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HODGE NUMBERS ATTACHED
TO A POLYNOMIAL MAP

by R. GARCIA LOPEZ W and A. NEMETHI <2)

1. Introduction.

(1.1) In the last years the behaviour at infinity of polynomial maps
has been extensively studied, basically by means of topological invariants:
Eisenbud-Neumann diagrams, monodromy at infinity, etc. In order to carry
further this analysis of the asymptotic behaviour of polynomial maps we
consider in this paper the following approach: One can attach to any
polynomial map a geometrical variation of mixed Hodge structures (from
now on, MHS; see (1.2) below for details). Using either the geometric
methods of [24], [9] or Saito's theory of mixed Hodge modules ([17]),
one gets that this variation gives rise to a functorial limit MHS. The
equivariant Hodge numbers of this limit MHS are analytical invariants
of the polynomial map under consideration and in this paper we compute
them for a class of polynomials which was extensively studied in [5], [6] from
a topological point of view. More precisely, we determine the equivariant
Hodge numbers of this limit MHS in terms of equivariant Hodge numbers
attached to some isolated hypersurface singularities and Hodge numbers
of cyclic coverings of projective space branched along a hypersurface (see
Theorem (3.1) for the precise statement). Both these local and global Hodge
numbers can be explicitly computed in a number of cases, as shown in the
examples in Section 7.

(1) Partially supported by the DGCYT, PB95-0274 and INTAS 97-1644.
^ Partially supported by NSF Grant No. DMS-9622724.
Keywords: Mixed Hodge structures — Polynomial maps — Hypersurface singularities —
Cyclic coverings - Seifert form.
Math. classification: 32Sxx - 14D07.
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(1.2) We give the precise description of the invariants we are going
to study. Let / : C7^1 —^ C be a polynomial map. It is known that there
is a finite set Ff such that / defines a locally trivial C°°-fibration over
C -Tf (cf. e.g. [15, Appendix]). Given a positive number r e M, denote
by Dr the disk in the complex plane of center 0 and radius r, and set
P; = Dr - {0}, Zr = C^1 - f-\Dr). If r > max{ \x\ : x € Fy } then
the map

\IJ : Zr ——> D^

is a locally trivial C°°-fibration. Actually we have a projective system of
equivalent fibrations indexed by r, thus we can assume r so big as necessary.

Now we compactify the map 1/f and we add a fiber over 0 € C.
That is, we take an analytical manifold X where Z = Zr is embedded
as an open dense subset, {X — Z)red is a divisor with normal crossings
and smooth irreducible components and the map 1/f extends to a flat
projective map p : X —> Pi/y., smooth over D ^ i . Set X — Z = Y U A,
where Y = p'^O) and A is the union of the irreducible components ofX—Z
not in V. Increasing r if necessary, we can assume that the restriction of
p to any intersection of components of Ared is smooth, so that A becomes
a relative divisor with normal crossings. Let IHI be the universal covering
space of D ^ , , set Z = Z x^>^ HI. Notice that Z has the homotopy type
of a generic fiber of /. Then the cohomology groups ̂ (Z, Q) carry a limit
MHS. This follows for example from [24, §5] or from [9, Theoreme 5.13].
All MHS we will work with will be regarded as Q-MHS.

One can prove using standard arguments that this MHS does not
depend on the chosen compactification and is functorial on / (and therefore
it is for example an invariant of polynomials with respect to algebraic
changes of variables in C71"1"1).

(1.3) DEFINITION.— Given a polynomial map f : C^1 —> C, the
limit MHS on ̂ (Z, Q) obtained in the way described above will be called
the MHS at infinity off.

(1.4) The MHS at infinity should be viewed as a global analogue of
the limit MHS associated to a hypersurface singularity in [22] and [9]. If /
is a cohomologically tame polynomial (see [16]) there is another definition
of a MHS at infinity due to C. Sabbah. For these polynomials, Sabbah has
proved that the equivariant Hodge numbers of the two MHS's are the same.
Unless otherwise stated, all (co)homology groups appearing in this paper
will be assumed to be reduced and to have complex coefficients. We choose
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once and for all a root i of —1 in C (equivalently, an orientation on the
complex plane) and from now on we will use the notation e(r) :== e27"7',
r €R.

The authors thank Professor C. Sabbah for his help, encouragement
and fruitful discussions about Hodge theory. The second author thanks
also the warm hospitality of the Department of Mathematics of the Ecole
Polytechnique at Palaiseau during a stay he made there.

2. The main construction and exact sequences.

(2.1) Although the MHS at infinity is defined for any polynomial map,
if one does not place some kind of restriction on / even the topological
behaviour at infinity can be very complicated.

We will consider the class of polynomials / : C7^1 —> C which satisfy
the following condition:

( If t € C is not a critical value of /,
(*) ^ then the closure in P77^1 of the affine

[ hypersurface {/ = t} is non-singular.

Polynomials satisfying this condition will be called (*)-polynomials. In
this section we recall some consequences of the (*) condition and some
exact sequences attached to a (*)-polynomial. For details, see [5], [6]. Let
f : c^1 —> C be a (^-polynomial. Then

(a) Any fiber of / has at most isolated singularities and has the ho-
motopy type of a bouquet of n-dimensional spheres. Consider the fibration
at infinity of /:

f:f-\QDr)^BR—9D^

where Dr (resp. Bp) is a disc in C (resp. a ball in C71"1"1) of radius r
(resp. R) and 0 « r « R. This fibration is equivalent to the fibration
/ : f~\9Dr) —> 9Dr. For t e 9Dr set X^ = f-^t) C C^. The
geometric monodromy of this fibration (where 9 Dr is positively oriented)
is denoted by Tgeom- In [5], [6] we proved some basic properties of the
classical algebraic monodromy T^° : ̂ (X^) —> ̂ (X?) which is defined
byr^M=[r^(o;)].

Let Xt denote the projective closure of the affine hypersurface X^.
The classical algebraic monodromy over 9Dr on the n-th cohomology
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groups of the projective closures will be denoted by T : -^(X^) —>
Hn{Xt) (and is defined also as a pull-back).

(b) For R » 0, the Milnor fibration at infinity y = —— : 9Bp —

/-1(0) —> S1 exists and it is equivalent to the fibration at infinity of /. In
particular, there is a well defined variation map Var : H'^^X^) —> H^(X^)
(Var([c<;]) := [Toeom^) — ct;])? which is an isomorphism and has the usual
compatibility properties with the monodromy T?°.

(c) The projective hypersurface X00 :•= {fd = 0} C P72 has only
isolated singularities. The semisimple part ofT?° depends only on the local
topological type of these singular points, but the nilpotent part of T?° (and
also the intersection form on Hn{X^)) depends also on the position of the
singularities of X00.

In general, if one wants to relate the algebraic monodromy with Hodge
theory, it is more convenient to use the algebraic monodromy induced on
the (horizontal sections of the) cohomological Gauss-Manin connection (see
e.g. [1] §12). This is the inverse dual of the classical homological monodromy
[loc. cit 13.1.A]. In this paper they will be denoted by Mj° = {T^°)~1 acting
on ^(J^0), M = T~1 acting on ^(Xf); and we will call them simply
(algebraic) monodromies. Obviously, TV(M) := [(Tgeom)"1^) ~UJ\ nas tne

well-known compatibility with M?° (see 2.3). We will use the corresponding
similar notations in all local situations which will appear in the body of
the paper.

(2.2) In order to study the MHS at infinity of a (^-polynomial we
will consider a concrete compactification of the map 1/f (see [5], [6]).

Let / = fd + fd-i + • • • denote the decomposition of / into
homogeneous components, let D denote a disc in the complex plane with
center at the origin and sufficiently small radius. Set

X = {([z], t) € P^ x D I t(fd + zo fd-i + ... + 4 fo) = z^}

where [ZQ : z\ : . . . : ^n+i] are homogeneous coordinates in P^^.

The map TT : X —> D given by 7r([^],^) = t induces a locally trivial
C°° filtration over D — {0} and the fibers of TT are exactly the projective
closures of the fibers of /. The monodromy of TT over QD (with positive
orientation) is M.
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Then by [5] we have a commutative diagram

0 -^ P^W -. P^X,) -. 7PW) -^ P^t\Xt) -^ 0
(E.O) iid [ M [Mf [id

0 -. P^{Xt) ^ Pn(Xt} -^ ^(X?) ^ P^{Xt) -^ 0

where P denotes primitive cohomology (i.e. for X C P^ one has P^X) =
Coker^^P^) -^ HkW)). The above spaces carry natural MHS's:
P^Xt) carries Schmid's MT^S', H71^) the MHS introduced in Section 1
and all arrows are morphisms of MHS^s.

The compactification provided by TT is not such a good one since
its center fiber 7^~1(0) is not reduced (it has multiplicity d) and X is very
singular. Therefore, we will consider the normalization of the d-fold covering
of TT. More precisely, let D' be again a small disk, 6 : D' —> D the map
given by 6(t) = td. Define X' as the normalization of X x^ D' and let
TT' : X' —> Df be the natural projection. The map TT' gives a fibration over
D' — {0} with the same fiber as TT and classical monodromy T~d. Both
X' and the central fiber XQ = (Tr')"1^) have only isolated singularities.
Set SingX°° = { p i , . . . , pk} and let Pp Mj be the local Milnor fiber and the
algebraic monodromy Mj : J^"1^) —> T:?1"1 )̂ of the hypersurface
singularity (X00,^) C (P^Pj) for 1 ̂  j <^ k (Here P" is the hyperplane
at infinity).

Then Sing X' = SingX00 x {0} and the central fiber XQ is the
d-fold cyclic covering of P71 branched along X00. In particular, if we set
SingJCo == { j / i , . . . , j4} then the isolated singularities (X^p^) are the d-th
suspensions of the singularities (X°°^pj).

Let P' (resp. M') be the Milnor fiber (resp. the monodromy) of the
local smoothing TT' : {X'',p7.) —> (D',0). We remark that this smoothing
is not the (natural) smoothing of (X^p^) with total space smooth. The
following commutative diagram is the exact sequence of vanishing cycles
corresponding to TT' together with the monodromy action. It is a diagram
ofMHS's (cf. [5, (10)] or [6, (2.2)]).

k

0 -. Pn(Xo) -^ P^X,) -. (^^(FJ) -^ P^W) -. 0
j=i

(E.I) iid IM^ ie(A^)-1 iid
k

0 ^ Pn(Xo) -^ P^Xt) -. Q) ̂ (PJ) -> P^W) -^ 0.
J=l
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Notice that XQ C P71-^1 is given by the equation ̂  = /d^i,..., ^n+i).
There is a Galois action of Z/dZ on XQ generated by the automorphism
[zo : ... : 2^4-1] i—> [e(l/d) ZQ : . . . : Zn-\-\} which induces at the cohomology
level an automorphism which will be denoted G9 : Pq(Xo) —> P^Xo).

The disadvantage of (E.I) is that the monodromy action at the level
of Pn(Xt) is M6' instead of M. In [6] we constructed an automorphism of
X' over D/ which is a "lifting" of the geometric monodromy of TT. In [loc.
cit.] we identified (H71 (F^'), M^) with

(jr1-1^)^-1), cd-^M,Y}
where for an operator y? : V —> V and an integer £ ^ 1 we denote
Q((^) : V^ —> V^ the operator defined by c^) ( r r i , . . . , xn} = (^(^),
a - i , . . . , ^_i). Now the "lifted monodromy action" induces the following
commutative diagram (of vector spaces):
(E.I')

k

o ^ p^Xo) - p^Xt) -. (^jr1-1^)^-1) -. p^^Xo) -. o
j=i

iG71 ^ M iecd_i(M^-1) ^G^1

fc
0 ^ P^Xo) ^ P-^) -^ ^^-i(^.)®(rf-D _ Pn+l(Xo) -^ 0.

j=i
(In [loc. cit.] it is not clarified the MHS-meaning of this diagram, this will
be done in the next section. That discussion will show that (E.I') is actually
a diagram of MHS's. One should be aware of the fact that if we consider on
^(FJ) and ^rn-l(^•) their natural MHS, then ft^') ^ IT1-1^)^-1)
as MHS^s.)

Theorem 2 in the Appendix of [5] together with the "lifted mon-
odromy action" gives the following commutative diagram ofMHS (cf. [6])'
(E.2)

k
0 -^ Pn(Xo) -^ Ker^-Id | Pn{Xt)) -^ Q)H^(^) -^ 0

[Gn [M J-l iid
k

0 -^ Pn{X^ -^ Ker^-id | Pn(Xt)) -^ ^^(^) ^ Q.
j=i

(2.3) There is a nice connection between the variation map and the
diagram (E.O) (for details, see [5, pp. 217-218]). There is an orthogonal
decomposition Pn(Xt)l = PJ^oc (X^) C P^oc (X^-S Mi = Id 0 M' (where
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^(Xt)! denotes the space of generalized eigenvectors of Pn(Xt) of eigen-
value 1 with respect to M, we will use the same notation for the other
groups as well).

We identify PJ^ {X^ with the image of?71 (Xt) —> ̂  (J^°). Then
the composed map

w : Hn (X,°)i ̂  H^ (X^ -^ H- (X,°)i

(where W was defined in (2.1)) has range exactly P^oc(W and makes
the following diagram (of vector spaces) commutative:

0 - Pj^(W -. HW), -. P^t\Xt) -. 0
iM'-id w/ i(MJ?°)i-id 10

0 -. Pj^(W -> ITW)i ^ P^t\Xt) -. 0.

3. The mixed Hodge structure at infinity in the (*)-case.

In this section we describe the equivariant Hodge numbers of the MHS
at infinity of a (^-polynomial.

Let / be a (^-polynomial and keep the notations of section 2. Let
(M^°)ss (resp. {Mf)u) denote the semisimple (resp. the unipotent) part of
the monodromy at infinity Mj°. We recall ([9, Theoreme 15]) that (Mf)ss
is a MHS-automorphism of ^{X^) of type (0,0) and N° = log(M^)^
is a MHS-automorphism of type (-1,-!). We will denote ^(X^ the
^-eigenspace of ^{X^ with respect to Mf. For ^ a d-th root of unity, we
denote by P^X'o)^ the ^-eigenspace of P\Xo) with respect to the Galois
action G^. Obviously, this eigenspace decomposition is compatible with the
MHSofP^(Xo).

We recall the definition of primitive spaces with respect to a nilpotent
endomorphism. (cf. e.g. [10, (5.3)], [19, (6.4)]): Let H be a finitely dimen-
sional Q-vector space and N : H -^ H a nilpotent endomorphism of H.
Let W denote the weight filtration on H corresponding to N and centered
at m. Assume there is a fitration F on the complexification of H such that
(H, W, F) is a MHS. For r ^ 0 one sets

Pr := KerAT+i : Qr^H -. G^_,H.
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Then Pr carries a MHS of weight m + r. For p + q ^ m we will call P^ _^
the primitive space of type (p, g).

The local vanishing cohomology H71-1^) of (X°°,pj) has a MHS
(cf. [22]). For $^ 1 (resp. for $ = 1) the weight filtration of the generalized
^-eigenspace is the monodromy weight filtration centered at n — 1 (resp.
at n). In this case, we will denote the dimension of the corresponding
primitive spaces (with respect to the infinitesimal nilpotent monodromy)
by ^(X^',pj). The main theorem of this section is the following

(3.1) THEOREM.— a) The weight filtration of ̂ {X^ is the mon-
odromy weight filtration given by N^ with center n + 1. The dimensions of
the primitive spaces of type (p, q) (p + q ^ n + 1) are

pP^(f) = /f1-^ ^P (P71-1^00)).

b) The weight filtration of ^(X^)^ is the monodromy weight
filtration given by N^ with center n. The dimensions of the primitive
spaces of type (p, g) are given as follows:

i) If^=l and^l, then

^(/)=^-^-P(P-(Xo)^).

ii) If^ ^ 1, then

^(f) = E ̂ +7L 9-W7] (x00^)
j=i

where ^ = e-27"^ < f3 < 1), 7 = {(d - 1)(3}, and 6 = 0 if 7 = 0 and
6 = 1 if 7^0.

fffere [ ] denotes integer part and for a 6 R, {a} = a — [a]).

Notice that for ^d -^ 1, pl?'^/) depends only on the type of the local
singularities (^°°,pj)^=i (and not on their position).

(3.2) Remarks. — a) The equivariant Hodge numbers h^ of ^(X?)
can be computed from the formula

^b = E P^' w w
^o

where a + b ^ center of the weight filtration := c, and from h^ =
^-a, c-b ̂  ̂  c-a f^ a + 6 ̂  c (cf. [10, (5.3)]).



HODGE NUMBERS ATTACHED TO A POLYNOMIAL MAP 1555

b) The above theorem shows that the weight filtration of ^(X^)
has a behaviour similar to that of the weight filtration of the MHS on the
vanishing cohomology corresponding to an isolated hypersurface singularity
(namely, it is centered at n for A 7^ 1 and at n+1 for X = 1). For A -^ 1 this
can be proved using Schmid's results [Sch] and for A = 1 follows basically
from the fact that the variation map is an isomorphism.

c) It follows also from the theorem that the maximal size of a Jordan
block of (M^ is n + 1 if ̂  = 1 and ̂  1, otherwise is n (cf. [6, p. 4]).

d) If / and /' are two (^-polynomials with the same highest degree
form, their equi variant Hodge numbers are the same.

Proof of Theorem (3.1).— We will say that two MHS's Hz and H^
are numerically equivalent (and we will denote this H\ ZL H-z) if their
Hodge numbers are the same. The primitive decomposition theorem gives
the following fact, which will be used several times.

(3.3) LEMMA.—Let Hi (i = 1,2) be a MHS with a nilpotent
(—l,—l)-morphi&m Ni such that the weight filtration of Hi is the mon-
odromy weight filtration of Ni (with the same fixed center). If KerA/i =
Ker7V2, then H^ H^.

We divide the proof of (3.1) in the following cases:

Case $ = 1.

In order to prove this case we study first the MHS's of P*(X°°) and
P^oo(X^). (Some of the results of this subsection will be used in Section 4
too.)

(3.4) LEMMA.— P^t^Xt) and p^-^X°°) are dual MHS's with
respect to Q(-n). Pn(XOO) is pure of weight n and Pn~l(XOO) =
Wn-l P71-1^00).

Proof of the lemma. — The duality statement follows quite directly
from Saito's formalism: On the category of mixed Hodge modules one can
define a duality functor which commutes with the nearby cycle functor up
to a Tate twist (cf. [17], 2.6) and extends to a functor defined in the derived
category, compatible with Verdier duality. In Saito's terminology and with
the notations of (1.2), if i : A c-^ X is the inclusion map one has to apply
this duality to the object R^p^ z'Q^[n 4- 1] in the derived category of
mixed Hodge modules. The purity of Pn(XOO) is proved in [22, (4.7)].
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(3.5) Consider now a 1-dimensional deformation of X00 C P71 by
hypersurfaces, i.e. a family of hypersurfaces X^° C P^ of degree d such
that X§° ^ X00, X^° is smooth for s ^ 0, and the total space of the
deformation is smooth as well. Consider the exact sequence of vanishing
cycles

(3.6) o -^ pn~l(xoo) -^ pn~l{x^)^ -^ e^ir1"1^)! -^ pn(xoo) -^ o.
Here P*(X°°) carries Deligne's MHS, P71-1^00)]. Schmid's MHS and
H71-1^)^ Steenbrink's MHS. Moreover, the Hodge numbers ofH71-1^)^
do not depend on the choice of the smoothing (because in a /^-constant
family of hypersurface singularities, the equi variant Hodge numbers are
constant), in particular, they are equal to the Hodge numbers provided
by the natural local smoothing. The sequence is compatible with the
monodromy action, which is the identity on P*(X°°), Mj on H^^^Fj)
and it will be denoted Mge on P71-1^00)!.

By [19] (resp. [22]) the weight filtration of Pn~l(X^)^ (resp.
^-n-i^^.^ ^g ^g monodromy weight filtration with center n— 1 (resp. n).
By the invariant cycle theorem P71'1^00) = Ker(M^ - Id). From these
facts it follows that we have, for t ̂  1

dim Gr^i^P^X^+dim Gr^i_^ C, H^^F^
(3.7) = dim Gr̂  C, ̂ n-lW•)l - dim Gr^ P^X00).

Now we compare ©^n-l(Py•)l and Pn(Xt)l. The 1-eigenspaces in (E.2)
provide the following MHS-identification (notice that Gn has no 1-
eigenvector on P^Xo)):

k
(3.8) Ker (M - Id | P^X^i) = Q) H^ (^').

j=i

Let gi be a local equation defining the singularity germ (X°°,pj). The
smoothings of the singularities {X1,p^) are given locally by the equations

g j ( x , x f , x / f ) = g j { x ) - } - x / 2 - ^ x f / 2 , { x , x ' , x " ) 6 (C71 x C x C, 0),

(cf. [5, p. 223], make the change of variables 2ix' = XQ — t 4- x^~1, 2x11 ==
XQ-{-t—x^~1). If Fj denotes the Milnor fiber of^j then by Sebastiani-Thom
(cf. [18]) one has fi^4-1^-)! = H^^F^-l).

Let Yi : H71-1^)^ —> H^-1^)^-!) be the infinitesimal variation
map of type (-1, -1) (cf. [23, (2.5)]), let k : H^-\Fj)^ —> H^^F^ be
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the natural map, Mj^ : ^n~lW•) —> H?'1^) the monodromy at the
level of cohomology with compact supports. Define TVi = log(Mi), N • i =
log(M^i), and Nj^i = log(M^,i). Then from [23] one has

H^(X°°) = Ker^-1^)! -^ ̂ -^i)

and similarly for X ' , so one has

(3.9) ^(^)=^(x-)(-l).

Since A^,c,i = V\ o A; and Vi is an isomorphism, one obtains that
^(^X-l) = KerA;(-l) = KerN^-l) ^ Ker7V,,i. The la^t iso-
morphism is given by Vi and follows from the fact that (M,c)i o V^ =
^io(M,)i.

The above identities, together with (3.9) and (3.8) give
k

Ker(M | P^X,)!) ̂ (]) Ker(7v,,i | H^^F,),).
j=i

Now, (3.3) implies that

fe
(3.10) P^X,)! ^^ ^n-l?•)l

j=i
(i.e. they have the same Hodge numbers).

Now consider (E.O) and (2.3). The map N^ : ̂ (X^ —> ̂ {X^
is a morphism of type (-1, -1) and by (2.3)

(3.11) Im (^°) = Im [P^X,)! ̂  ̂ (X^i].

Via (3.4) and (3.10), identity (3.7) reads

dim Gr̂  P^1 (X,) + dim Gr̂  P-^X^

(3.12) = dim Gr^_, P^X,)! - dim Gr^i_, PĴ  (X,).

Using (E.O), this equality can be rewritten as

dim Gr^, H^X^ = dim Gr^_, ̂ (X^i.

Together with (3.11), this implies that the weight filtration of ^(X^i is
the monodromy weight filtration centered at n + 1 and its primitive spaces
can be identified with P^f1^), i.e. for p + q ̂  n + 1

PT(/) = h^(P^f1 (Xt)) = ̂ -^-^P71-1^00)) = ̂ -^-P (P71-1^)).
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Case ̂  = 1, ̂  1.

From (E.O) ̂ (X^ = P^X^ and from (E.2)

Ker (M - $Id | P^X,)) = P^X^.

Since the weight filtration of P^X^ is centered at n (cf. [19]),

^(/)=^-^-P(P-(Xo)^).

Case ̂  ̂  1.

Given ^ with ^d ^ 1, from (E.O) we have ^(X^ = P^X^ as
MHS's, and from (E.I5) we have

(3.13) P^X^ = ((]) ^-^F,)^-1, Cc,-i(M,)) _^
j ^

as vector spaces. Recall that, as vector spaces with automorphism we have

(3.14) (^(PJ)^) ^ (^n-l(F,)^-l, ^(M.y).

By (E.I), for 77 7^ I we have an isomorphism of MHS's

(3.15) ^ P»(X^ = ̂  (ff"(^),M^),-i
^d^yy j

where (^(I^), M^) is given by the local smoothing TT' : (^'.j/ •)—>{Df, 0).
In some local coordinates this can be identified with TT' : (Y^, 0) —> {D'\ 0),
where

^ = {{y^yo^t) I ^-(?/)+^o=^}
and 71-'(^, ?/o,^) = ^ (see [5]). We will compute the MHS of the vanishing
cohomology ofTT' corresponding to eigenvalues -^ 1. This computation, and
the above isomorphisms will provide the result.

The idea of the following construction comes from a recent paper of
H. Hamm [8]. We thank J. Steenbrink for drawing our attention to that
paper.

Fix an integer m ^ 1 such that for any eigenvalue A of Mj one has
A771 = 1. Then, by (3.14), for any eigenvalue A of M^ one has A^-^ = 1.

Let (Y^, 0) be the fibre product ofpr' : (Y^, 0) -^ (D', 0) and (D", 0) -^
(P',0) where the last arrow is 5 i-̂  s771^-1) = t and D" is again a small
disk. So, (Yj-,0) is locally given by the equation gj(y) -{-..s'71^"1^ = y S '
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Let TT" : (Y^O) -^ (iy',0) be the projection (yo,y,s) ̂  s. Then the
fiber of TT" is the same as the fiber of TT', its monodromy is the m(d - l)-th
power of the monodromy of TT', in particular it is unipotent. Let K be the
real link of (Y^-.O). On K we define the natural Galois action induced by

(^^.)-(,o,^.e(^^)).

We denote by V; : ̂ (FJ) —— ^(Fj)(-i) the infinitesimal variation
map ([23, (2.5)]). By [loc. cit., 2.6.b] one has the following exact sequence
of MHS's:

0 -> ^(K) -. ̂ (FJ) ̂  H^F^(-l) -^ H^\K) -^ 0.

(3.16) LEMMA.— This exact sequence is equivariant with respect to an
action which at the level ofHn(F^ is the monodromy action M' of^ and
on ^{K) is the Galois action.

Proof of the lemma. — If TJ g^^ denotes the geometric monodromy
of TT', then its lifting composed with the Galois action is isotopic to the
identity (by a similar argument as in the proof of E.I5 and E.2 in [6]).
Therefore, the inverse of (T^^J* corresponds to the Galois action.

If ^{K)^ denotes the yy-eigenspace (rj ^ 1) with respect to this
Galois action, then by (3.16) ^(K)^ = Ker (V;)^ Recall that koVj = N^

where N^ = _ log (A^)7^-1) and k is the natural map H^{F^) —>

^(FJ). Since ^ is an isomorphism for rj ^ 1, Ker(A^)^ = Ker(y')^.
Therefore, for rj ^ 1,

(3.17) jrW, = Ker ((A^), I ^(^),).

The advantage of this identification is the following: The map 71-' is defined
on a hypersurface singularity germ, and there are very few methods to
compute the MHS of its vanishing cohomology. On the other hand, K can
be represented as the link of a hypersurface singularity, and there are good
methods to compute its MHS. Indeed, let u : (C^2,0) —> (C, 0) be defined
by u {y, yo, s) == gj(y) + 5m^-l) 7/0 - y^. Let U be its Milnor fiber. Then by
[23] we have the exact sequence of MHS's

(3.18) 0 ̂  ̂ (K) -^ H^\U^ -^ H^dJ^ -> H^^K) -^ 0.

Besides the monodromy action, on this exact sequence there is a Galois
action induced by the transformation s ̂  s'e(—-———^, which commutes

\m(d — I)/
with the monodromy action.
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Let H^iU)^^ be the generalized eigenspace corresponding to eigen-
value 1 with respect to the monodromy action and eigenvalue rj with respect
to the Galois action. Then (3.18) gives

H71^ = Ker (k^\ H^\U)^).

If Yi : Jfn+l(l/)l —. ^+i(^(-i) is the infinitesimal variation map
of u, then Vi o k == 7Vc,i (^Vc being the logarithm of monodromy acting
on cohomology with compact supports). Since V\ is an isomorphism and
Nc,i o Yi = Vi o TVi, we get

Ker^ = Ker(7V^ l^1^)^)

^er^ij^+^^+l).

Therefore, for 77 7^ 1:

(3.19) ^W, -Ker^J^^^^^+l).

Now, (3.17), (3.19) and (3.3) give the numerical equivalence of ^(F')^
and^+^i^+l^i.e,

(3.20) H^^F^ ^ jfP+^+i (u)^.

Let w : (C^O) —. (C,0) be given by w(yo,s) = s^-^yo - y^ Since
w defines an isolated quasihomogeneous singularity, its equivariant Hodge
numbers can be computed using [21] (see also [1]). Then, the Sebastiani-
Thom result of [18] allows to express the equivariant Hodge numbers of
u = g^; 4- w in terms of those of gj.

(3.21) PROPOSITION.— (a) For each l-eigenvectorof(Hn~l(Fj),Mj)
of type (p, q) there are d - 2 eigenvectors of (^(FJ), M?^i of type (p, q)

( A* \
and of eigenvalues e —— ) with 1 ̂  k ^ d — 2.

d — I/

(b) For each e(i/d)-eigenvector of type (p,q) of (H71-1 {Fj), Mj) with
i € Z, 0 < % < d, there are d - 2 eigenvectors {vk}k of {^{F'^M1-)^

————~- / \^ I n \

where k = 0 , . . . , d - 1 - % , . . . d - 2, ^ has eigenvalue e ( ——— ) and type

( , r^'^i i r^2^(^[^-yJ-^^ldrrJ)-^ - i
(c) For each e(^)-eigenvector of (H71-1 {Fj), Mj) with d^ ^ Z and 7 €

(0,1), and type (p, q\ there are d-1 eigenvectors {wk}k of(Hn(F^, M^)^i
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where k = 0 , . . . , d — 2, Wk has eigenvalue e (7 + -—— ) and type\ d — I /

/ r k -j-71 r ^ +7i\
P+P+-T— h ^ + 1 - ^T-T •V L d — 1 J L d — 1 -I/

(d) Aii eigenvectors of {H^^^F'-f.Mj) corresponding to eigenvalues
^ 1 are obtained from a), b) or c) above.

Proof. — In order to have a simpler form of Sebastiani-Thom, we will
work with spectral pairs. A A-eigenvector v of type (p, q) of (JP'1"1^), Mj)
gives a pair Sy = (a,p 4- q — s) where A = e(—a), n — 1 -h [—0;] = p and
s = O i f a ^ Z a n d s = l i f a e Z (cf. §6).

____ f /J \

One has Spp(w) = ^ — 4- —- — 1 , 1 ) , where the residue classes of^ j\ d md /
the monomials {yo~ls:)~l} form a base in the Milnor algebra C[yo, s]/(9w).
A possible choice of the monomials is the following: (i^j) either satisfies
1 ^ i ^ d and 1 ̂  j ^ m(d - 1) - 1, or {ij) = (l,m(d - 1)). Then v
contributes to Spp(n) with pairs

^ ( a + L d + ^ d - p + q - s + 2 ) •
(^j)

This gives eigenvectors of J^4'1^)!^! if and only if

(3.22) a + i + J- € Z and 3 . ^ Z.
d md m(d -1)

One has to search for solutions of (3.22) with the restrictions

(3.23) l ^ z ^ d , l ^ J ^ rn{d - 1) - 1.

In case (a) (resp. (b), resp. (c)) one has Sv = (n — p — 1, p + q — 1) ( resp.
Sy = (-i/d - p + n - 1, p + q), resp. Sy = (-7 - p + ̂  - 1, ^ + g)). One
gets (a), (b), (c) by solving (3.22), (3.23) in each case. The details of the
computation are left to the reader.

Now we can finish the proof of theorem 3.1 (case ^d -^ 1). Recall the
identities (3.13-14-15).

/ i \Subcase 1: Assume ̂ d-l = 1, i.e. ^ == e( — —— ) with 1 ̂  t ̂  d— 2. SinceV d — I/
^-1 is an eigenvalue ofcd-i(Mj) (cf. 3.13), ^l~d = 1 is an eigenvalue of Mj.
By (3.21.a), each 1-eigenvector ofMj of type (p,^) gives d — 2 eigenvectors
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/ k \of M'y of type (p,g), with eigenvalues rj~1 = e(-,—-J (1 ^ A; ^ d — 2).

( fc \But (in (3.15)) only one corresponds to $ (i.e. satisfies e — -——} = ̂ d),
d — I/

namely that with k = t. So, each 1-eigenvector of Mj of type (p, q) gives
one eigenvector of (^(J^0), M^ of type (p,q). Therefore,

^(/)=E^(XOO-^)•
j

Subcase 2: Assume ^(d-l)d = 1 but ^d-1 ^ 1. Then $ = e(-/3), where

/?= -—-+-——r,with0 <i < d, 0 ̂ ^d^.Thena^1-^ =e f^ )d — 1 d(d — 1) \d/
is an eigenvalue of Mj with a 7^ 1, a^ = 1. Using (3.21.b) one gets

( A* i i \
eigenvalues rf~1 = e -—— ) for M- but only one corresponds to $ (because

e( - -j-^) = ̂  implies k = ^). Thus, from (3.21.b), (3.13) and (3.15)\ d — I/
one has

^w-E^-^1'9"^^1^00'^)-
3

i r £ -h i i
Now, notice that 7 := {(d — I)/?} = -, hence [/? + 7] = .—- .

Subcase 3: ̂ d-1) ^ 1.

Follows from (3.21.c) as in the subcases above (now k = [(d — I)/?]).

(3.24) Remark. — The proof of Theorem (3.1) in case $ = 1 suggests
the existence of a natural perfect pairing

D : P^^X^ 0 ̂ (X^i —— Q(-n).

Our proof gives this duality at the level of Hodge numbers and we expect
that there is a geometrical construction of D. We expect that -^"(X^i is
not pure if Var is not an isomorphism (cf. (3.2.b)). This suggests that D
should be constructed from the Milnor fibration at infinity (Notice that the
MHS on P71"1^^0)! depends on the choice of the smoothing {Xs}s ofX°°;
also the MHS ofIP^X^)! depends on the lower order terms fd-i-^fd-2^-'' •
of /. But maybe a good pairing of these parameter spaces gives rise to a
duality P).
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4. The Hodge numbers of X00 and XQ.

Theorem (3.1) gives the MHS of C H^ (X°)^ in terms of the MHS
^=1

of X00 and XQ. In the sequel we would like to separate the local and the
global information. We say that an invariant is local if it depends only on
the type of the hypersurface singularities {(X°°^pj)}^^ and some universal
constant depending on n and d. If an invariant depends on the positions
of the singularities of X00, then we say that it is global. For example,
dim P^X00) and dim Pn~l(XOO) are global, but their difference is local.

(4.1) We start defining some universal constants: If Q e C[^i , . . . , Zn-\-i\
is an homogeneous polynomial of degree d which defines a smooth hyper-
surface V = V(Q) C P71, then the Hodge numbers of V can be computed
as follows (cf. [7]): Let (9Q) denote the ideal in C [^i , . . . , Zn-\-i\ generated
by the partial derivatives of Q and set F(Q) = C[^i , . . . , Zn^-\}/(QQ). Let
F(Q)^ be the subspace generated by the monomials of degree ^, and set

n4-l

Q.n = ̂  (-1)1 Zi dz-t ^\... /\ dzi A ... A cbn+i.
z==l

If P is an homogeneous polynomial of degree deg P= (k+l)d— n— 1 for
some k ^ 0, then P • ^tn / Q^1 defines a rational differential on P71 with
poles along the hypersurface V. Its residue class Res(P^yi /Q^4'1) lives in
the primitive cohomology P71"1 (V) and one has an isomorphism (cf. [7,
(4.6)])

(4.2) F (Q)(^i) ,_,_i -^ P71-1-^ k (V)

given by P •—> Res(P^n / Q^).

It is well known that the Hodge numbers of the cohomology of V
(equivalently, dim F (Q)^) does not depend on the choice of Q as long as
V (Q) C P71 is smooth. We denote

(4.3) j^ = dim F (Q)(^) d-^i)-s

where 0 ^ s < d and k ^ 0. The next theorem gives the Hodge numbers
of P71"1^00) in terms of the Hodge numbers of P^X00) modulo local
contributions. After this paper was written, we have got to know of a very
recent paper of A. Dimca ([4]) where the same theorem is proved, under a
slightly different form.
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(4.4) THEOREM.—Let X00, {pi,...,pk},Fi,...,Fk be as in the
previous sections. Then

(a) y."-^ (P»-i (X00)) = ̂  ̂ +i-1. n-l-i (X°°,p,) iffc ^ 3.
j

(b) ^"-2-« (pn-l (X00)) = S p^1- "-1-1 (X~,pj) - ̂ +1. "-1-

(P"(X°°)).

(c) /i1-"-1-1 (P"-1^00)) = ̂ d - ̂  dim G^ ff"-1^00^,) -
J

E E P?' n-l-' (xoo,^•)+/^n-^ (Pn(xoo))-^h^^n-1-1 (p71^00)).
J 9>»

Proof.— (a) and (b) follow from (3.6) or (3.7). For (c), consider the
following exact sequence (similarly as in (3.6), but now for all eigenvalues):

(4.5) 0 -^ P71-1 (X00) -^ P71-1^,00) ̂  e, ^n-1 (F,) ̂  p- (X00) -^ 0.

Passing to the limit MHS does not change the dimension of the terms of
the Hodge filtration, thus dim Gr^ P71-1 (X,00) = j^_^ = j^ (cf. 4.2).
Now take Gr^ on the sequence above and apply (a) and (b).

(4.6) COROLLARY. —Ifp-^-q^n+3, then ̂ q (/) is local.

Proof. — Use the theorem above and Theorem (3.1, a).

Let XQ = {/d(^i , . . . . Zn+i) + ^+2 = 0} C P^ be the d-th fold
cyclic covering of P72 branched along X00. The Galois action of Z/dZ is
given by $ * [zi : ... : 2^+2] = [z^ : . . . : ^ ^+2] (^ = 1). Recall that
^W)^ denotes the ^-eigenspace of P*(Xo) with respect to the Galois
action.

The singularities Sing XQ = {j/i,...,j/J are the d-th suspen-
sions of the singularities of X00. If {X°°,pj) is locally given in C" by
9j(x2,.... Xn+i) = 0, then {X^p'^ is given by ^ := g^,.... ̂ +1) +
^+2 = 0 in C71"^1. Let F, be the Milnor fiber of ^, Mj its monodromy
acting on ^{Fj). Then on ^^(F^) there is a Galois action (given by
^ * (a^ . . . . .Kn+2) = (^2, • • • , ^n+2) if ^d = 1) and this action commutes
with Mj. ^(Fj) carries a MHS, we consider the space of primitive ele-
ments given by the nilpotent part of Mj. Let Pf6 (X^p^ be the space of
primitive vectors of type (a, b) corresponding to the eigenvalue 1 of Mj. Fi-
nally, let pf (Xo,p^ be the dimension of the ^-eigenspace of the induced
Galois action on P^' (X^p'j). (In order to eliminate any confusion, we em-
phasize that below in (4.7.c) ^(Fj)^ is the ^-eigenspace with respect to
the Galois action.)
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(4.7) THEOREM.— Let ^ = e ( s / d ) , 0 < s < d. Then with the above
notations, one has

(a) /^»+i-— (P»(Xo)i) = E ̂ +t-1' "-t (^)s ^ ̂  3
j

(b) ̂ ."-1-1 (P"(Xo)^)=E P^1' "-* (Xo,^-/^1- "-t (P^X^).
3

(c) ̂ n-1 (P-TO) =J^-E dim G^ H^F^-^ Erf' n-l

(Xo.p^ + ̂  n+l-% (P^TO) + h^ n-1 (P^TO).

Proof. — A deformation (fd)s of/d induces a deformation (/d)s+2^2
of fd + ̂ +2. Let V ( (fd)s 4- 2^+2) = X1, C P7^1. Then the exact sequence
of vanishing cycles is

(4.8) 0 -^ Pn(Xo) -^ Pn{XI,) -^ Q) (̂F,) -^ P^^Xo) -. 0.
j

On this sequence there are a monodromy and a Galois action which
commute. Now the proof of (4.7) is the same as the proof of (4.4) if we
replace the exact sequence (4.5) by (4.8) (and we take the ^-eigenspaces,
with respect to the Galois action). The remaining part is the computation
of dim dp P^X^ (for s ^ 0 fixed). Take i = n - k. By the discussion
in (4.1) and with the same notations, Hn~k1 k (P^ V(Q^-z^) )^) is given
by the residues of rational differentials of type P ̂ ln+i / (Q+^+2)^1 where
deg P + (n + 2) = (k + 1) d. Since ^n+i is homogeneous of degree one in
Zn-^-2 5 such a form lives in the ^-eigenspace with respect to the Galois action
if and only if P = P (z^ . . . , Zn^)z^ hence P € ¥(Q)^i)d-{n^-i)-s-

(4.9) COROLLARY. — J f p + g ^ n + 2 , then ̂ q (/) is local for any
^ = 1, ̂  1.

In the next section we will study the polarization properties of
^(X^). This is not difficult for the generalized eigenspace H71 (X^i,
but for ^(X^i we need a suplementary construction.

Notice first that if / = fd + ... is a (*)-polynomial, then / =
/ (a;i , . . . , Xn+i) + a^+2 : cn+2 —> C is again a (*)-polynomial. We will
compare the equivariant Hodge numbers and the polarization properties of
/ for eigenvalue 1 and of / corresponding to eigenvalues ^ 1. In order to
do this, we need a Sebastiani-Thom-type property for the MHS at infinity
°f / = / + a^+2 (at ^ast for eigenvalues $ with ^d = 1). This will be
established now. Let X'^ = {fd ( z ^ . . . , Zn^-i) + z^ + z^ = 0} C P^
be the d-fold cyclic covering ofP71-^1 branched along XQ. The Galois action
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on X'Q is given by multiplication by e(l/d) on the last coordinate ^+3.
Then one has

(4.10) THEOREM. — For $ = e ( s / d ) , 0 < s < d and k € {n, n - 1},

/,?+!, <?+! (Rfc+2 (^^^ ̂  ̂ ,9 ̂  ̂ oo) )

4-E ^^^-^(P^W)^).
" d '

0<t<d
t+s-yid

Proof.— Similarly as in the proof of (4.7), consider a deformation
{fd)s of fd, which gives deformations (fd)s + z^, (fd)s + z^ + z^.
We consider the exact sequences (4.5), (4.8) and the analogous one for
(fd}s + ̂ 2 + ̂ +3 ana we compare dim Gr^p of the corresponding terms.

First we concentrate our attention on the second terms in these
exact sequences: P71-1 (X^), Pn (X^), Pn+l (X^). Since dim Gr^ remains
constant when we pass to a limit MHS, in order to compute it we can
replace this MHS by the pure Hodge structures given by a fixed SQ (so ̂  0).
Set Q = (/^o, X = [Q = 0} C P-, X' = {Q + z^ = 0} C
pn+i^ ^ = {Q + z^ + z^} C P^2. Notice that there is also an
action of Z/dZ on X' (resp. X") given by multiplication of ^+2 (resp.
2^+3) by e(l/d). Again by Griffiths' construction, p^+i-(9+i), 9+1 ^")
is freely generated by the classes P^n+2 (Q + ^+2 + ^+3)-(9+2) with
deg P + n + 3 = d(q + 2), P e F(Q + ^+2 + ^+3). Moreover, the ^~
eigenspace is given by the classes corresponding to polynomials of the form
P = <~+i P {^ • . . , ^+2). Write P = E 4+'2 Pt-i(z^ . . . . ^+1).

0<t<d
Then deg P^-i + ^ - l + s - l + n + 3 = d ( g + 2 ) , a n d

(4-!!) P^-^)' ̂  (X"), = ^ F(0),^2)-n-i-.-..
0<t<d

m+s < d then it follows that deg P^^t+s-l+n+2 = d(^+2), hence
these polynomials P^_i provide rational differentials z^^ P(_I n^+i (Q+
^+2)-(9+2) generating P—^+i)- 9+1 We^)- IH + 5 > d, then

deg Pt_i +^+s- l -d+n+2=d(g+l )

hence these Pf-i's provide forms 44^s2-l-d ^-i ^n+i(0 + ^+2)-(9+l)

generating P71-^ 9 (^-')^ ̂  ^ ^ Finally, if t + s = d then deg P^_i + n + 1 =
d(q + 1) hence P^_i ^^ Q-(9+i) are rational forms on P'1 which generate
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pn-i-q,q ^Q y^ Griffith's isomorphism. Therefore
(4.12)

PP+l•g+W^/rf)=PP•TO+ ̂  ^^'•^-^(XO^).
0<t<d d

t+s^d

Passing to the limit we obtain

dim Gr^1 P^X^ = dim Gr^ P—1 (X,00)

(4.13) + ̂  dim Gr^^ P^X;) .̂
0<t<d
t+s^d

Now we consider the third (the local) terms in the sequences (4.5), (4.8)
and the one for (/^ + z^ + 2 .̂3. There is a local analogue of the above
global argument where the rational differential forms are replaced by forms
in the Brieskorn lattice.

(4.14) LEMMA.— Consider an isolated singularity given by a map
germ g : (C^O) -^ (C,0) (with local coordinates {x^..., x^i) ), set
g ' = g + ^+2, g " = g + x^ + x^. The Galois group Z/dZ acts on
the vanishing cohomology corresponding to g ' (resp. g " ) , at the level of
coordinates this action is given by multiplication of Xn+2 (resp. Xn^)
by e(l/d). Let H^)^ be the (A,^) -generalized eigenspace of the p-th
vanishing cohomology group of g ' where ^ (resp. \) is an eigenvalue of
the Galois action (resp. of the monodromy), and similarly for g " . These
actions are compatible with the MRS on the vanishing cohomology, let
P^^)^ be the dimension of the space of primitive elements of type {p,q).
Then for ^ = e ( s / d ) (0 < s < d) and any X one has

^•^(^ E ̂ ?l'g+l-?(Aw+^)•
0<t<d
t+s^d

Proof. — Since the information provided by the equivariant primitive
cohomology Hodge numbers is the same as the one in the set of spectral
pairs, we will give the proof at the level of spectral pairs. If (JY, T) is a
MHS with a semisimple finite action, we refer to [22] (5.3) or [10] for the
definition of the set of spectral pairs Spp (JJ, T) (or see Section 6).

By the Sebastiani-Thom formula proved in [18] (which obviously is
compatible with the Galois action), we have

(4.15) Spp H^1 (g"), = ^ W*Spp H'^ (x^+x^
/3+7=Q;(mod Z)
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where A = e(-a), S^g) = Spp ̂ 1 (^ and (0,0;) * (a', a/) =
(a+a '+l , o;+o/4-l).

Since /i = x^ + 3^3 is homogeneous, its vanishing cohomology
is generated (in the Brieskorn lattice) by the forms uj == ^u-l a^"1

r u-\-v Tt-\-2, 71+0

(h - \Y~~r\ dxn-^-2 A dxn-^-3, where 0 < u,v < d. The Galois action
on this form is e(l/d) *o; = e(v/d)cu and the spectral pair provided by uj is
/ u -\- v \
^-——-1, 1J. Therefore

SPP^-,)(^={(^-I,I)}

it _L o

where 7 = ——— - 1. So (4.15) reads

(4.16) Spp H^1 {g'\ = ̂  S, (g) * (^ - 1, l)

+ i_ c
where the sum is over 0 < t < d, f3 + —— — a C Z.

d
If we denote T(a,b) the transformation on Z[Q x Z] given by

T (a, 6) (a, a;) = (a + a, cc; + a + &), then (again by the Sebastiani-Thom
theorem), we have

^^J^^-ii^/^^]-1-^])^^^^) in+^d
v d / \T^l)SppH^-\g) ift+s=d.

This finishes the proof of (4.14).

We return now to the proof of (4.10). Consider the middle maps in
the sequences (4.5), (4.8) and the one for {fd)s + ^+2 + ^+3- Both the
sources and the targets of these maps have decompositions compatible with
them. Thus their kernels and cokernels also decompose, so for k = n - 1, n
one has

(4.17) dim Gr^1 P^W^ ^ dim Gr^W P^ (J^^
0<t<d
s+t^d

+dim Gr^ P^X00).

If k = n, then (4.10) follows since the corresponding Hodge structures are
pure. If k = n - 1, then apply (4.7), (4.11), (4.14) and the case k = n.
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5. Polarization.
Connection with the real Seifert form at infinity.

(5.1) First we recall the classification of simple ^-hermitian variation
structures. The basic reference is [10], see also [12].

Let U be the complexification of a finite dimensional real vector
space, set £/* = Homc((7,C). We denote 0 : U —> U^ the natural
isomorphism (0(u) ((p) = <p(u)). A bar over an element of U denotes
complex conjugation.

If (p € Hornp (U, U ' ) then we denote Cp C Home (U, U ' ) the map
Cp{x) = ( p ( x ) . The dual map (/?* : [/'* —> £/* of (p is defined by
y?*(^) = ^ o (p.

(5.2) DEFINITION ([10, (2.1)]).— An e-hermitian variation structure
over C {e = ±1), abbreviated in the sequel as e-HVS, is a system
(U, 6, h, V) where U is the complexification of a finite dimensional real
vector space and

(a) b : U —> U* is a C-linear morphism with b* 06 = eb

(b) h is a b-orthogonal automorphism ofU, i.e. h* obo h = b
(c) V : £/* —> U is a C-linear morphism with 0-1 o V* = -e V and

V o b = h - Id.

If V is an isomorphism, then (U, b, h, V) is called simple and in this
c8^eh=-eV~(0:z^1^v^)~l and&=-y-1 - e{0-1 o V*)"1.

(5.3) Example. — Let / : C^1 —> C be a polynomial map which
admits a Milnor fibration at infinity (e.g. / is a (*)-polynomial, cf. (2.1 b)).
Let F be the fiber of the Milnor fibration, set U^ = ^(F,R), U^ =
jr^F.IR) (which is identified with Hn(F,9F,R) via the perfect pairing
Hn(F,9F,R) (g) ^(F.R) —^ R). Let h^ : U^ —> U^ be the real
(classical) algebraic monodromy, ^ : U^ —> U^ the intersection form
and Var : U^ —> U^ the variation map. Then Var is an isomorphism and
(^]R^R^]R,Var)0C is a (-^-HVS which will be denoted V(/). Notice,

1K
that similarly as in the local case, Var is the inverse of the (real) Seifert
form of the Milnor fibration at infinity.

If / is a (^-polynomial, then the Milnor fibration is equivalent to the
fibration of / at infinity, hence F is diffeomorphic to the generic fiber of /
and (h^)~1 is exactly r^°.
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(5.4) In the sequel, if (£7,6, /i, V) is a e-HVS we will assume that the
eigenvalues A of h satisfy |A| = 1 (for the general case, see [10]). In the next
examples, Jk denotes the k x k Jordan block with eigenvalue 1.

(a) If b is an isomorphism, then V = {h — Id)b~1 is determined
from /i, b. Up to isomorphism, there are exactly two non-degenerate k x k
matrices b such that 6* == eb and J^ b Jk == b. They are determined by
the sign of the entry &i^ and will be denoted 6^. If we set e = (—I)71, we
can take (^)i,fc = •^i^ -fc+l. In particular, for A ^ 1 ( |A[ = 1) there are
exactly two simple (-I)71 - HVS's:

W^(±1)=(C\ b^XJ^ (XJk-U) ((4)-1).

(b) If A = 1 and k = 1 there are two simple (-l^-HVS's

W^ (^^(C.O.Idc^7^1).

(c) If A = 1 and A: ^ 2, then h = Jk ^d ^ is not an isomorphism.

Again, there are two simple (—l^-HVS's

W^±l)=(Ck^J^V^

and they are determined by (the sign of) (b^)k,2 = d^"71 ~fe+2. This
structure can be recognized also from ((V^)~ l)l ,k = ~^^~n ~ k '

(d) —(?7, &, h, V) denotes the structure (£7, —b, h, —V) (with the same
e).

The sign conventions are motivated by Hodge-theoretical reasons,
they correspond to the sign conventions of the polarisations of Hodge
structures. The structure theorem of 5-HVS is the following

(5.5) THEOREM ([10, (2.9)]).— Any simple e-HVS decomposes as a
sum of indecomposable ones, the decomposition is unique up to isomor-
phism and order of summands. If the eigenvalues X of h satisfy |A| = 1,
then the indecomposable structures are W^(±l) where k > 1.

(5.6) Remark. — Two real variation structures are isomorphic over C
if and only if they are isomorphic as real structures (cf. [10, (2.10)]. This
implies that if / is a polynomial which admits a Milnor fibration at infinity
the information contained in V (/) (see (5.3) above) is the same as the one
contained in the real Seifert form of the Milnor fibration at infinity.
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If / is a (*)-polynomial, the connection between V (/) and the Hodge
theoretical invariants introduced in sections 1-4 is the following

(5.7) THEOREM Let f be a {^-polynomial. Then

(-1)71 • v (/) = Q Q p^ (/) • w^ ((-i)6)
A 2n^a-^-b^n+s

where s = 0 if A ^ 1, 5 = 1 if A = 1 and r = a-^-b-n-s ̂  0. In particular,
the equivariant Hodge numbers of ̂ (X^) determine completely the real
Seifert form of the Milnor fibration at infinity.

Proof.—The proof follows closely that of Theorem (6.1) in [Nel]
(which gives the same relation in the case of hypersurface singularities. In
[loc.cit.] there is a slightly different definition of the structures W^, and in
the present theorem we made a sign-correction.) Notice that V (/) has a
direct sum decomposition V (/) = CA VA (/) given by the eigenvalues of
the monodromy h. So, it will be enough to show that one has the identity

(5.8) (-1)71. Vx (/) = Q p^ (/) W^ ((-1)6).
a,b

In order to see this, first notice that one can define a cohomological
variation structure Vcoh(/) of / by U^ = H^{F,R), U^ = ^(F.R)
(via the perfect pairing H^(F,R) 0 JT^F.R) —. R); h^ = T^ and
y(M) = [Te^^) - c4 It turns out that (-1)71 . V{f) = Vcoh(/).

Assume first that A ̂  1. Then by (E.O) we have ̂ (X^A ^ Pn(Xt)x
as MHS, therefore Vcoh(f)\ can be determined from the polarization
properties of the limit MHS of Schmid. More precisely, if A^(r?°) is the
infinitesimal nilpotent monodromy operator associated with T?0, then the
polarization given by A^(r?°) provides

Vcoh(/)A =® P^(Tf) W^1 ((-I)6),
a,b

where p^^T^) are the equivariant primitive Hodge numbers determined
by the classical monodromy T?0, hence they are equal to p^^/) = P^/).

Suppose now that A = 1. Consider the polynomial f-\-x^^ : C^2 —>
C. As remarked before, it is easy to see that / + ^ d ^ is again a (*)-
polynomial. We want to compare V (f+x^) with V (/). The £-HVS of the
polynomial map Xn^ i—> x^ is C H^(+l) (with e = (-1)° = +1).

ri^l
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By [11] (which solves the Sebastiani-Thom problem for Seifert form at
infinity associated with "good" polynomials) one has

W+<2) = (-l)^1^/)® ( Q W^+l))]
..// , s
r,d=l
T)^l(5.9) = (-ir^w) ̂  ̂ (+i) + (-i)^1 ® Hr^(/) 0 ̂ (+i).

7,^1

ri^

One can verify that if 77 = e(a) and ^ = e(f3) with a,/3 C (0,1) and
a+/3 7^ 1, then

^(±i) 0 ̂ (+i) = (-1)71. w^(±^ O),
where ^(77, ̂ ) = +1 if a + /? < 1 and ^(77, $) = —1 if a + /? > 1. One has as
well

M^(±l) 0 T^(+l) = (-1)71 • H^(±l).

From these formulas and (5.9), it follows that we can determine Vi(/) from
V^i(/) and V\^\{f + ̂ +2)- ^ut? as showed above, these last 5-HVS can
be computed in terms of equivariant Hodge numbers of / and / + ^^+2-
These equivariant Hodge numbers are related to those of / for eigenvalue 1
( using (3.1) and (4.10), the latter applied to k = n — 1), and then formula
(5.8) for A = 1 follows, the details of the computation are left to the reader.
This ends the proof.

(5.10) The formula given in this theorem is the exact analogue of
the corresponding formula for isolated hypersurface singularities (cf. [10]).
Thus, roughly speaking, any connection between Hodge numbers and
topological invariants which holds for isolated hypersurface singularities
holds also for (^-polynomials if we replace the MHS of the local vanishing
cohomology by the MHS at infinity, the Milnor fiber by the generic fiber
and the local monodromy by the monodromy at infinity. We resume and
illustrate this in the next theorem.

(5.11) THEOREM. — Let f : C^1 —> C be a (^-polynomial.

a) ̂ (X^i and H^(X^)^ carry MHS 's which are dual with respect
to Q(—7i), the weight filtration of J^^XS)^ is the monodromy weight
filtration of N^ centered at n. This space has a natural (—I)92-symetric
polarization form (the Poincare dual of the intersection form ( - , j ' ) ) and it
is polarized by the infinitesimal monodromy —N^ (in the sense ofCattani-
Kaplan).
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b) ^"(X^i and H^{X^ carry MHS's which are dual with respect
to Q(—n). The weight filtration of ^{X0)^ is the monodromy weight
filtration of N^ centered at n -h 1. The infinitesimal variation map ([23]
(2.5) Yi : ir^X^i —> ^(X^)i(-l) is an isomorphism of MHS's of type
(—1, --l^.fr^X0)! has a natural (—l)77^1 -symmetric polarization form
given by ( • , V \ ' ) and it is polarized by the monodromy —N^.

Proof.— Case a) follows from (E.O) and Schmid's results [19], which
assures that the MHS is polarized by log(r?°)^ = -N°. For b), use the
polarization properties of W^^ibl) which behaves as in the local case.
For the local case see [23] and [21] or [13].

(5.12) COROLLARY. — The equivariant signature cr\(f) of the generic
fiber of f, with respect to the monodromy at infinity, is given by

<^(/)= E (-W (f) • (1 + (-i)0^-")^,
2n^a+b^n+s

where s = 0 if A 7^ 1, and s == 1 if A = 1.

The proof is analogous to that of [10, (6.6)], use the formula

1 -L ( nfc+i+s
a(^(±l))=± l^±^)———.

6. The spectral pairs of a (^-polynomial.

As in the local case (cf. [22], [18], see also [1, 13.3.A] and [10]) the
equivariant Hodge numbers h^ of the MHS at infinity of a polynomial /
can be codified in the set of spectral pairs Spp(/) € Z[Q x N] defined by

SPP(/)=E hy^——-^ (a.c.)
(a,^)

where Sa == 0 if a ^ Z and Sa = 1 if OL 6 Z. The spectrum of / is defined
by

Sp(/)=^(a)€Z[Q]

where the sum is over the spectral pairs {a^uj).

In the local case the spectrum has three important properties: sym-
metry, Sebastiani-Thom property, and semicontinuity. In the sequel, we
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will discuss these properties briefly in our global situation (i.e. for (*)-
polynomials).

The symmetry of the weight filtration gives h^ = ^s-q^n+s-p ^
hence the invariance of Spp(/) with respect to the transformation (a, n +
k) ^-> (a + A;, n — k). The complex conjugation (i.e. h^ = h^) composed
with the first symmetry gives the second one: (a, n+k) <-^ ( n — l — a , n—k).
This shows also that the spectrum is symmetric with respect to (n — 1)/2
(for details in the local situation, see e.g. [1, 13.3.C]).

Moreover, we have also a (global) Sebastiani-Thom theorem: if
(a,^), (a7, a/) C Q x N, define (a,^) * (a',^/) = (a+a'+l , c^+^'+l) ,
and extend * to Z[Q x N] by linearity. Set

Sd= ^ (-5/d ,0)eZ[QxN].
0<s<d

(6.1) THEOREM. — Iff is a {^'polynomial of degree d, then

Spp(/ + x^ == Spp(/) * Sd.

Proof. — For the spectral pairs of f-}-xd corresponding to eigenvalue 1
the result is easy, it uses (3.1.a) and the fact that

P ^-fV^ /^ D^V^(Ao) = ©^=1, ̂ i P (AO^.

For eigenvalues ^ 7^ 1 with ^d = 1 the result follows from (3.1.b)
and (4.10) (cf. the proof of (5.7)). For ^ ^ 1 one uses (3.1.b) and the
local Sebastiani-Thom theorem ([18]). In this later case the computation is
rather long and tedious. The details are left to the reader. (For a different
proof, in the context of "cohomologically tame" polynomials, see [14].)

The main application of (6.1) is a semicontinuity property of Spp(/).
If / is a (^-polynomial, we will consider deformations f\ : C71"1'1 —> C of
/ with A € (C, 0) and fixed degree d. Notice that since the (*) condition
defines an open dense subset in the space of polynomials in n+1 variables of
degree d, f\ is also a (*)-polynomial (Actually, because of (3.2. d) it would
be enough to consider deformations f\ = {fd)\~^~fd-i~\~- • •? where (fd)\ is a
deformation of fd)- Since in such a deformation one has ^°°(/;\^o) ^ /^°°(/)
(where ^°°(f) denotes the dimension of the middle cohomology group of
the generic fibre of /), one cannot expect an upper semicontinuity for the
spectrum as in the local case, but a lower semicontinuity.
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(6.2) DEFINITION (cf. [25]).—Given a deformation (f)\ of a (*)-
polynomial f and a subset A C R, we will say that A is a lower
semicontinuity domain for (f)\ if the function which associates to A € (C, 0)
the sum of the frequencies of spectral numbers of f\ in A (denoted by
SA^fx) ) is lower semicontinuous, i.e.,

SA{f\^o) > 5A(/).

(6.3) THEOREM. — Let f be a {^-polynomial of degree d. Every half

( k k 1
open interval -, - + 1 , k € Z, is a lower semicontinuity domain ford u J
deformations of f with fixed degree.

Proof.— By (E.O) and (4.5), there is a C € N depending only on
n,d,p such that dim Gr^^X?) = C - dim Gr^ Oj H^^). By the
local upper-semicontinuity result ([25]) the theorem follows for the interval
(t^t + I], t € Z. This, together with (6.1), gives the result similarly as in
the local case (see [loc.cit, (2.7)]).

(6.4) Remarks. — a) Actually, by a tedious combinatorial argument,
using the corresponding local result and (3.1), one can show that any
interval (t,t + I], t € M is a lower semicontinuity domain. We do not
emphasize this proof because a more conceptual proof is in preparation,
which works for any cohomologically tame polynomial ([14]).

b) The symmetry shows that [t, t+1) is also a semicontinuity domain.

c) As in the local case, (5.12) has the following corollary: Let Spp (/) G
Z[QxN] be the set of spectral pairs of a (*)-polynomial. Let ^PPmod-2{f) De

its projection in Z [Q/2 Z x N]. The knowledge of SpPmod-2(f) ls equivalent
to that of the real Seifert form of the Milnor fibration of / at infinity
(cf. [10]).

7. Examples.

(7.1) Case n= 1.

Let / € C[X, y] be a (*) -polynomial with highest degree form fd-
Write

/.=n^
.7=1
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where the lj € C[X,y] are distinct linear forms and Y^Oj = d. Set
a = gcd(ai,.. . ,ayn). For a; € R, set 6(x) = 1 if x € Z, 6(x) = 0 if
x ^Z. Denote by \x~] the smallest integer bigger or equal than x.

The equi variant Hodge numbers of P^Xo) can be computed directly,
if $ = e ( s / d ) with 0 < s < d then ^^(P2^)^) = S^Y the other
numbers are zero. Then from theorem (4.7) (using also [1, p. 305, Theoreme
6] or [21] for the local terms appearing in the formulas in (4.7)) one gets all
equivariant Hodge numbers of P^^X'o). Now one computes the equivariant
Hodge numbers of the MHS at infinity using (3.1). One gets:

a) p^\f)=m-l.
b) If $ = e(-s/d), 0 < s < d, then

'̂-'(^E^).
3

^'—^c^Er-H
3

^(/)..-^)-s[s].
3

c) If ̂  ̂  1, put ^ = e(-f3) with 0 < (3 < 1 and set 7 = {(d -1)13}.
Notice that ^ + 7 ^ Z.

If ̂ -1 = 1, then p^'* (/)=().

If ^-1 + 1 and f3 + 7 < 1, then p]°(f) = 0 and p^\f) = #{j \
^(d-l)a, ^ ̂

If ^-1 ^ 1 and /3 + 7 > 1, then p°^{f) = 0 and p^°(/) = #{j |
^(d-l)Qj ^ ^1

(All other primitive equivariant Hodge numbers vanish.)

Example.— If / = x^y2 4- (^ + ^/)3, then p}1 = 1, p11! = 1 hence
h°°^ = 1 too, P^L.i/6) = ^°-5/6') = ^" ^n P^ticular, the rank of the midle
(co)homology of the generic fiber is 7, and the monodromy at infinity has
a Jordan block of size two.

(7.2) Zariski^s examples.

Let /6 ^ C[X,y, Z\ be a homogeneous polynomial of degree 6 which
defines a sextic in P2 with six cusps and no other singularities. Let
/ = /6 + • • • De anv (*)- polynomial with highest degree form /Q.
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The Hodge numbers of X00 == {/g = 0} C P2 are easy to compute.
Those of XQ, the 6-fold cyclic covering of P2 branched along X00, depend
on the position of the cusps. The equivariant Hodge numbers of P^Xo)
can be computed with the aid of [3, ch. 6, (4.9), see also (3.18.ii)] One has
two cases:

Case i) If the six cusps are on a conic then

^w^p'm) = i = ̂ (p3^)).
Case ii) If the six cusps are not on a conic then P^^X'o) = 0. Now

from Theorem (4.7) (and using again the results in [21] or [1, p. 305,
Theoreme 6] to compute the local terms appearing in (4.7)), one gets the
equivariant Hodge numbers of P2^^). Finally, Theorem (3.1) gives the
primitive equivariant Hodge numbers of the MHS at infinity of /. One has:

a) Both in cases (i) and (ii),

P^2(/)=P^1(/)=4.

b) If $ = e(s/6) with 0 < s < 6 the numbers ̂ (/^ are:

||(1,1) (2,0) (0,2) (1,2) [27in(p,<7) ||(1,1) (2,0) (0,2) (1,2) (2,1)
s

s
s
s
s

=5

=4
=3
= 2
=1

4(i)
3(ii)

6
7
6

4(i)
3(ii)

0

0
1
3

l(i)
0(ii)

l(i)
0(ii)

3
1
0
0

5(i)
6(ii)

0
0
0
0

0

0
0
0

5(i)
6(ii)

c) Both in cases (i) and (ii), i f ^ = e^/30) with I e {1,7,11,13,17,19,
23,29} thenp^l(f)=6.

All other primitive equivariant Hodge numbers vanish.
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