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SIMPLICITY OF NERETIN^S GROUP
OF SPHEROMORPHISMS

by Christophe KAPOUDJIAN

Introduction.

Answering a question of I.M. Gelfand on the existence of analogues of
heighest-weight representations of the diffeomorphism group of the circle in
the case ofp-adic transformation groups, Yu.A. Neretin constructed a group
of transformations of the boundary 9Tp of the regular tree Tp (cf. [12] and
[13]): the group Np of spheromorphisms (§1). When p is a prime integer,
the boundary 9Tp is naturally homeomorphic to the projective line on the
field of p-adic numbers, and in any case, to a Cantor set.

Roughly speaking, a spheromorphism is a transformation induced in
the boundary by a "piecewise" tree automorphism. The spheromorphism
group is generated by two groups: on the one hand a Higman-Thompson
group (§2), which is countable and almost-acts on the tree, respecting a
local orientation of the edges, and on the other hand, the tree automorphism
group (§3).

Exploiting simplicity theorems known for the generating two groups,
and adapting some arguments of a simplicity theorem of Epstein, we finally
prove the simplicity of Np (the analogue of M.R. Herman's theorem on the
simplicity of the orientation-preserving diffeomorphism group of the circle,
cf. [7]), and of some of its subgroups (§4):

Keywords: Cantor set - Higman-Thompson groups - p-adic numbers - Simple groups -
Spheromorphism - Tree - Tree automorphism group.
Math. classification: 20E08 - 20E32 - 22E65 - 54H15.
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THEOREM. — For each integer p > 2, the spheromorphism group
Np is simple.

The author is grateful to V. Sergiescu for his stimulation in this work,
as well as to C. Roger and F. Wagemann for their comments.

1. The Neretin group of spheromorphisms.

1.1. Let Tn be the regular tree whose vertices have valence n+1, with
n >_ 2, and 9Tn its boundary, or set of "ends", see e.g. [14] or [6].

We may describe the boundary 9Tn as a compact ultrametric space:
choose a vertex o of the tree In- Each end is defined by a unique chain (i.e.
a sequence of consecutive vertices (o = XQ^X\^ ...) with 3^+2 ̂  Xi) starting
from the origin o. The metric on 9Tn is defined in the following way: Let
a;, a/ € 9Tn be respectively represented by the chains (o == rco, a^ i , . . . ) and
{o=xo,x[,...).

• If the intersection of the supports of the chains is reduced to {o},
then declare the distance between uj and a/ to be equal to 1: d(c<;,a/) = 1.

• If xi = x\ for i = 0 , . . . , A ; and x^i ^ a4+i? ^^ define

"("."')= î r-"-
It follows that a closed ball of radius ——-;f^~k is the set of alln+ 1

points of 9Tn represented by chains containing a fixed finite chain (o =
rco,a;i , . . . ,^A;), and that it is an open set. In fact, 9Tn endowed with the
metric d is a compact ultrametric space, homeomorphic to a Cantor set.

When p is prime, Tp is the Bruhat-Tits building of the p-adic Lie
group SL^fjQp), just as the Poincare disk D is the symmetric space of the
real group SL^(R). The boundary 97?, which can be identified with QpP1,
the projective line on Qp, may thus be viewed as the p-adic analogue of the
circle.

1.2. Let 9Tn still denote the boundary of the tree Tni n >_ 2. The
group of spheromorphisms Nn can be defined as the group of transforma-
tions of 9Tn induced by "piecewise" tree automorphisms:

Take a finite subtree of 7^. Its complementary has finitely many
connected components L i , . . . ,L fc , called branches^ all isomorphic to an
infinite n-ary complete rooted tree. A subset 9L of the boundary is
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naturally associated to each branch L: it consists of all the ends represented
by the chains running over this branch. The k disjoint sets 9Lj, j = 1,..., k
cover the boundary. We call (Li , . . . , Lk) a broom.

Remark. — Each ball for the metric d is of the form 9L, and each
9L is a finite union of balls. The family {9L : L branch} is a basis of
closed-open sets for the topology defined by d.

Let (Li , . . . , Lk) and (Z /^ , . . . , L^) be two brooms of 7^, a a permu-
tation of {! , . . . , k}. Let (f)j : Lj —^ L . . ^ be a rooted tree isomorphism,
j = 1,...,^. These k mappings induce a bijection (f) = (9(f)j : 9Lj —>•
9L^ •))j=i,...,fc of the boundary. Such a broom appearing in the definition
of (f) is called (p- adapted, and is obviously not uniquely associated to 0. It
is clear that the set of all the <^s defined by this procedure is a group of
homeomorphisms of the boundary.

DEFINITION 1.1 (Spheromorphism group, [13]). — For each n > 2,
the set of all bisections (j) = {Q(j)j : 9Lj —> 0I/^.))j=i,...,A; of the boundary
9Tn is the Spheromorphism group ofNeretin, and is denoted Nn.

Remarks. — 1) In view of this description, the automorphism group
Aut Tn of the tree embeds as a subgroup of Nn • The image of Aut 7^ in Nn
is the set of spheromorphisms which possess an adapted broom with two
branches.

2) When p is a prime integer, 9Tp is homeomorphic to QpP1, and Np
contains the group An? of locally analytic bijections of QpP1 (see [13]).

2. Higman-Thompson groups.

2.1. Definition of Higman-Thompson groups. In 1965,
R.J. Thompson, interested in finitely presented groups with non-solvable
word problem, introduced a group (denoted C?2,i in the following) which
happened to be the first known example of finitely generated infinite sim-
ple group [11]. Thompson's group was later generalized by G. Higman ([8]).
For the description of the Higman-Thompson groups, we refer to [2]. See
also [4].

Recall that a finite n-ary rooted planar tree is a finite tree T with
root x realized in the oriented plane such that
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- If T is not reduced to x, the valence of x is equal to n.

- The valence of a vertex v ̂  x is equal to 1 or n+1: if the valence of v
is 1, we call v a leaf of the tree; if it is equal to n4-1, v has n adjacent edges
not contained in the geodesic joining the root x to v. We realize them by
drawing them down from the vertex v. We order them from the left to the
right and label their terminal vertices (opposite to v) 0^0(^)5 - - - -> o'n-i(^)-

The set of leaves of a finite n-ary rooted tree T is called a basis and
is denoted BT'

Case n = 2 x

ao(x)/ >\ai(x)

OiQai(x) aiai(x)

DEFINITION 2.1. — A simple expansion of a finite n-ary rooted tree
T is any finite n-ary rooted tree T ' obtained by the following procedure:

• Choose a vertex v in the base BT-

• Make an expansion of v by drawing n edges down from it.

We get a new tree T ' whose basis BT' is deduced from BT by replacing
v byao(v),...,an-i{v).

An expansion T' of T is a tree obtained from T by making finitely
many successive simple expansions. Any two trees T\ and Ta always possess
a common expansion.

The elements of the Higman-Thompson groups will be represented by
"symbols":

DEFINITION 2.2 (symbols). — Consider a pair (T^,T^) of finite n-
ary rooted trees with basis having the same cardinality. Let a : BT^ —^ BT^
be a bijection from the basis of the first tree to the basis of the second one.
We call the triple (Ti, T^, a) a symbol.

A simple expansion of a symbol (Ti, T^, a) is any symbol (T{, 7^, a')
thus obtained:

• T[ is a simple expansion ofTi, deduced from T\ by expanding a
vertex v e: BT^ .

• Then T^ is the expansion ofT^ realized from the vertex o~(v).
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• a ' : BT^ —> BT' is defined by

^T^VM ^la^VM.

cr\ai(v)) = ai(a(v)) , i = 0,..., n - 1.

An expansion (T^T^cr') of the symbol (Ti,r2,<7) is obtained from
the latter by making finitely many simple expansions.

Declare now that (T^^T^^a) and (T[,T^a') are equivalent if they
possess a common expansion.

All the necessary vocabulary has been introduced to set the following:

DEFINITION 2.3 (Higman-Thompson groups). — The set of equiv-
alence classes of symbols [(ri,r2,cr)] form a set Gn endowed with the fol-
lowing group structure:

Two elements [(Ti, T, cr)] and [(T', T^, a')] being given, at the price of
making expansions of their representing symbols, it may be supposed that
T = T ' . Then a ' a : BT^ —> BT^ can be defined, and we set

[(ri,T,(7)][(r,r2,(/)] = [(T^T^a'a)}^

since it is easy to check that this definition is independent of the chosen
symbols.

The neutral element is [(T,T,a = id)] represented by any symbol
(T,T,a=id).

Theinverseof[(T^T^a)}is[(T^T^(7-1)].

The group Gn belongs to the family of Higman-Thompson groups.
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Example (n = 2).

A= , a(i) = i \ B =

AB=

Recall that the leaves of a tree T (i.e. the vertices in Br) are
always labelled from the left to the right. Let (r,T',a) be a symbol,
and a : BT = { ^ i , . . . , Vk} —^ BT' = {v[,..., z^}. There exists a unique
permutation r e Sjc such that

^z) = < ( z ) V ^ = 1, . . . ,A; .
Then define 0(a) = e(r) the signature of r. An easy calculation shows that
if (T, T', a) is a simple expansion of the symbol (T, T', a), then

^^(aK-l)71-1,
so that when n is an odd integer, 6(cr) is independent of the chosen symbol,
and we get the group epimorphism

/) . /^1 . rji lc\rj7
0 : (jn ——>' ^1 ^ILt

6([^T\a)})=e(r).

Generalization. Let r > 1 be a fixed integer. First consider pairs
of r-uplets of finite n-ary rooted trees ((Ti,... ,T^), (T{, . . . ,T;)), and
bijections a from B^ U ... U BT, to BT' U ... U B^ (We do not ask a to
map Br, onto By). We always suppose the r-uplet of trees to be ordered
from the left (Ti) to the right (Tr). Any triple ((Ti,. . . , Tr), (T[,..., T;), a)
is called an r-symbol. Similarly to the case r = 1, we define the group Gn r
where the elements are represented by r-symbols. Of course, Gn i = Gn'

As in the case r = 1, the morphism 0 : Gn,r -> Z/2Z can be
defined provided n is odd. We set G^ = Ker(9. If n is even, we agree
that G^ = Gn,r- We are now ready to cite the simplicity theorem:
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THEOREM 2.1 ([2]). — The group G'^r is the commutator subgroup
ofGn,r, Sbiid every non-trivial subgroup normalized by G'n y, contains it. In
particular, Gn,r is simple ifn is even, and ifn is odd, Gn,r contains a simple
group of index 2, namely G^ = [<?n,r, Gn,r].

2.2. Embedding of Gn,i = Gn and Gn,2 into the Neretin group
Nn. The finite n-ary rooted trees we used in the definition of the Higman-
Thompson groups may be canonically embedded in a chosen branch L of
the regular tree 7^, by simply completing the finite tree to an infinite n-
ary rooted tree and then, identifying it to the branch L. Denote by L' the
branch opposite to L in 7^ (linked to L by an edge). Each g € Gn,i, defined
by a symbol (Ti,r2,a), induces a spheromorphism g in an obious way: if
(v,1) (resp. (z>?)) are the leaves ofTi (resp. Ts), denote by L} (resp. L?) the
subbranch of L whose root is i)} (resp. z^). Then g is induced on 9L by
the collection (L} —^I/^)^, the isomorphisms respecting the left-to-right
order of the edges of the branches. On 9Z/, one imposes g\Q^ == id^jr/. The
embedding

G,.i ̂  TV,

is now obtained.

On the other hand, we need the two branches L and L' like above
to realize Gn,2 m Nn- Each g € Gn,2 will induce a spheromorphism by a
procedure analogous to the previous one. It will appear in the following
that, as far as we are concerned with the Neretin group Nm Gn,2 is more
relevant than the group Gn,i = Gn itself.

3. The group AutTn of automorphisms of the tree 7n, n > 2.

3.1. Simplicity theorem. In [15], the author gave a theorem of
simplicity of a class of groups of automorphisms of a tree:

DEFINITION 3.1. — Let A be a tree, G be a group of automorphisms
of A, G be a (finite or infinite) chain of A, and F the fixator ofC in G. For
each vertex x of A, let 7r{x) be the nearest vertex from x in C. For each
vertex s ofG, the set 7^~l(s) (which constitutes a subtree of A) is invariant
under the action of F; denote by Fs the group of permutations of this set
induced by F. There is a natural homomorphism(i) F-^ n F-

seVert(C')
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where Vert(G) denotes the set of vertices ofC.

We say that the group G possesses the property (P) if the homomor-
phism (1) is an isomorphism for all chains C (i.e. the actions ofF on the
sets ̂ ~l(s) are independent from each other).

For example the group of all automorphisms of A possesses the
property (P).

THEOREM 3.1 (J. Tits). — Let A be a tree, G be a group of
automorphisms of A, and G4' be the subgroup generated by the stabilizers
of the edges of A in G. Suppose that G possesses the property (P), conserves
no proper non-empty subtree of A and fixes no end of A. Then each
subgroup ofG normalized by G^~ and not reduced to the identity contains
G"1". In particular, G"1" is a simple group or is reduced to the identity.

Example 1. — A = 7 ^ , n ^ 2 , G = AutTyi. It happens that
G"^ = Aut4" Tn coincides with the group of type-preserving automorphisms
of the tree. So Aut"^ Tn is a simple group, of index 2 in Aut Tn.

Example 2. — Equipped Bruhat-Tits trees.

Let p > 2 be a prime integer. In [13], the author defines an equipment
on the tree Tp as the specification, for each vertex v, of a labelling of its
adjacent edges ( ^ o ? ' ' ' i ̂ p-ii^ 00} by the points of FpP1. If v and v ' are
linked by an edge / = {v i = Z^j, there is no reason that i = j.

We denote by Tp such an equipped tree, and define the subgroup
Aut Tp of Aut Tp as the set of tree automorphisms such that their restric-
tions to the adjacent edges of a vertex belong to PSL^(¥p). Since AutTp
obviously satisfies property (P), conserves no proper non-empty subtree of
Tp and fixes no end, the group (AutTp)"^ is simple.

~1 ~2
Two equipped trees Tp and Tp being given, we use the transitivity

^/l ^^2
of SL^(¥p) on FpP1 to construct a tree isomorphism Tp —> Tp respecting

—^1 —/2
the equipments. Such an isomorphism conjugates Aut Tp and Aut Tp .

3.2. A family of subgroups of Nn'

DEFINITION 3.2. — IfG is a subgroup of Aut Tn we define
{Nn)G:=<Gn^G^>

the subgroup of Nn generated by Gn,2 ^d G4'.
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Example 1. — If G = Aut Tn, (Nn)c = Mi. In this case, we can even
show:

PROPOSITION 3.1. — The subgroups [Gn,Gn] and Aut"^ Tn of the
group Nn, n > 2, generate the group Nn.

Proof. — Let us denote by L the chosen branch of the tree Tn where
we realized the Higman-Thompson group Gn. If L' is the branch opposite
to L (i.e., linked with L by an edge), then the boundaries of L and L'
partition the whole boundary of the tree: 9L U QL' = 9Tn.

First case. — Suppose that (f) e Nn possesses a broom (^)i=i,...,j
such that 0|9Li == id^Lr At the price of making an expansion of Li, one
can suppose that L\ and L' have the same type (i.e. their roots have the
same type). Then there exists k € Aut"^ Tn such that k(L') = Li. So
k^^k^L' = id|9^. Let us now consider k^^k^' It may be seen as the
composite

QL-^QL-^oL

with r C Gn and a € Aut'4" 7n, CT|^/ = idj^. Then on the whole boundary
9Tn, k^^k = or.

When n is odd, Aut^ Tn H (Gn \ [Gn.Gn]) 7^ 0, so that it can be
supposed that r G [Gn, Gn].

Second case: general case. — (a) Suppose there exists Li in the
broom adapted to (j) such that 9 Li and ^(<9Z^) = 9L^ have the same
type. Then there exists k € Auf^Tn such that k(f){9Li) = 9 Li and
^ ° ̂ |9Lz = ^i^Li- The first case enables to conclude.

(b) If not, for all z, the types of 9Li and (f)(9Li) are opposite. Then
we use an element TO of Gn (it is possible to find it of the form [7-1^2])
such that for some branch Z/o, To(I/o) and LQ have opposite types. At the
price of making an expansion of L\ to make <^(<9Li) and 9Lo have the same
type, there exists some k € Auf*" Tn such that k(f){9L\) = <9Lo. The types
of Li and Lo are still opposite. Then rok(f)(9L^) = To(9Lo) = 9Lo, and the
types of Li and Lg coincide. Hence rokc/) satisfies the condition of case (a).

It follows that (f> may be written as a product of elements of Gn and
Aut^.

Example 2. — Now p is a prime integer. Let Tp be any equipment
on the tree Tp such that the elements of Gp^ are induced by piecewise tree
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automorphisms ofAutTp (cf. §3.1, Example 2).

IfjS = AutTp, then we claim that (Np)c is the group denoted
Diff+(Tp) in [13]:

DifF+(7p)={^=(^:L,^^.)„

0j = restriction of some element of AutTp}.

Indeed, Diff^Tp) contains G, and because of the condition on the
equipment, it containsj^. So, < G,Gp,2 > C Diff^T;,). On the other
hand, every 0 e Diff^Tp) can be written (f) = ̂ or, where r = (L^- —^ Z/.)^
belongs to Gp,2, and -0 = (^ = L'y —^ L^-, with -0^ induced by some
element of G, which can be modified to be supported in the branch L ' . It
follows that ipj e G4', and -0 = fj. ̂  e G"^. Thus

< G,Gp,2 > C Diff^T;) c < G+,Gp,2 >,
and the inclusions are equalities. Then (Np)^^ = Diff+(^) as claimed.

Remarks. — 1) Any isomorphism of equipped trees Tp —^ Tp conju-
gates Diff-^T;) and Diff+(7;/).

2) Ifp_= 2, the group PSL^^) is the full symmetric group <Ss, so
that Difr^) = N^.

4. Simplicity of (Np)c.

We now give the main theorem of the article, valid for any integer
p> 2:

THEOREM 4.1. — Let G be a subgroup ofAutTp such that

1. G^ is simple (e.g. G satisfies the conditions of Theorem 3.1),

2. Ifp is odd, G^ D (Gp,2 \ [Gp,2, Gp,2]) is non-empty,

3. G4" possesses two non-commuting elements supported in a branch
of the tree.

Then the group (Np)o is simple.

Condition 2. implies that (Np)c is generated by G^ and Gp^ =
[Gp^Gp^}, since Gp,2 is generated by Gp,2' together with any element in
Gp,2 \ Gp,2 •
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COROLLARY 4.1. — For each integer p ^ 2, the group Np of all
spheromorphisms is simple.

For each prime number p > 3 and for any choice of equipment of
the tree Tp, the commutator subgroup [Diff^Tp), Diff^Tp)] is simple, and
there is a short exact sequence

1 -^ [DifF+(7;),Diff+(7;)] —— Diff^T;) -^Z/2Z -^ 0.

In other words, H^ (Din"^ (Tp), Z) ^ Z/2Z.

Proof of Corollary 4.1. — G = AutT? obviously satisfies all the
conditions of the theorem above.

As for the statements about Diff^Tp), they can be proven by using
a particular equipment, since for different equipments the groups are
conjugated. So, remembering that Tp is obtained by gluing by an edge
the two branches L and L' appearing in the definition of Gp^, define the

-^o
equipment Tp in the following way: label the p edges drawn down from
a vertex from 0 (on the left) to p — 1 (on the right), whereas the edge
pointing towards the root of the branch (L or L') is labelled oo. Then
setting G = AutT?0, we have (Np)c = Diff^~(Tp0) (cf. §3.2 Example 2).
But condition 2 of Theorem 4.1 fails for such G. We recalled in Section 2
that when p is odd, there is an epimorphism

6 : Gp,2 -^ Z/2Z

whose kernel is the simple group [Gp^.Gp^]. It happens that 0 may be
, —o

extended to the group Diff'(Tp ): if 0 = (^- : Lj —> L^ .^, where the
indices of the branches label their roots from the left to the right (suppose
the branches involved to be subbranches of L or L'), 0(0) will be the
signature of a. Indeed, if we refine some branch Lj into Ly-yUL^ U.. .UL^_^,
then (f)j induces

^ : L3i -^ ^0)^ Z = 0, 1, . . . ,? - 1,

with i e Fp —> ki € Fp in B C PSL'z{¥p), the stabilizer of oo. Since B
lies in the alternating group Ap on a set with p elements, the permutation
deduced from a has the same signature as in the case ki = i Vi € Fp. But
then we saw (cf. §2) that, since p is odd, the signature remains unchanged.
So , —-/o

/) . TVff'r/'T' \ Y '7 /0'7u . Din [lp ) —> £ i / L i L

is a well-defined homomorphism.
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It is clear that the kernel of 0 is generated by [Gp^.Gp^] and
^^—-o

(Aut Tp ) ' , and the proof of the theorem will show that this group is simple.
Now the kernel contains the commutator subgroup [Diff^T^ ), Diff^~(7p )],
which is normal and non-trivial, consequently it coincides with the kernel.

Proof of Theorem 4.1. — Let H < (Np)c be a non-trivial normal
subgroup of (Np)c. Then H D G^ is normal in G^ and H H [Gp^, Gp^} is
normal in [Gp^, Gp^}. Hence either H D G^ or Hn G?+ = {id}, and either
H D [Gp,2Gp,2] or H H [Gp,2, Gp,2] = {id}.

So we will prove that the cases H H G^ == {id} and Jf D [Gp,2, Gp,2] =
{id} do not occur. We will use some arguments of a theorem of Epstein ([5]
and [1]):

THEOREM 4.2 (Epstein, 1970). — Let X be a paracompact Haus-
dorff topological space, F a group of homeomorphisms ofX, and U a basis of
open sets for the topology ofX. The Epstein axioms for the triple (X, T,U)
are:

1. Axiom 1: IfU eU andg C F, then gU € U .

2. Axiom 2: Y acts transitively on U.

3. Axiom 3: Let g e F, U e U and B an open covering of X; then
there exists an integer n and g ^ , . . . , gn C T and V i , . . . , Vn € B such that

(i) 9=9ngn-i"-9i,
(ii) supp(^) C Vi,

(iii) supp (gi) U (^-i... g^U) ̂  X, 1 <, i < n.

Suppose the triple (X.T^U) as above satisfies the Epstein axioms.
Then ifH is a non-trivial subgroup ofT that is normalized by [F, F], then
[r,F] C H. In particular, the group [F,r] is simple.

The simplicity of [Diff"^1), Diff4'^1)] was an easy corollary of this
theorem. M.R. Herman finally proved Diff"1"^1) was perfect, hence simple
([7]). For more details, we suggest the reader to refer to the very interesting
book [1].

In the case of a non-connected topological space and a non trivial
group r, axiom 3 can never be satisfied (see [5]). Consequently, we will
not be able to use the preceding theorem directly to prove the simplicity
of (Np)c. However, setting X = QTp, U = {9L : L branch of Tp} and



SIMPLICITY OF NERETIN'S GROUP OF SPHEROMORPHISMS 1237

r = (A^)c, it is easy to see that the triple (97p, (Np)GM) satisfies axiom
2 and a

"modified axiom F9: If U 6 U and ^ € F, then there exists V G ̂ ,
V C £/, such that gU' e U.

Then we can show that two lemmas, which are steps in the proof of
the Epstein theorem, still hold in our case:

LEMMA 4.1 (from 1.4.2 in [5], or Lemma 2.2.5 in [1]). — Let
(X,T,L() be a triple satisfying the modified axiom 1 and axiom 2. Let
Vo e U and h € T with supp h C VQ, and suppose that H<F is a non-trivial
normal subgroup ofY. Then there exists some p € H such that p\y^ = h\y^.

Proof. — Choose any a e H with a -^ id, and find x € X such
that a(x) -^ x. Choose a small neighborhood U € U of x such that
U H a-^U) = 0. Next, take V, W € U such that VnW =^,VUW CU,
x € V. Suppose first that Vo = V ' By axiom 2, there exists g € F with
gW = V. Define

p = [a, [g, h}} = a~1 [g, /i]-1^, h}.

Then p € F since ^f < F. We can verify that
(- /i on V,

g-^h^g on l^,
P = < a"1^ on a~lV,

a~lg~lh~lga on Q;"1 ,̂
v id elsewhere.

Now if Vo ^ V, choose k C F (by axiom 2) such that fc(V) = Vo. Then
supp k~^hk = /^(supp/i) C V, and by the previous case, there exists
p C H such that k^hk^y = P|V, so that /ijvp = kpk7^. Since A;pA;~1 e If,
the proof is done.

LEMMA 4.2 (variation of 1.4.6 in [5] or Lemma 2.2.7 in [1]). — F
still satisfies the modified axiom 1 and axiom 2. Moreover, it is supposed
2-transitive:

V(a;i,a;2), V(2/i,2/2), ^i ^-^2 and 2/1 ^ 1/2 =^ 3<^ G F 0(a:,) =y^i= 1,2.

Let /ii, /i2 ^ r be such that there exists Vo ^ ̂  with supp/^ C Vo, i = 1,2.
Then [/^i,/^] belongs to H.

Proof. — Let x be in X. There exist ai, 0:2 in H such that a;,
ai"1^) and o^"1^) are pairwise distinct. Indeed, since a ^ id e H,



1238 CHRISTOPHE KAPOUDJIAN

there exists some x e X with a(x) ^ x. So, in a neighborhood of x
there exists y -^ x such that a(y) -^ y. Now one can find (f) e F with
<^(a;) == ?/ and ^a^x) 7^ a(a:) (which is equivalent to a{y) -^ (f)a(x)).
As for the condition a{y) -^ y , it is equivalent to ^a^x) ^ x. Then
one sets a^1 = a, a^1 = ^-la0. So ai and 02 belong to ^f, a;, ai"1^)
and 0:2-1 (x) are pairwise distinct. Then choose U e ^ a neighborhood
of rr such that U, a^^U) and o^"1^) are pairwise disjoint. One can
also find ^1,^2 in F, and a neighborhood V e U of a; such that V,
^(y) and (^(^a are pairwise disjoint and included in U. Suppose
first that supp/i^ C V, i = 1,2. Then apply the previous lemma to
(oii,gi,hi,V,Wi = 5^~1V), i = 1,2. One gets pi\y = hi\y. The support
of pi is included in V U g^iY) U Q.-^V) U Q,-1^"1^). The seven sets
involved are disjoint, so that

[/ll,/l2] = [?1,P2].

To conclude, we may assume V = VQ, at the price of making some
conjugation.

End of the proof of Theorem 4.1. — Choose VQ = 9Lo where LQ
is some branch of the tree, and by condition 3, find two non-commuting
elements h\ and h^ in G^ with supports in 9Lo. Apply Lemma 4.2 to
r == (Np)c, which is 2-transitive on <97p, since Gp^ itself is 2-transitive.
Then [h^h^ G G^ H H, so H D G4-.

Similarly, choose two non-commuting elements /^ and h^ in Gp =
Gp,i C Gp,2 (they are supported in a branch), so that [h[, h^\ € [Gp, Gp] H
^ C [Gp,2, Gp^]r\H, and Jf D [Gp,2, Gp^]. Finally, ̂  contains two groups
that generate {Np)c, so H = (Np)c.

5. Concluding remarks.

The question of the simplicity of the group A^i is a preamble of a series
of homological problems. First the result implies H^{Nn, Z) = 0. As for the
second homology group H^(Nn, Z), though its complete computation could
not be achieved (because the group Nn is very huge), we know it is non
trivial. Indeed, the group Nn possesses a non-trivial central extension by
Z/2Z, called the "Central Geometric Extension" in [9] and [10], a sort of
analogue of the Bott-Virasoro extension of Diff"1^,?1).

On the other hand, K. Brown proved that the groups Gn are all Q-
acyclic, i.e. J^(Gn,Q) = 0 for all i > 0 (cf. [3]). By using a description
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of Nn as the automorphism group of a free object of some appropriate
category, it becomes possible to define an A^-simplicial complex, and to
use it to prove the Q-acyclicity of Nn (cf. [9] and [10]).
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