4.6) follows from (4.5)
vAiA2

and the general inequality

(4.7) n^T) < e-^\\T\\^ T € S^ p > 1, e > 0.
D

Set qW:= Id -?(/,).

LEMMA 4.2. — Under the hypotheses of Corollary 4.1 the estimate

(4.8) n.(5; Wr^ ̂ W) < w-2^-1 [ \W\2 dX^ e > 0,
JR2

holds for fi large enough with CQ independent ofe, ^, and W. In particular,
ifp, > cec-2 ( \W\2 dX, we have

Jp2

(4.9) rt^Wr^WqW)=0.
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Proof. — Making use of the resolvent identity

(/^)+l)-l-(I^+^2+/,)-l = (n^+ni+^-^/^+^-^^^+i)-!,
we deduce

r^^qW =(n2 + n2 + ̂ )-1 (i + (/, + ̂  -i)(/^) +1)-1)
(4.10) (^(^)+1K^^)^).
It is easy to see that the estimate

(4.11) || (1 + ̂  + ̂  - 1)(/^) + 1)-1) (M/^) + l)r^(/.)g^)|| < c7

holds for p, large enough with 07 independent of /A. Therefore,

(4.12) n^; Wr^(/^)) ^ ̂ (^1; W^ + n| + /.)-1).
By (4.7) with p = 2 we have

(4.13) n,(77; W(n^ + nj + ̂ )-1) < 77-2||W(^^ + nj + /.)-1|||, rj > 0.

The diamagnetic inequality (see [A.H.S]) and the Parseval identity yield

||w(^?+^i+/.)-l||i^||^(-A+/.)-l||i=—— f \wWdx
(27T) 7R2

(4-14) /> 7^——2 = ——— I \WWdX^ /. > 1.
7R2 (|$[2 + ^)2 47T^ 7^2 ' ' " -

Now, (4.12)-(4.14) entail (4.8) with CQ = c^/47r. In order to see that (4.8)
implies (4.9), it suffices to note that n^(e\Wr^ ^ (^)<7(^)) is
integer-valued. Q

Arguing in a completely analogous manner, we can prove the following
lemma.

LEMMA 4.3. — Under the hypotheses of Lemma 4.1 we have

n^Wr^ ̂ )) < ce^-V-1 / |W|2dX, e > 0,
Jp2

for [L large enough. In particular, if (i > C6e~2 / ll^l2^^, then

^Wr^W)=0.

Estimates (4.6) and (4.8), and the Weyl inequalities for the singular
numbers of compact operators imply the following corollary.

COROLLARY 4.2. — Under the hypotheses of Corollary 4.1 we have

n^Wr^ ̂ )) < 4(c5^+C6^-1)^-2 / \W\2 dX, e > 0,
JR2
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for fi large enough.

COROLLARY 4.3. — Let W e L^R2), uj e S1 := {C G C||C| = 1}.
Then the estimate

(4.15) ^(^^(^-(^-^-^^(c^+c^-1^-2 / iTVFdX.^X),
./R2

AoMs for each £ > 0 and p, large enough, with €5 and CQ independent of e,
/x, a;, and l^.

Proof. — If /^ is sufficiently large, we have

IKM^+iXM^-^r1!!^
with cs independent of [L and a;. It remains to note that the operator
{ho(p.) + I)"1 coincides with r^^(^) with Ai = A2 = -1, and apply
Corollary 4.2. D

4.2. Let m = 3. Fix A < 0, and define the operator

(4.16) R^^l):=n^H±(u))

(see (3.3)). Moreover, introduce the operator

(4.17) R^ := 7Z(A; nj) = (nj - A)-1/2, A < 0,

acting in L^R3). Note that for each u € L^R3) we have

(4.18) (R (̂., y,.)=^ ̂  ̂  ̂ =^^ V. ̂  W,

I f f e^-^K
CR^u)(x,y,z)= — / / ———-u(x,y,z'^dz'

27r ^R JR C - A

(4 19) = / e'^^'^^utx v z'^dz'( ) -l^k u[x^z)dz.

Denote by P(/^) the orthogonal projection on Ker^(^) (see (1.8)). In
other words,

P(/^)== [ ep^dz.
JR

LEMMA 4.4. — Let W € L^R3), p > 2, and X < 0. Then the
estimate

(4.20) \\WR-^)P(^ = \\WR^P(^ < c^ f |TV(X)|^X, ^ > 0,
^R3
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holds with eg = c^{p) which depends on p and X but is independent offji
andW.

Proof. — Assume at first W € L°°(IR3). Evidently,

\\WR-^PW\\=\\W^P{^\\
(4.21) < ||W|koo(R3) sup^-^-^^IAI-1/2!!^!^^).

C6R

Now assume W C -L^K3). We have

(4.22) \\WR-^)PW\\i = II^R^-^o-^P^IIi ^ llTVR.e-^^lli.

Taking into account (4.18), the identity

('e-<po-(^n)(x,^)= / ^(t'.x.y^y.^dy.neL^R^.XeR^zeR,
v / JR2

(3.1), and the Parseval identity, we obtain
~_ p2c2/A< /• /• .J/- f ,Y\2

\\WR.e-^PW\\l ̂  ̂  ̂  ̂ W^^i c^ ̂ L e-"" dY

^2c2p.t r

t4-23' 'iM^A.I '̂l^
As in the derivation of (4.4), we find that estimates (4.22)-(4.23) entail

(4.24) \\WR,WPW\\I < ̂ ^ ̂  ̂ (X^dX.

Interpolating between (4.21) and (4.24), we conclude that (4.20) holds with
eg = ec2/87r|A|^-1)/2. D

COROLLARY 4.4. — Let W C L3^3), and X < 0. Then for each
e > 0 we have

(4.25) n^ WR^WPW) ^ C9(3) ̂ -3 / |TV(X)|3 dX.
J]R3

Set(3(^):=Id-P(/^).

LEMMA 4.5. — Under the assumptions of Corollary 4.4 the estimate

(4.26) n^ WR^WQ(u)) < c^e-3 [ |^(X)|3 dX
Jp3

holds for each e > 0 with cio independent of e, p., and W. Moreover, for
each e > 0 there exists a /^o = ^o(^) sucA (Aat ^ > /^o entails

(4.27) n,(6;W^(/x)Q(/.))=0.
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Proof. — The operator inequality

QW(H,W - X)QW > cnW(II(,.)2 +/.)W

with n(/2)2 := ^ IIj(/^)2 and en > 0 independent of u^ implies
j=l,2,3

||(n(^)2+^)1/2^(/.)Q(^)|| < i/v^T.
Therefore, we have

(4.28) n.(e; WR^W(a)) < n*(eq{2; W(II(^)2 + /.)-1/2).

The Birman-Schwinger principle (see Lemma 3.3) implies

n.(^2;W(^(^)2+/.)-l/2)

= n+(^cn; (n(/.)2 + /.)-1/2|^|2(^(^2 + /.)-1/2)
(4.29) = ^V(0; n(/.)2 - e-^^W}2 + /.).

The "magnetic" Cwickel-Lieb-Rozenblioum estimate (see e.g. [A.H.S])
yields
(4.30)

^(o;^(^)2-5-2c^l|w|2+/.)<cl2 t (^c^l^x)!2-/.)3/2^
Jp3 '

with ci2 independent of e, JLA, and W. Putting together (4.28)-(4.30), we
get
(4.31)

n^WR^WQW) < ci2 ! (^c^l^X)!2 -^^dX, /. > 0.
JR3

Note that the right-hand-side of (4.31) decreases monotonously as /x grows
from 0 to oo, and tends to zero as p, —> oo. Setting p, = 0, we find that
(4.31) entails (4.26) with cio = c ^ c ^ . Moreover, we may choose any
p,Q = fiQ(e) for which the right-hand-side of (4.31) is smaller then one; then
(4.31) implies (4.27). D

Using a completely analogous argument, we can demonstrate the
following lemma.

LEMMA 4.6. — Under the assumptions of Corollary 4.4 we have

n^WR^^i)) ̂  cio^-3 / |W(X)|3dX, e > 0, ^ > 0.
Jp3

Moreover, the inequality p, > p'o{e) entails n^{e\ WR^(p)) = 0.

Combining (4.25) with (4.26), we get the following corollary.
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COROLLARY 4.5. — Under the hypotheses of Corollary 4.4 we have

(4.32) n^WR^W) ̂  8(c^ + c^)e-3 [ ^(X^dX, e > 0.
JR3

COROLLARY 4.6. — Let W C L2(R3), uj e S1, X < 0. Then the
estimate

(4.33) \\W(H,W -a;)-^2 ̂  (c^+4)^-1) / mX^dX
Jp3

holds for fi large enough with Cg and C'^Q independent of W, JJL, and uj.

Proof. — Obviously

lim^o-(̂ ) -^-'RAlli <. 2\\W(H,W-^-1R^)\\2,
(4.34) + 2||W(^o-(^ - ̂ RAWIIi.
Applying (4.20) with p = 2, we get
(4.35)

\\W(H,W -a;)-1^?^)!!! = ||TVRAP(^)||i ̂  C9(2)/. / IT^I^X.
^R3

Next we write the identity

(^)-^-l?
= (ni(^)2 + n^^)2 + ̂ )-1 (i + (/z + ̂  + a;)(^o-(^) - ̂ )-1) W,

note that the estimate

(l+^+^+a;)^"^)-^)"1)^^)!^^

holds with Ci3 independent of fi and €(;, take into account the fact that R^
commutes with [ 1 4- (/^ + p'b + UJ){HQ{II) — ^)~1) and Q(/^), and obtain
(4.36)

||w(ffo-(^) - c^RATOIIi ^ ^3||W(ni(^)2 + iw2 + /x)-1^!!!.
Using the diamagnetic inequality and the Parseval identity, we get

IWlW+lW+rt-'lMi

^L^^Lwhr'i^
t4-37' =8^iW/..l?(x'12•ix•
Combining (4.34)-(4.37), we derive (4.33) with 09 = 2co(2) and c^o =
c^^lAI1^. n
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5. Proof of Propositions 2.1 - 2.2.

/ d2 \~l/2

For A < 0 introduce the operator Q\ := ( ——7 — A ) acting in
V dz )

L^R).

LEMMA 5.1. — Let v € L^R), p > 2, A < 0. Then VQ\ e Sp, and
we have

(5.1) Ml^ <^ [\v{z)\Pdz
JR

where 014 = ci4(A) is independent ofv.

Proof. — Our argument will be very close to the proof of Lemma 4.4.

Assume at first v C L°°(R). Obviously

(5.2) \\VQX\\ ̂  ML°O(R)IM = IAI-^IHIL^R).

Assume now v € L^R). We have

(5.3) Ml ,̂ )|̂ /̂  » ̂ /.l^l2^

Interpolating between (5.2) and (5.3), we get (5.1) with 014 = 1/2|A|^-1)/2.

D

Set

(5.4) n(X) := ̂ V(X, .)^, X c R2, A < 0.

COROLLARY 5.1. — Let m == 3, V € £3/2. Then for every A < 0
and almost every X € R2 the operator r\(X) is compact.

Proof. — Choose a sequence {£r}r>_i such that Or > 0, r > 1, and
lim Or = 0. Fix r ^ 1 and write V = V^ + V^ with V^ € L3/^3)

r—>'oo

and sup \V^\X)\ <Er. Set
XCR2

^ := {x e R2! ( \V^\X,z) 3/2 dz < ool, ^ := F| Q^.
I ' ^R J ^>i

Evidently, vol{R2 \ ^} = 0. Put

T^ )(X):=^ ( r )(X,.)^,J=l,2.
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Lemma 5.1 implies that for each X € f2 and r ^ 1 we have \V^ l172^ e 5'3,
and therefore T^(X) e ^3/2 C Soo. Moreover,

\\rxW-r^(X)\\ = llrgWH ^ |A|-1^, X € ̂  r ̂  1.

Hence, for every X € ^ (i.e. almost every X e M2) the operator n(X)
can be approximated in norm by compact operators. Therefore, r\(X) is
compact itself. Q

Proposition 2.1 follows immediately from Corollary 5.1 and the Weyl
theorem on the invariance of the essential spectrum under relatively com-
pact perturbations.

For A < 0 set

( 1 / n-(-5;T^(X))6(X)dXif5<0,
(5.5) V^s):=T>^V)= 27YR2

—— / n+(5;n(X))6(X)dXif5>0.
^ JR2

The Birman-Schwinger principle (see Lemma 3.3) implies the follow-
ing assertion.

LEMMA 5.2. — Let m = 3, V e £3/2.

(i) We have

(5.6) P(A)=^(-1).

(ii) The function P(.) is continuous at A < 0 if and only if the function
T>\(.) is continuous at —1.

Proposition 2.2 follows almost immediately from Lemma 5.1 and
Lemma 5.2 (i). In order to see this, fix A < 0, e € (0, |A|) and write
V = Yi + V2 where Vi € L3/2^3) and sup ^(X)} < e. Set

X€R2

(5.7) r^W := ^y,(X,.)^, j = 1,2.

By (5.6) we have

(5.8) Py(A) < Pv, (A - 5) = PA-.(-I; Vi).

On the other hand, by (5.1) the estimate
(5.9)

n-(l;r^(X)) < ̂ (l;!^^,.)!1/2^.,) ^ ci4(A-^) /' |yi(X,^)|3/2^
^R
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holds for almost every X e R2. Multiplying (5.9) by b(X), and integrating
with respect to X € R2, we find that (5.8) implies

VvW < ̂ -^ / ^(X)!3/2^ < 00
27T ^3

which entails (2.5).

6. Trace asymptotics.

6.1. The main goal of this subsection is to prove the following
proposition.

PROPOSITION 6.1. — Let m = 2, W € C§°(R2), and (1.1) hold.
Then for each integer I >_ 1 we have

(6.1) lim ^Trip^Wp^))1 = 1 / WW^X) dX.
P'—^oo 27T J^2

We shall divide the proof of Proposition 6.1 into several lemmas and
corollaries.

For fi > 1 and s > 0 set e^s ''= exp [ --og-^^(/x) ).
\ ^is )

LEMMA 6.1. — Let m = 2, U € Go^2). and f2-^ hol^ Then for
each s >_ 2ssup?u (see Lemma 3.1) we have

(6.2) lim ^Tre^Ue^s = ̂ - [ U{X)b{X)dX.
fi—^oo ZTT J^2

Proof. — Let U e C§°(R2) such that U == 1 on supp(7. Using (3.1),
we get e-^o^U € 52, Ue-^o^ e S^, t > 0. Therefore,
(6.3)

Tre-^o^e-^o^) = f f ]C^t;X,Y)U(Y)!C^Y,X)dXdY, t > 0.
JR2 7]R2

Utilizing the continuity of /C^(t;X,Y) (see Lemma 3.1), and the
semigroup properties of e'^o ̂ \ we obtain
(6.4)

/ f )C^X,Y)U(Y))C^Y,X)dXdY= f U{Y)IC^Y,Y)dY.
JR2 Jm2 JR2
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Putting together (6.3)-(6.4), we obtain

(6.5) Tre^Ue^ = / U{X)1C, f210^;^^ dX, /. > 1,
«/R2 \ f18 )

Multiplying (6.5) by /^-1, letting ^ -> oo, and recalling (3.2), we deduce
(6.2). Q

LEMMA 6.2. — Let m = 2, U € ^(R2), and (1.1) hold. Then the
estimate

(6.6) ll^-^)^)||j<ci5^-1 / [U^dX
JR^

holds for every t > 0 with 015 independent oft, p,, and U.

Proof. — Set a = 2ci/(2ci + 02), /? = C2/(2ci + 02), so that we have
a + 0 = 1, C20 - 2ci/? = 0. Write the inequality

||[/e-^)Q(^||j < ||£/e-^o^)|[|||e-^o-^)Q^)||2^

apply (3.1) together with

||e-^o-(^o(^)||^e-2^1^,
in order to deduce the estimate

||£/6-^)Q^)||j

^ (47^at)-2^c2a-2^)^ /> e-^dV / \U{X)\2 dX
JR2 7]R2

=——^ I \UWdX^STratJ^' v / 1

which is equivalent to (6.6) with 015 = I/STTQ!. D

COROLLARY 6.1. — Let m = 2, U e L^R2), and (1.1) hold. Then
there exists SQ > 0 such that the estimate

(6.7) Trp^UpW -Tre^Ue^ = 0(/.(log/.)-1/2), /. ̂  ex),
Aoids uniformly with respect to s > SQ.

Proof. — Set £/i := |[/|1/2, £/2 := U\U\-1/2. Evidently,
Tre^Ue^ -Trp(^)Up(^ = Trq^e^U^e^q^)

^ReTrp^U^q^e^.
Therefore,
(6.8)
\TrpWUpW-Tre^Ue^\ < |K^, î||J+2||p(/.)£/i||2|[£/î )6^||2.
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Using Lemma 4.1 and Lemma 6.2 with t = -ogAA we find that (6.8) impliesas \ / r-
(6.7). D

Combining (6.2) and (6.7), we get the following corollary.

COROLLARY 6.2. — Let m = 2, U G C§°(R2), and (1.1) hold. Then
we have

lim u^Trp^Updj.) = 1 f U(X)b(X)dX.
Ai—»oo JTT J^2

In particular, ifW C C§°(R2),

(6.9) lim ^-1 Trp^W1?^) = 1 / W(X)^(X) dX, I e Z, ^ > 1.
^-—>oo ^TT ^2

It is clear that if Z > 2, it is necessary to have some control on the
52-norm of the commutator [W,p(/^)] in order to pass from (6.9) to (6.1).

LEMMA 6.3. — Let m = 2, W be in the Sobolev space H^R2), and
(1.1) hold. Then we have

(6.10) ||[iy,p(/.)]||2=0(l),/^oo.

9W QW — 8W 8WProof. — Set 9W := z—— + —— 9W := -i—— + —-. Obviously,
9x 9y 9x 9y

[W^W] = 9W, [W,a^Y\ = -9W,

(6.11) [TV, ̂ )] = 9Wa(^ - a^)9W.

Further, if uj e §1 and p, is sufficiently large, then the operator /IQ" (p) — u
is invertible, and ||(^(^) —a;)"1!! == 1. Moreover,

[W, (h,W - c^)-1] = (h,W - ̂ WBW - 9Wa^y)(h,W - a;)-1.

On the other hand,

PO^-^— / (^(^)-^)-lda;.2m 7§i
Therefore

[W,pW] = ̂  y^o(^) - ̂ QWa^r^W - o;)-1^

-^ f^ho(fi) - ̂ a{^9W(h^{ii] -1^)-1^.
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Hence, we obtain the estimate
(6.12)

||[H )̂]||2 < 2 sup (||(/,o W -^-'QWUa^y^W -a;)-1!]).
a/es1

Applying Corollary 4.3, we get

(6.13) IKM/^) -^r l̂li < (c'^+c^-1) I ^W^dX.
JR2

It is easy to check that the estimate
(6.14)
lla^)*^^)-^)-1!!2^!!^^)-^)-1^-^)^^)-^-1!!-^)^-1)
holds as IJL —f- oo uniformly with respect to uj € S1.

Putting together (6.12)-(6.14), we deduce (6.10). D

COROLLARY 6.3. — Let m = 2, W e C§°(R2), and (1.1) hold. Then
for every integer I > 2 we have

(6.15) TvWWpW)1 - TrpWW1?^) = 0(^/2), /z ̂  oo.

Proof. — Evidently,
1-1

(p{^Wp^))1 -pW W1?^) = ̂ pWW^p^pWW)1-^1?^).
k=l

Therefore,

I TT(p^)Wp^))1 - TrpWW1?^
^^MWp^-pWW1?^

1-1
< ̂  IbM^^p^lllilKp^iy)^^1?^)!!

A;=l

(6.16) < ̂  ||P(^)^||2||[^^)]||2||W||^).
fe=l

By Lemma 4.1

MW^^O^^-.^k^^
by Lemma 6.3

11[^P^)]1|2=0(1),^-00,

and W is independent of IJL. Hence, (6.16) entails (6.15). D

Now, (6.1) follows from (6.9) and (6.15).
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6.2. Let m = 3, V e £3/2- Introduce the operator

(6.17) 7\-(^) := ̂ (/.)y^(/.), A < 0,

(see (4.16)), which is compact in L^R3).

Our main goal will be to demonstrate the following proposition which
is the three-dimensional analogue of Proposition 6.1.

PROPOSITION 6.2. — Let m = 3, W (E C§°(R2), A < 0, and (1.1),
(1.7) hold. Then for each integer I > 1 we have

(6.18) lim ^Tr^PWT^^P^))1 - / Trr^^dX
P.—^-OO ZTT Jy^2

where the operator T\(X) is denned in (5.4).

Proof. — Our argument will follow the scheme of the proof of
Proposition 6.1, and that is why we shall omit some details. Introduce
the operator

T\:=RA^RA, A < 0 ,

(see (4.17)), acting in L^R3). Note that the operator T\ is not compact but
only bounded. Nevertheless, Lemma 4.4 implies that \V\l/2T{.\P(p,) € 62?
and hence P{p)t{P{ii) € 5i for each integer I > 1. Set

Sp,s '•= \ 0^,5^, ^ > 1, s > 0.
JR

Obviously, £^^T[£^,s € 5i, ̂  1. Our first step is to prove the asymptotic
relation

(6.19) lim ^Tr £^ sT^s = ̂ - I TrrxW^W dX, I ̂  1,
p,—>oo ZTT JR2

which is analogous with (6.2). To this end we utilize the identities

^^^^(ii^t^'21^^1"''---
V(X, ̂ e-^l2'-21' dzi. ..dzi,

Tr Sft,sT\£^,s

- 1 [ [ 1C ^log/'•X V^ V(Y z^e-V^^-^~ (w/2 L A."{ ^ ' ' ) ( ' 1 }

V(Y, ̂ e-V^'-21' dzi... dziJC,, f10^; Y, X^ dXdY
\ /is /

= f ̂ (^Y^Trr^dY,
JR2 \ ^s /
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(see (4.19)), take into account that Trr),{.)1 e C§°(R2), and apply
Lemma 3.1. Next, by analogy with (6.6) we establish the estimate

Ilivi1/2^-^""^^)!!! ̂  c[,t-1 f |v[dx, t > o,
Jp^

with c^ independent oft, p, and V. Using this estimate together with (4.20)
for p = 2, we get

(6.20) TrPW[PW - Tr£^t{£^ = O^log/.)-1/2)), ̂  oo,

by analogy with (6.7). Further, as in (6.10), we show that

(6.21) 11[̂  ?(/.)] ||2= 0(1),/.-00,

using Corollary 4.6. Finally, we notice that

(6.22) Tr (P^)T^)PW)1 = Tr (P(/.)^P(/.))^ ( > 1.

Employing (6.21), we deduce the estimate

(6.23) Tr(P^)t^))1 -TrPW[P^) = O^1/2), /x ̂  oo,

which is similar to (6.15). Putting together (6.19), (6.20), (6.22) and (6.23),
we obtain (6.18). Q

7. Proof of Theorem 2.2.

Throughout the section we assume that the hypotheses of Theo-
rem 2.2 are fulfilled. In particular, m = 2, V e /^ and 0 < Ai < A2.
Set

w-wv^:-——v2-XL-^V'AiA2 ^1^2

Further, for s 7^ 0 put
(7.1)

f ^ f 0(-s~ ̂ ^WW)dx if s < o,
^00=^,^):=^ ^7R2

——— / e(Wv;x^(X)-s)b(X)dX ifs>0.
\ Z7r JRZ

Note that if Ai and Aa are continuity points of 6, we have

^- l ;Ai ,A2)=<?(A2)-^(Ai)

(see (2.1)), since the inequality Wv;\.,,\,(X) < -1 is equivalent to Ai <
V(X) < A2. Set

^(^):=f(Ai,A2;/io(^)
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(see (3.7)), and
9 = gxi^W ''= ^(Ai, A2; M^))

(see (3.6)). Obviously, H^i^O-OII ^ 9o with go > 0 independent of/^.

LEMMA 7.1. — Let V e C^R2), 0 < Ai < A2. Suppose that (1.1)
holds. Assume that s <0 is a continuity point of 6. Then we have
{7f2) ^m,^~ln-(-5^(^^(^P(^))) = ̂ (s).

Proof. — Note that pWt^^)p(^ = P^Wv^^p^). Apply
Proposition 6.1 with W == Wv;\^\^. Then (7.2) follows from Lemma 3.1
with T(/^) = pWWv;x^x,p(li), to = sup \Wv^^(X)\, v = 6x^x^ and

xeR2

P = l . D

PROPOSITION 7.1. — Under the hypotheses of Lemma 7.1 we have

^•3) ^^"^-(-^Ai,^)) = ̂ i^).

Proof. — The minimax principle entails

n-(-S^Al,AJ^)) > ̂ -(-^P(/^,A^)P(^)). 5 < 0-

Hence, Lemma 7.1 implies

(7-4) liml5f^-lr^-(-s;^,AJ^) ̂  ̂ ,A.(S).

Further, we have

^Ai,^) = PW^^WPW + QW^^WQW
+^p{^l)r^WV2r^(^l)q(^

+2K6pWgVr^(fi)q(fz) +2Rep^)r^(ii)Vgq(^)

= p(fi)Wp(fi) + qWt^^)q(p.)

+ 2Rep(^)r•^(^)y2r^(/^)

+ 4Rep(A()5Vr-^^J;u)g(/A)

+ 2 Rep^r^ ̂  (^ [V, ho (^)]r^ ̂  (/,)g(^).

Recalling (6.11), we find that [V,ho(fi)} = 9Va* - a9V. However,
since Ran a = (Kera*)-1- we have p{p)a = 0. Hence, p(p)r^ ^ (p,)a =
r\l,\^^i)PWa=o^ and

^(^^i,^^)^ ̂ (^l^.Aj^)^^) = P(^)^,A,(^)^a*^,Aj^)9(^).
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Therefore, for each T) € (0,1) we have

^(/x) = PWWpW + qWt^WqW

+ 2 Rep{fi)r^ ̂  WV2^ ̂  WqW

+ 4 Re pWgVr^ ̂  (^)g(^)
+ 2 Rep(̂  ̂  (^QVa^r^ (^)g(^)

^ p(^)(lV - r)r^W{\V\2 + IVYI2)^^^) - 27,g2)pGu)

+ 9(^)(^,^(^) - S^-^^^J^y2^,^^)

- 77-lrAl,^J/x)aa*r'Al,AJ/A))^)

and, hence,
n_(-s;^^(^)) ^n-(-s;p(p)(W-rir^^(p,)

(\V\2+^V\2)r^(n)-2r)g2)pW)

+n-(-s;g(^)(^^jju) - Sr?-1^^^)^2^^^)

(7.5) - rr^^aa*^^))^)).
At first we estimate the second term at the right-hand side of (7.5). Since
we have lim \\a*(p,)r^ ^(p-)ci(p)\\ = 0, the estimate

r?-l||g(/l)r^^(/,)a(^)o*(/^)r^^(/i)^)||=7?-l||a*(^r^^(^)||2<-s/2,

holds for every fixed T) > 0 and s < 0, provided that p, is great enough.
Therefore,
n-(-s;g(^)(^J/x) - ST?-1^^)

V2^^ - ̂ r^Waa-r^^Mn))

^ n_(-s/2;^)(^,^(/x) - ̂ r^^V2^^^))

^ n+(-s/6; (37?-1 - l)g^)r^_^(^)

(7.6) V^^Wqifi)) + 2n^-s/6;goVr^^)q(fi)).

Applying Lemma 4.2, we easily find that if p, is large enough, both terms
at the right-hand side of (7.6) vanish.

Next, we deal with the first term at the right-hand side of (7.5). Fix
e e (0, —s), and choose f] so small that we have 2r]g2, < e/2. Hence,

n.(-s;pW(W - r,r^W(\V\2 + IVYI2)^^) - 21^g2)pW)

^ n_(-s - e/2;p(p,)Wp{iji) - w(^)r^ ^(^)

{\V\2+W2)r^(p,)p{fl))
^ n.(-s-e;p(fz)WpW) + n,((£/27?)1/2;

(7.7) vT^T|Wp r,^)p^)).
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Employing Lemma 4.1 and (4.7) with p = 2, we get

n^e/2^2^^ + |W|2r^(/^))

(7-8) < 2c4/n^-1 / (|y|2 + |VV|2)dX.
7R2

The combination of (7.5)-(7.8) entails that for every fixed s < 0, e e
(0, -s), and 77 € (0,e^o/4), we have

lims^P^-l^-(-5;^^(^))

^ li^suP^~ln-(-s - ̂ PWtx^M^)

(7-9) + 2c4/^-1 / (|V|2 + |Vy|2)dX.
*/R2

Letting 77 J, 0, we get

limsup^-^.^^;^ ^ (^))
IJL—^OO '

(7.10) ^ lims^p/,-ln_(-s - £;p(M)(^(/x)p(^)), Ve € (0, -s).

Choose a sequence {er}r^i such that e,. € (0, -s), r ^ 1, lim e,. = 0,
r—»oo

and s + Er, r >. 1, are continuity points of 6^^- Then Lemma 7.1 implies

""'y"1"-̂ 5 - ̂ ^(^^.Aj^P^))

= ;™o^-ln-(-s - ̂ P^K^WPW)

(7•n) =^,A2(s+£r), V r > l .

Putting together (7.10) and (7.11), we deduce the estimate

(7.12) lim sup ̂ -^.(-s;^ (;u)) ^ ^^(s+g,.), Vs < 0,Vr ^ 1.
^t—^00

Letting r -^ oo (hence, ^^ ^ 0) in (7.12), and taking into account that by
assumption s is a continuity point of ^1,^2? we get

(7.13) lim sup/^n. (-5;^^ (^)) < ̂ ^(5).
/A—^00

The combination of (7.4) and (7.13) yields (7.3). n

PROPOSITION 7.2. — Let m = 2, V e ^(R2). Suppose that; fLi^
AoJds. Let 0 < Ai < As. Assume that Ai and \^ are continuity points of 6
(see (2.1)). Then (2.3) is valid.
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Proof. — By Lemma 3.4 we have

(7.14) Wi,A2;/^)) =n-(l;^,A^))

where tx^x^) := r(Ai,A2;M^),V) (see (3.7)). Evidently,

(7.15) n-(l;^^(^))=n_(l;^^(/.))+n-(l;^^(/.)),

where t^^(^) := T(Ai,A2;^'(^),V). Let us estimate the first term at
the right-hand side of (7.15). Obviously,

(7.16) n-(l;^(^)) < n.(l/^;y^^(^))+2n.(l/3;^|V|^^(^)).

By Lemma 4.3, we find that both terms at the right-hand side of (7.16)
vanish for sufficiently large fjt.

Next, we pass to the estimation of the second term at the right-hand
side of (7.15). Choose a sequence {^}^i, rji > 0, I > 1, lim rji = 0, and

Z—»oo
write V = Vo + Vi where VQ = V^i (E C^QR2), Vi = V^i e L^R2), and
||^i,J|L2(R2) < r]i. Introduce the operator t^ ^ := ^(Ai^^oO^^o).
Similarly, define the functions ^Ai,^5)? J = 0?1? 5 7^ O? replacing V by
Vj^i in (7.1). Finally, define the function 60 (A), A ̂  0, substituting in (2.1)
V for Vb,^ ^ > 1.

Choose a sequence {er}r>i^ ^r ^ (0,1/2), lim Er = 0, so that —l±£r^
r—>oo

r ^ 1, are continuity points of all the functions ^o;Ai,A2(5)? ^ ^ 1- Evidently,
we have

t-^W ^ (1 - ̂ o;A^ + (1 - ̂ 2)^,AJ^)^2^,A,(^)

+ 2RegVir^(p) + 2^ReffVor^,^(/i),

^,^(^) ^ (1 + 4K,x^ + (1 + ̂ 2)^,^(M)^2^,A.(^
+ 2Reffyir^ ^(/x) - ̂ e^gV^^).

Therefore,

n_(l; ̂ ^(/f)) ^ n_(l - er; (1 - e2)^,^)
+ n+(£./3; (e72 - l)^,^)1^^))
+n_(e^/3;2Re3Vir^^(/i))

+n-(£,/3;2£2Reffyo^^(^))
^ n_(l - er;t^^) + Sn^l;^,-372^^^^))

+ 2n, (1; c^Vo^ ̂  (/i)),
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and

"-(1;^,^)) ^ "-(1 +Sr; (1 + siKx^)

- n+(e,/3; (e,-2 + l)̂ ;̂ )̂ )̂)

-n+(^/3;2Re(7yir^(^))

- n-(£^/3; 2e^RegVQr^^))

^ n_(l +£.;^,^) - 3n.(l;c^6£;-3/2Vlr•^Ou))
-2n,(l;Ci-7er^or^Ou)),

with c^g and c^ independent of/^, ^(, and er. Utilizing Proposition 7.1 and
Lemma 4.1, we get

limsup/x""1^!;^ ^ (A())
^—>00

(7.17) < ^A.,A.(-I + er) + c^ f^-3^2 +el [ {V^dx} ,
\ */R2 /

ll^{^~ln-^t\^\^))
(7.18) > ^O;A,,A.(-I - er) - c^ (e^ + ̂  / \V^dX\,

\ JR2 /

with c^g independent of 61 and £7..

Straightforward but tedious calculations show that the estimates

^0;Ai,A2(-l+^r) < ^i,A2(-l+2^)+^i,A2(-C?9^1)

(7.19) + ̂ ^(-^/2) - ̂ i;^.,^^^2),

^Ai,^-!-^) ^ ^l,A2(-l-2^)+^l,A2(c^9er:l)

(7.20) - ̂ ^(-^O^2) + ̂ ;A„A2(^9^/2).

hold with c^g independent of ^ and Cy. Using the elementary estimate

[ (9(|(7(X)| - \)b(X)dX < A-2 [ {UW^bWdX, U e ^(M2), A > 0,
J]R2 7R2

we conclude that (7.19)-(7.20) yield

(7.21) ^,A2(-1+^) ^ ^,A2(-l+25,)+4o f^3^2 +^ / {V^dx} ,

(7.22) ^,A2(-l-^)^^.A2(-l-2^)-C2-of^2+e2 [ ^dxY
\ Jp2 )

with c^o independent of ^ and Er.
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Letting at first I —> oo (hence, rji [ 0), and then r —> oo (hence,
Or [ 0), in (7.17), (7.18), (7.21), and (7.22), and taking into account the
fact that the continuity of 6 at Ai and \^ is equivalent to the continuity of
<?Ai,A2 at -1, we get

(7.23) ^^~^-(I;^,A.(^)) = ^,A.(-I) = <W - ̂ (Ai).

Now, (7.14)-(7.16), and (7.23) entail (2.3). D

In order to complete the proof of Theorem 2.2, we choose e > 0,
such that Ai - 3e > 0 and Ai + 3e < \^ - 3e, and write V == Vi + V^
with Yi e L^R2), sup \V^X)\ < e. Define the function ^i(A), A ^ 0,

xeR2

substituting V for Vi in (2.1). Choose rj > 0 such that 77 e (O,^), and
Aj =b ^ ± 77, ^ = 1,2, are continuity points of ^i. Evidently,

A^Ai, A2; ^(/^)) ^ A^(Ai - £, A2 + £; /io(/^) + ^i)
< ^(Ai - £ - rj, A2 + £ + 77; M/^) + ^i).

Wi,A2;^))>A^(Ai+e,A2-£;M^)+^i)
^ ^(Ai + ̂  + 77, A2 - £ - 77; ho(^) + Vi).

Utilizing Proposition 7.2, we get

limsup/^.A^Ai^;^)) ^ < ^ i ( A 2 + £ + 7 7 ) -^i(Ai -£-77)
/X—^00

(7.24) ^ <^i(A2 + 2e) - 61 (Ai - 2^) < <$(A2 + 3e) - 6(Ai - 3^),

lim^inf^~ lA/'(Al,A2;/^(^)) ^ <5i(A2 - £ - 77) - <5i(Ai +^ + 77)

(7.25) ^ <$i(A2 - 2e) - 6^ (Ai + 2e) > 6(A2 - 3^) - 6(Ai + 3^).

Recalling that by assumption Ai and A2 are continuity points of 6, we let
e [ 0 in (7.24) and (7.25), and conclude that (2.3) holds for general V e £2.

8. Proof of Theorem 2.3.

PROPOSITION 8.1. — Let m = 3, V e C^QR3), A < 0. Suppose
that (1.1) and (1.7) hold. Assume that s < 0 is a continuity-point ofT> (see
(5.5)). Then we have

(8.1) ^^-^-(-^P^)^-^)?^)) = V^s)

where the operator T^(p.) is defined in (6.17).
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Proof. — Asymptotics (8.1) follow immediately from Proposition 6.2
and Lemma 3.2 with T(u) = P(^)7\-(^P(/^o = ̂ -W^^ p == 1,
and v = 2>\. Q

PROPOSITION 8.2. — Let m = 3, V e L3/2^3). Suppose that (1.1)
and (1.7) hold. Assume that X < 0 is a continuity point ofV. Then (2.6)
is valid.

Proof. — By Lemma 3.3 we have

(8.2) 7V(A;^(^))=n_(l;r^(/.))

where T^) := T(\',Ho(^),V) (see (3.4)). Obviously,

(8.3) ^-(l;^(^))=n-(l;r^-(/.))+n_(l;r^(/.))

where r^/.) = T(^H^-^)^V). Since n-(l;r^)) < n,(l; |y|1/2^)),
Lemma 4.6 implies that for sufficiently large ^ we have

(8.4) n-(l;r^(/.))=0.

Further, we estimate the second term at the right-hand side of (8.3).

Choose a sequence {^}^i r]i > 0, I ^ 1, lim rji = 0, and write
Z—^oo

V = Vo + Yi with Vo = Vo,i e C§°(R2), Vi = V^i 6 L3/2^2),
ll^ill^a/^R^) ^ T]I. Introduce the operators T,^(^), j = 0,1, substituting V
for V, in (6.17). Similarly, define the function Po,A, A 7^ 0, replacing TA(X)
by TO;A(X) (see (5.4) and (5.7)) in (5.5).

Choose a sequence {£r}r>i, £r € (0,1/3), lim £r = 0, such that
~ r—»oo

-1 ± £r, r >_ 1, are continuity points of all functions PI,A. Evidently,

n-(l;I\-(^)) ^ n_(l;P^)^-(^)P(^))
= n-(l; PW^WP^ + PW^)P(^)

(8.5) ^ n-(l + £,; PW^)PW) - n+(er; P(^)T^(^P(^)).

Utilizing Corollary 4.4, we get

n+(e.; P(^)r^(^)P(^)) ^ n.(4/2; IVil1/2^^)?^)))

(8.6) ^cg^-372 / ^(X)!3/2^.
^K3

Recalling Proposition 8.1, we find that (8.5)-(8.6) yield

(8.7) l̂ minf^n.^rn/z)) ^ Po;A(-l - £.) - W^/^2.



EIGENVALUE ASYMPTOTICS FOR THE PAULI OPERATOR 1633

On the other hand we have
rn/i) = To-̂ ) + r^) = PWT^)P^

+ Q(fi)T^(p)QW + 2ReP(/,)To-^)Q(/x) + T^)

^ ?(/,) (lo-̂ ) - e^RW\Vo\RW) P(^

+ QW (T^) - e^R^W\Vo\R^)) QW + T^).

Therefore,

n-(l;'7\-(/.)) <,n. (l-e,/2;P(^) (r^-e^W^^)) P(^)

+n- (l-£r/2;QW (T^W-e^^W^^)) Q^))

+n- (e,/2;r^(/x)) < n- (l-^;P(^^(^)P(^))

+n+ (l;2e^PW^(^\Vo\R^WW)

+n.(—^;QW^)Q(^}

+n+ (2 - ̂ ^r-'O^^MI^I^^Q^))

(8.8) +n_(£,/2;T^ (/,)).

Proposition 8.1 entails

(8.9) lim /,-ln_ (l - £,; P(^)To-^(^)P(^))) = ^o,A(-l + e.).
^t—^00 \ ' /

It follows easily from Lemma 4.5 that

»-(|-^;WTo-^)W)

(8.10) = "+(| - ̂ ^QWMWxWW) = o,
provided that ^ is large enough.

Further, employing Corollary 4.4, we get

limsup^-ln+(l;2^P(^)^(/,)|Vo|-RA(^)p(^))
^t—^OO

(8.11) < 23/2C9(3)^/2 / [^(X)]3/2^.
</R3

Finally, Corollary 4.5 entails

(8.12) limsup/i-ln-(^/2;^l^(^))<83/2C9(3)e,:3/2 / ^(X)!3/2^.
^-'•00 J]R3
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The combination of (8.8)-(8.12) yields

limsup^-ln_(l;J7(/2)) < Po,A(-l+^r)
/^—>00

(8.13) + 4' L-3/2^2 + ̂ /2 /l I^X)!3/2^)
\ 7R3 /

with Cg' independent of^y. and ^. Obviously,

(8.14) Po^(- l+^)<^(- l+2^)+ 1 /l n_(£,;n,A(X))dX,
27T./R2

(8.15) Po,A(- l -^)>^A(- l -2^)- 1 /l n+(^;n,AW)dX.
27T7R2

By analogy with (5.9) we get

(8.16) / n±(^; ri^(X)) dX < ^(A)^-3/2^2.
^R2

The combination of (8.7), (8.15), and (8.16) implies

(8.17) li^^n^T^^)) > P^(-l - 2^) - c^-372^

while the combination of (8.13), (8.14) and (8.16) implies

limsup^n-^r;"^)) < ^(-1+2^)
/A—^00

(8.18) + 4, (e^2^2 + ̂ /2 / [^(X)!3/2^) ,
\ JR3 /

where the quantities c^ and c^ are independent of Or and ^. Letting at
first I —^ oo, and then r —> oo m (8.17) and (8.18), taking into account that
by assumption A is a continuity point of P, and recalling Lemma 5.2 (ii),
we get

lim^-1^!;^--^)) = P^(-l) = P(A),

which together with (8.2)-(8.4) yields (2.6). D

Finally, the deduction of Theorem 2.3 where we consider general
V € £3/2 from Proposition 8.2 where potentials V e -L^^R3) are treated,
is quite similar (and simpler) to the deduction of Theorem 2.2 from
Proposition 7.2 (see the end of Section 7), and therefore we omit the details.
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