ANNALES DE L’INSTITUT FOURIER

ALLAHTAN VICTOR GNEDBAYE
A non-abelian tensor product of Leibniz algebra

Annales de institut Fourier, tome 49, n°4 (1999), p. 1149-1177
<http://www.numdam.org/item?id=AIF_1999 49 4 1149 0>

© Annales de I’institut Fourier, 1999, tous droits réservés.

L’acces aux archives de la revue « Annales de l'institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique 1’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NumbpaMm
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1999__49_4_1149_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
49, 4 (1999), 1149-1177

A NON-ABELIAN TENSOR PRODUCT
OF LEIBNIZ ALGEBRAS

by Allahtan V. GNEDBAYE

Introduction.

Let g be a Lie algebra and let M be a representation of g, seen as
a right g-module. Given a g-equivariant map y : M — g, one can endow
the K-module M with a bracket ([m,m’] := m#(™)) which is not skew-
symmetric but satisfies the Leibniz rule of derivations:

[m’ [mlvm”]] = [[mv m,]’m”] - [[m’ m”]’m,]'

Such objects were baptized Leibniz algebras by Jean-Louis Loday and are
studied as a non-commutative variation of Lie algebras (see [8]). One of the
main examples of Lie algebras comes from the notion of derivations. For
the Leibniz algebras, there is an analogue notion of biderivations (see [7]).

The aim of this article is to “integrate” the Leibniz algebra of
biderivations by means of a non-abelian tensor product of Leibniz algebras
as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed
Lie g-algebras 90t and N, the set of derivations Derg(9t,MN) has a structure
of pre-crossed Lie g-algebra. Moreover the functor Dery(91,—) is right
adjoint to the functor —®,J where —®;— is the non-abelian tensor product
of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects
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to construct a non-abelian (co)homology theory for Lie algebras, which
enables him to compare the K-modules HC;(A) and K3/244(A) where A is
an arbitrary associative algebra. We give a non-commutative version of his
results, in the sense that Leibniz algebras play the role of Lie algebras, the
additive Milnor K-theory K2239(A) (resp. the cyclic homology HC,(A))
being replaced by the Milnor-type Hochschild homology HHM (A) (resp.
the classical Hochschild homology HH,(A)).

To this end, we introduce the notion of (pre)crossed Leibniz g-algebra
as a simultaneous generalization of notions of representation and two-sided
ideal of the Leibniz algebra g. Given crossed Leibniz g-algebras 9t and
N, we equip the set Bidery(M, M) of biderivations with a structure of
pre-crossed Leibniz g-algebra. On the other hand, we construct a non-
abelian tensor product 90t x 9 of Leibniz algebras with mutual actions on
one another. When 91 and 91 are crossed Leibniz g-algebras, this tensor
product has also a structure of crossed Leibniz g-algebra. It turns out that
the functor — xg N is left adjoint to the functor Bidery(9M, —). Another
characterization of this tensor product is the following. If the Leibniz
algebra g is perfect (and free as a K-module), then the Leibniz algebra
g * g is the universal central extension of g (see [4]). We give also low-
degrees (co)homological interpretations of these objects, which yield an
exact sequence of K-modules

AJ[A, A| @ HH, (A) @ HH;(A) @ A/[A, A] — H£,(2, L))
- ﬁgl(m’ [le Q[]) —— HHl(Ql) - HH?(%) - [91’ Ql]/[le [Q[’ 91]] —0

where 1L(A) is the K-module A® A/ im(b3) equipped with a suitable Leibniz
bracket (see section 1.2).

Throughout this paper the symbol K denotes a commutative ring
with a unit element and ® stands ®x.
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1. Prerequisites on Leibniz algebras.

1.1. Leibniz algebras.

A Leibniz algebra is a K-module g equipped with a bilinear map
[-,—]:9xg— g, called bracket and satisfying only the Leibniz identity

["L'7 [yv Z]] = [[z,y],z] - [[x,z],y]
for any z,y, 2 € g. In the presence of the condition [z,z] = 0, the Leibniz

identity is equivalent to the so-called Jacobi identity. Therefore Lie algebras
are examples of Leibniz algebras.

A morphism of Leibniz algebras is a linear map f : g, — g, such that

f([=z,9]) = [f(2), f(y)]

for any x,y € g,. It is clear that Leibniz algebras and their morphisms form
a category that we denote by (Leib).

A two-sided ideal of a Leibniz algebra g is a submodule § such that
[z,y] € b and [y,z] € b for any z € h and any y € g. For any two-sided
ideal b in g, the quotient module g/ inherits a structure of Leibniz algebra
induced by the bracket of g. In particular, let ([z, z]) be the two-sided ideal
in g generated by all brackets [z, z]. The Leibniz algebra g/([z,r]) is in fact
a Lie algebra, said canonically associated to g and is denoted by gpie.

Let g be a Leibniz algebra. Denote by g’ := [g,g] the submodule
generated by all brackets [z, y]. The Leibniz algebra g is said to be perfect
if ¢’ = g. It is clear that any submodule of g containing g’ is a two-sided
ideal in g.

1.2. Examples.

Let M be a representation of a Lie algebra g (the action of g on M
being denoted by m? for m € M and g € g). For any g-equivariant map
1 : M — g, the bracket given by [m,m/] := m#(™") induces a structure of
Leibniz (non-Lie) algebra on M. Observe that any Leibniz algebra g can be
obtained in such a way by taking the canonical projection g — grie (which
is obviously gr.;e-equivariant).

Let A be an associative algebra and let by : A®® — A®2 be the
Hochschild boundary that is, the linear map defined by

b3(a®b®c):=ab®c—a®bc+ca®b, a,b,ce A.
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Then the bracket given by
[ea®b,c®d]:= (ab—ba) R (cd — dc), a,b,c,d € A,

defines a structure of Leibniz algebra on the K-module L(A):= A®%/ im(b3).
Moreover, we have an exact sequence of K-modules

0 — HH;(A) — L(A) 25 A — HHy(A)

where HH, (A) denotes the Hochschild homology groups and be(z,y) =
[z,y] := zy — yz for any z,y € A.

1.3. Free Leibniz algebra.

Let V be a K-module and let T(V) := @ V®" be the reduced tensor
module. The bracket defined inductively bynZl
[z,v]=z®v, fze€T(V)andveV
[Z,y®v]=[z,y]®v—-[zQu,y], f z,y € T(V) and v € V,

satisfies the Leibniz identity. The Leibniz algebra so defined is the free
Leibniz algebra over V and is denoted by F (V) (see [8]). Observe that one
has

MOV Qup =[-[[v1,v2],v3] - vn), Yur, -, v € V.

Moreover, the free Lie algebra over V is nothing but the Lie algebra
F(V)Lie-

2. Crossed Leibniz algebras.

2.1. Leibniz action.

Let g and 90 be Leibniz algebras. A Leibniz action of g on 9 is a
couple of bilinear maps

gxM—->M, (g,m) —%m and M x g — M, (m,g) — m?
satisfying the axioms
i) mlo9'l = (m9)9’ — (m9')9,

i) [99Tm = (9m)9" —9(m9),



A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS 1153

iii) 9(%'m) = —9(m?),

iv) 9m,m’] = [Im,m'] — [9m/, m],
v) [m,m'} = [m,m] + [m,m'?],
vi) [m,9m’] = —[m,m’9)

for any m,m’ € M and g,¢9’ € g. We say that M is a Leibniz g-algebra.
Observe that the axiom i) applied to the triples (m;g,g’) and (m;g’,g)
yields the relation

2 — )

2.2. Examples.

Any two-sided ideal of a Leibniz algebra g is a Leibniz g-algebra, the
action being given by the initial bracket.

A K-module M equipped with two operations of a Leibniz algebra
g satisfying the axioms i), ii) and iii) is called a representation of g (see
[8]). Therefore representations of a Leibniz algebra g are abelian Leibniz
g-algebras.

2.3. Crossed Leibniz algebras.

Let g be a Leibniz algebra. A pre-crossed Leibniz g-algebra is a Leibniz
g-algebra 9t equipped with a morphism of Leibniz algebras y : 9t — g such
that

p(*m) = [g,p(m)] and  p(m?) = [u(m), g]
for any g € g and m € 9. Moreover if the relations
#m ! = [m,m’] and m*™) = [m,m’], YV m,m’ € M,

hold, then (9, u) is called a crossed Leibniz g-algebra.
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2.4. Examples.

Any Leibniz algebra g, equipped with the identity map idy, is a crossed
Leibniz g-algebra.

Any two-sided ideal h of a Leibniz algebra g, equipped with the

inclusion map h < g, is a crossed Leibniz g-algebra.

Let o : ¢ — g be a central extension of Leibniz algebras (i.e., a
surjective morphism whose kernel is contained in the centre of ¢, see [4]).
Define operations of g on ¢ by

% :=[a"!(g),c] and cf :=[c,a"(g)]

where a~1(g) is any pre-image of g in ¢. Then (¢, ) is a crossed Leibniz
g-algebra.

PROPOSITION 2.1. — For any pre-crossed Leibniz g-algebra (9, u),
the image im(u) (resp. the kernel ker(u)) is a two-sided ideal in g (resp.
9M). Moreover, if (I, u) is crossed, then ker(u) is contained in the centre
of M.

Proof. — Let m be an element of 9. For any g € g, we have
[u(m), g] = w(m?) € im(u) and [g, u(m)] = p(*m) € im(u).

Thus, im(u) is a two-sided ideal in g. Assume that m € ker(u); then for
any m' € 9, we have

p([m,m']) = [p(m), p(m")] = 0 = [u(m"), u(m)] = p([m’, m]).
Therefore ker(u) is a two-sided ideal in 9t. Moreover if the Leibniz action
of g on M is crossed, then we have

[m, m'] = #™m" =0 = m'*™ = [m/ m]

for any m € ker(u) and m’ € 9. Thus ker(u) is contained in the centre of
M. 0O

2.5. Morphism of pre-crossed Leibniz algebras.

Let g be a Leibniz algebra and let (9, 1) and (M, v) be pre-crossed
Leibniz g-algebras. A morphism from (9, 1) to (91, v) is a Leibniz algebra
morphism f : 91 — N such that

fCm) =9(f(m)), f(m?) = (f(m))? and p=vf
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for any m € 9 and g € g. A morphism of crossed Leibniz g-algebras is
the same as a morphism of pre-crossed Leibniz g-algebras. It is clear that
pre-crossed (resp. crossed) Leibniz g-algebras and their morphisms form a
category that we denote by (pc-Leib(g)) (resp. (c-Leib(g))).

PROPOSITION 2.2. — Let f: (M, u) — (N, v) be a crossed Leibniz
g-algebra morphism. Then (9M,f) is a crossed Leibniz M-algebra via the
Leibniz action of N on MM given by

"m:=""m and m":=m*™, VmeMnen

Proof. — One easily checks that 9t is a Leibniz 9-algebra. For any
m,m’ € M and n € N, we have

F'm) = f(*m) =@ f(m) = [n, £(m)),
F(m™) = f(m*™) = f(m)"™ = [f(m),n];

thus (9, f) is a pre-crossed Leibniz N-algebra. Moreover we have
Fm)yp! = v ) ! = B! = [, m/],

mf(m') — m”(f(m,)) — mn(m') — [m’ m/];

thus (90, §) is a crossed Leibniz M-algebra. O

2.6. Exact sequences.

We say that a sequence
(&%) 5 @) % (o)
is exact in the category (pc-Leib(g)) (resp. (c-Leib(g)) if the sequence
g smbim
is exact as sequence of Leibniz algebras.

PRrROPOSITION 2.3. — If the sequence
&N S @) 2 o)
is exact in the category (pc-Leib(g)) (resp. (c-Leib(g))), then the map A
is zero. Moreover if the Leibniz g-algebra (£, \) is crossed, then the Leibniz
algebra £ is abelian.

Proof. — Indeed, since Ba = 0, we have A = vBa = 0. From whence
ker(\) = £, and by Proposition 2.1, it is clear that the Leibniz algebra £
is abelian. 0O
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3. Biderivations of Leibniz algebras.

In this section, we fix a Leibniz algebra g.

3.1. Derivations and anti-derivations.

Let (9, ) and (N, v) be pre-crossed Leibniz g-algebras. A derivation
from (90, u) to (M, v) is a linear map d : PM — M such that

d([m,m']) = d(m)*™) + Hm™d(m'), ¥ m,m’ € M.
An anti-derivation from (9, u) to (M, v) is a linear map D : M — N
such that
D([m,m]) = D(m)*™) — D(m/)*™ ¥ m,m' € M.

3.2. Examples.

Let (M, v) be a crossed Leibniz g-algebra and let n be any element of
N. By the axiom iii) (resp. i)) of 2.1, the linear map

g—M g% (tesp. g — N, g —nf)

is a derivation (resp. an anti-derivation) from (g,idg) to (M, v).

3.3. Biderivations.

Let (90, 1) and (M, v) be pre-crossed Leibniz g-algebras. We denote
by Bider, (91, 1) the free K-module generated by the triples (d, D, g), where
d (resp. D) is a derivation (resp. an anti-derivation) from (91, i) to (M, v)
and g is an element of g such that

v(d(m)) = w(m?), v(D(m)) = —p(*m),
*d(m) = "D(m), D(m") = —D("m)

for any h € g and m € M.
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PROPOSITION 3.1. — If the Leibniz g-algebra (M, v) is crossed, then
there is a Leibniz algebra structure on the K-module Bidery(9t, M) for the
bracket defined by

[(d’ D’g)’ (dla Dl’ gl)] = (61 A, [gagl])
where

§(m) :=d'(m9) —d(m?) and A(m)=-D(m?)—d (*m), ¥V m e M.

Proof. — Let us show that the maps § and A are respectively a
derivation and an anti-derivation. Indeed, for any m,m’ € 9, we have

8(fm,m’]) =d'([m,m')%) — d(fm, m’}*)

=d'([m?,m']) + d'([m,m']) — d({m*',m']) ~ d(fm, m’?'))

= d’(mg)/t(m') + u(mg)d'(m') + d’(m)u(m"’) + u(m)d/(m/g)
— d(m¢" ™) — u(m"')d(m/) - d(m)#(m"’/)
— B d(m!9")

= (d'(m?) — d(m*))*™) + H™(d (m'?) — d(m'?))
+ u(d(m))dl(m/) + dl(m)u(d(m')) _ u(d'(m))d(m/)
— d(m)”@ )

=§(m)H™) 4 B §(m!) + [d(m), d'(m)]
+ [d'(m), d(m')] - [d'(m),d(m")] — [d(m), d'(m)]

= 5(m)u(fn') + u(m)é(m')

and

A(m,m)

= D(fm,m'}?") - d'(m, m']
= = D([m*',m']) = D(fm,m'?]) — d(['m,m]) + d' ([, m])
- D(mg’)u(m’)+D(m')u(m”')_D(m)u(m'9') + D(m/g')n(m)
— d' (3m)H™) — BCm) g (m!) 4 d (%)™ ™) g (m)
= (=D(m?) — d (m))“™) — (~D(m') — d(%m’))“™
+ D(m/)*(@ (™) _ D(m)¥(@(m) 4 »(D(m) g/ ()
— v(PMD) g (m)
= A(m)H™) — A(m/ ™) + [D(m'), ' (m)]
= [D(m),d'(m)] + [D(m), d'(m")] - [D(m), d'(m)]
= A(m)H™) — A(m/)H(m),
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On the other hand, we have
v(8(m)) = v(d (m9)) - v(d(m?)) = (M) — ((m)9) = u(ml2 1),
v(A(m)) = ~v(D(m)) ~v(d (*m)) = u((m?)) —p((m)*") = —u(9m),
%8(m) ="d'(m?) — "d(m?") = "D'(m?) — "D(m?")
= ~"D'(%m) ~ "D(m?) = ~"d'(%m) ~ "D(m*")
="A(m),
A("m) = = D(("m)?") — d'(°("m))
= — D(™¥m) — D("(m)) + d' (*(m"))
=D((m")*) +d'((m")) = ~A(m").
Therefore the triple (6, A, [g,4’]) is a biderivation from (9, x) to (N, v).

Moreover, let (d, D, g), (d',D’,g’) and (d”,D"”,g") be biderivations from
(01, 1) to (I, v). We set

(6,4,1¢',9"]) =1(d",D',g'),(d", D", g")],
(80, Ao, 90) := [(d, D, 9), (6,2, [¢", 9"])],
(¢',4%9,9) :==(d, D,9),(d, D', g')],
(61,A1,q1) := [(¢', 4", [9,4']), (d", D", g")],
(8”,4”,(9,9") =[(d, D, 9),(d", D", "),
(82, A2,92) := [(6”,A",[9,9"]), (d', D', g")].
It is clear that go = g1 — g2. For any m € 91, we have
(61 — 63)(m) =d"(ml99) — §'(m9") — &' (ml99"1) + 6" (m?")
=d"((m?)?) — d"((m?)?) — d'((m?")9) + d((m?"))
—d'((m?)") +d ((m*")?) +d"((m*)?) — d((m*)*")
=d"((m?)*) = d'((m)?") — d(mle"s")
=6(m?) — d(ml?"9"1) = 8o(m)
and
(A — Ag)(m) = — A'(m9") — & (199 m) + A"(m9") + d'(199"Im)
=D((m?")?) +d'((m?")) — d"((*m)*") + d"((m?))
—D((m?)") — d"(Am?")) + d'(%m)?") — d'((m?"))
= — D(mls"9") — d"((om)?) + d'((4m)?")
= — D(ml9"9"1) = §(9m) = Ag(m).
Therefore the K-module Bidery(9t,N) is a Leibniz algebra. a
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Let us equip the set Bidery (91, 9) with a Leibniz action of g.

PROPOSITION 3.2. — Let (9, u) (resp. (M,v)) be a pre-crossed
(resp. crossed) Leibniz g-algebra. The set Bidery(9, 1) is a pre-crossed
Leibniz g-algebra for the operations defined by

h(dv D, g) = (hdv hD’ [h’g]) and (d’ D, g)h = (dh’ Dha [gv h])
where
("d)(m) = d(m") — d(m)", ("D)(m) := "d(m) — d("m),
(@")(m) := d(m)" — d(m"), (D")(m) := D(m)" — D(m").

Proof. — Everything can be smoothly checked and we merely give
an example of these verifications. By definition we have

"(d, D,g),(d', D', ¢")] = ("6,"1, [, [9, 9])),
[*(d, D, 9), (', D', ¢')] = (81, A, [[h, g, 9']),
[*(@,D',g"),(d, D, g)] = (62, A2, [[h, g'], g])-
For any m € 91 we have
(61 — 82)(m) =d' (mM™)) — ("d)(ms") — d(m!*9)) + (") (m?)
=d/((m")?) - d'((m?)") — d((m*)*) + d(m?')"
—d((m")?) + d((m?)") + d'((m*)*) — d'(m?)"
= (d'(m")?) = d((m")?)) ~ (@ (m?) — d(m*))"
=6(m") — §(m)" = (")(m)

and
(A1 = Az)(m) = — ("D)(m¥) — d'("9hm) + ("D')(m?) + d("9'm)
= —"D(m) + d("(m)) — d'(("m)?) + d'("(m?))
+ D' (m9) — d'((m2)) + d(("m)*') — d(*(m?))

=MD'(m?) — D(m¥)) — (d'(("m)?) — d(("m)?"))
="§(m) — §("m) = ("A)(m).

Thus we get

"l(d,D,9),(d,D',¢")) = ["(d,D,g),(d,D',¢)] - ["(d',D',9'),(d, D, g)].

O

Now we can state the fundamental result which is a consequence of
Propositions 3.1 and 3.2.
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THEOREM 3.3. — For any pre-crossed (resp. crossed) Leibniz g-
algebra (9, u) (resp. (M,v)), the Leibniz g-algebra Bidery (9, MN) is pre-
crossed for the morphism

p : Bidery(9, M) — g, (9,D,9) — g. a

3.4. Remarks.

For any element g of g, the linear map ady : h — [h,g] (resp.
Adg : h — —[g, h]) is a derivation (resp. an anti-derivation) of the Leibniz
algebra g. In the classical sense (i.e., without “crossing”, see [7]) the
couple (adgy, Ady) is called inner biderivation of g. Therefore the pre-crossed
Leibniz g-algebra Bidery (9, M) can be seen as the set of biderivations from
(9, ) to (M, v) over inner biderivations of g.

On the other hand, given a pre-crossed Leibniz g-algebra (90, 1), one
easily checks that the map Bidery(9t, —) is a functor from the category of
crossed Leibniz g-algebras to the category of pre-crossed Leibniz g-algebras.

4. Non-abelian tensor product of Leibniz algebras.

4.1. Leibniz pairings.

Let 90t and N be Leibniz algebras with mutual Leibniz actions on one
another. A Leibniz pairing of 9t and M is a triple (P, h,, h,) where P is a
Leibniz algebra and h; : 9t x N — P (resp. hz : N x M — P) is a bilinear
map such that

Rhy(m, [n,n']) = hy(m™, ') — hy(m™ ,n),
ha(n, [m, m']) = ha(n™,m') — ha(n™ ,m),
hi([m,m'],n) = ho(™n,m’) — h1(m, n™),
ha([n,n'],m) = hy("m,n’) — ha(n,m"),
hi(m, "‘In) = —hy(m, n'"l), ha(n, "Im) = —ha(n, m"l),
by (m™, ™) = [h1(m, n), by (', n)] = ha("n,m"™),
hi("m,n'™) = [ha(n,m), ha(n',m’)] = ha(n™,"m'),
hy(m™,n'™) = [h1(m,n), ha(n',m’)] = ho(™n,"m’),
hi("m, ™n’) = [hg(n, m), by (m,n')] = ho(n™,m'™")
for any m,m’ € M and n,n’ € N.
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4.2. Example.

Let 90t and 91 be two-sided ideals of a same Leibniz algebra g. Take
P :=MNN and define

hi(m,n) :=[m,n] and ha(n,m) := [n,m].

Then the triple (B, b,,8,) is a Leibniz pairing of 9t and N.

4.3. Non-abelian tensor product.

A Leibniz pairing (B, b,,h,) of 9 and N is said to be universal if
for any other Leibniz pairing (P, b}, ) of 9t and N there exists a unique
Leibniz algebra morphism 6 : ¢ — P’ such that

0h1 = hll and 0h2 = h,2

It is clear that a universal pairing, when it exists, is unique up to a unique
isomorphism. Here is a construction of the universal pairing as a non-
abelian tensor product.

DEFINITION-THEOREM 4.1. — Let 9 and N be Leibniz algebras
with mutual Leibniz actions on one another. Let V be the free K-module
generated by the symbols m x n and n x m where m € 9 and n € N. Let
M+ N be the Leibniz algebra quotient of the free Leibniz algebra generated
by V by the two-sided ideal defined by the relations

i) A(mx*n) =dmxn=mx*n, A(n*xm) =An*m =n*Am,

ii) (m+m)*xn=msn+m'*xn, (n+n)sm=nxm+n*xm,
mx(n+n)=mxn+mx*n/, nx(m+m)=nxm+n*xm,

i) m*[n,n'] =m™*n' —m"™ xn, nx[m,m]=n"xm' —n™ xm,

[m,m’]*n:"’n*m’—m*n"‘/, [n,n]*m ="mx*n' —n*m",

iv) m*x™n=—m*xn™, nx"m=—-n*m",
v) m*x™n/ = [mxn,m' xn/] = " xm'™,
m® '™ = [m*n,n’ *m'] = " x"m/,
"moaxn'™ = [n*m,n’ *xm') = n™*Vm'
%*m’nlz[n*m,m/*n/]=nm*mln/
for any A € K, m,m’ € M, n,n’ € N. Define maps

hy :MxN - PM*xN, h(m,n) :=mxn
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and
hy : M xIPM — M*N, h,(n,m) :=nx*m.
Then the triple (MM *N, b,,h,) is the universal Leibniz pairing of 9 and N

and called the non-abelian tensor product (or tensor product for short) of
M and N.

Proof. — Tt is straightforward to see that the triple (Mt x M, b,,H,)
so-defined is a Leibniz pairing of 9t and M. For the universality, notice
that if (B, b, b,) is another Leibniz pairing of 9 and N, then the map 0
is necessarily given on generators by

f(m*n) = hi(m,n) and O(nxm)= hyH(n,m)
for any m € 9 and n € N. O

As an illustration of this construction, we give now a description of
the non-abelian tensor product when the actions are trivial.

PROPOSITION 4.2. — If the Leibniz algebras 9 and N act trivially
on each other, then there is an isomorphism of abelian Leibniz algebras
Mx N = mab ®mub @ mub ®mab
where Mgy := /[T, M] and Ngp := N/[N,N].

Proof. — Recall that the underlying K-module of the free Leibniz

algebra generated by V is
TV)=VeVv®¥e. . .oV®e...

Since the actions are trivial, the definition of the bracket on T(V') and the
relations v) enable us to see that 9T x 91 is an abelian Leibniz algebra and
that the summands V®™ (for n > 2) are killed. Relations i) and ii) of 4.1
say that the K-module 90T x 91 is the quotient of M RN & N @ M by the
relations iii). These later imply that 9t x I is the abelian Leibniz algebra
Map @ Nap D Map @ M. O

4.4. Compatible Leibniz actions.

Let 9t and 91 be Leibniz algebras with mutual Leibniz actions on one
another. We say that these actions are compatible if we have

("‘n)m/ — [mn,ml]’ ("m)n/ - [nm,n/]’
(n"‘)m/ — ["m, m/]’ (m")nl — [mn’ n/],
m(m’n) —_ [m’ mln]’ n(n’m) — [n, nlm},

m(nm’) = [m, nm’], n(mn,) = [n, "’"n’]
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for any m,m’ € 9 and n,n’ € N.

4.5. Examples.

If 99t and O are two-sided ideals of a same Leibniz algebra, then the
actions (given by the initial bracket) are compatible.

Let (901, 1) and (M, v) be pre-crossed Leibniz g-algebras. Then one
can define a Leibniz action of 9t on N (resp. of 9t on M) by setting
M= MMy and ™ = pHm)
(resp. "m :="™m and m" :=m*™).

If the Leibniz g-algebras (9, u) and (91, v) are crossed, then these Leibniz
actions are compatible.

4.6. First crossed structure.

Let 2 and M be Leibniz algebras with mutual compatible actions on
one another. Consider the operations of 9t on 9t x 9 given by
™m' xn') :=[m,mxn' =" xm/, (0’ xm') ;="' xm/ — [m,m]xn/,
(mxn)™ :=[m,m]xn+m*n™, (nxm)™ :=n™ xm+n*[m,m]
and those of 9 on 90t x N given by
Mm' xn') :="m xn' — [n,n] xm/, "(n' xm’) ;= [n,n]xm —"m 0/,
(m*n)” :=m™ xn+mx[n,n], (mxm)" =[n,n]*xm+n*m"

for any m,m’ € M and n,n’ € M. Then we have

PROPOSITION 4.3. — With the above operations, the map
p:MxN->M, mxn—m", nxme—"m
(resp. v: M+ — N, m*xnr— ", nxm— ™)

induces on M x N a structure of crossed Leibniz 9M-algebra (resp. N-
algebra).

Proof. — Once again everything can be readily checked thanks to
the compatibility conditions. For example we have

u(m*n)(ml % nl) =m"(m/ % nl) — [mn,m/] xn — (m")n/ sm'
=" wm/ —mm /™ — (M !

=m"™*™n = [m*n,m’ «n']
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for any m,m’ € M and n,n’ € N. a

4.7. Second crossed structure.

Let (90, u) and (9,v) be pre-crossed Leibniz g-algebras, equipped
with the mutual Leibniz actions given in Examples 4.5. One easily checks
that the operations given by

Imxn):=%mxn—nxm, In*xm) :=Msxm—Im=xn,

(mxn) :=mI«xn+mxn?, (nxm)? :=nd xm+n*mf,

define a Leibniz action of g on 9t x 1.

PROPOSITION 4.4. — Let (90, 1) and (M, v) be pre-crossed Leibniz
g-algebras. Then the map 1 : M xN — g defined on generators by

n(m+n) := [u(m),v(n)] and n(n+m):= [v(n), u(m)],

confers to MM xN a structure of pre-crossed Leibniz g-algebra. Moreover, if
one of the Leibniz g-algebras 9 or N is crossed, then the Leibniz g-algebra
M x N is crossed.

Proof. — It is immediate to check that the map 7 passes to the
quotient and defines a Leibniz algebra morphism. Moreover we have

n(%(m xn)) = [p(*m), v(n)] - [v(*n), p(m)]
=(lg, p(m)}, v(n)] - [lg, v(n)], u(m)]
=[g, [u(m),v(n)]] = [g,n(m *n)];
n(%n xm)) = —n(?(m *n)) = —[g,n(m * n)]
= — [g, [p(m), v(n)]] = [g, [v(n), w(m)]] = g, n(n xm)];
n((m *n)?) = [u(m?), v(n)] + [u(m), v(n?)]
=[[u(m), gl, v(n)] + [u(m), [v(n), d]]
= [[u(m), v(n)], g] = [n(m * n), gl;
n((n xm)?) =[v(n?), u(m)] + [v(n), p(m?)]
=[[v(n), 9], w(m)] + [v(n), [u(m), g]]
=([[v(n), p(m)), g] = [n(n *m), g;
thus (9M*MN, n) is a pre-crossed Leibniz g-algebra. Assume that, for instance,
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the Leibniz g-algebra 90t is crossed. Then we have
nman) ! s n!) = B! 4 ') = u(m"("))(m' «n')
ETIC ) RPN BTG i MY
=[m*™ m/] xn’ — w(m pt !
=;4(m"("))nl xm — mu(n) ® nlu(m') _ p,(m”("))nl xm’
=m¥(™ y r(my [m xn,m’ xn']
and
(m )1 = (4 ) NI ED] = (g 4 )" ")

’ /
= m"(’"w(" Nan +m* pim )

= [m,m" (™)) xn + m (")

’ !
=M V() — ke g M) o g ()

=[mx*n,m' xn’].
By the same way, one easily gets
M) p! wm’) = [mo*n,n’ *m'], (m*n)"™*™) = [mxn,n’ *m),
Mm) !« m') = [n*m,n’ *m'), (n* m)n*m) = [n*xm,n' *m'],
M m) ! x ') = [nxm,m’ * 1], (n*m)"™*) = [nxm,m’ *n'].

So we have proved that the Leibniz g-algebra 9t x 0N is crossed. O

4.8. Remark.

It is clear that if (91, u) (resp. (M,v)) is a crossed Leibniz g-algebra,
then the map 9 x — (resp. — x M) is a functor from the category of pre-
crossed Leibniz g-algebras to the category of crossed Leibniz g-algebras.

PROPOSITION 4.5. — Let (M, v) be a crossed Leibniz g-algebra. The
functor F(=) := — %M is a right exact functor from the category of pre-
crossed Leibniz g-algebras to the category of crossed Leibniz g-algebras.

Proof. — Taking into account Proposition 2.3, let
0 (B,0) L (2,0 & (R,y) —o

be an exact sequence of pre-crossed Leibniz g-algebras. Consider the
sequence of Leibniz algebras

Fep) T 50) %o o
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It is clear that the morphism F(g) is surjective. Since the map
F(f) is a morphism of crossed Leibniz g-algebras, by Proposition 2.2,
(F(PB),5(f)) is a crossed Leibniz F(Q)-algebra; and by Proposition 2.1,
the image im F'(f) is a two-sided ideal in F(Q). By composition we have
F(g)F(f) = F(gf) = 0, which yields a factorisation

F(g) : F(Q)/im§(f) — S(R).

In fact, the morphism F(g) is an isomorphism. To see it, let us consider
the map

I': F(R) - §(Q)/im F(f)
given on generators by
[(r*n) := ¢~ '(r) *n mod im F(f) and T'(n*7) := n*g~!(r) mod im F(f)
where g~!(r) is any pre-image of r in Q. Indeed, if ¢ and ¢’ are two pre-
images of r, then ¢ — ¢’ = f(p) for some p in PB. Therefore we have
g*m—q xn=(g-¢)*n=f(p)*n=F(f)(p*n) €imF(f),
nxg—nxq =nx*(g—¢)=nxf(p)=F(f)(n*p) €imF(f);
thus the map I is well-defined. _Qrﬁ easily checks that I' is a morphism of
Leibniz algebras and inverse to F(g). O

5. Adjunction theorem.

In this section we show that, for any crossed Leibniz g-algebra (9, v),
the functor — x M is left adjoint to the functor Bidery (M, —). For technical
reasons, we assume that the relations

7 7 7 !
iv) m a5y = gy v ()

defining the tensor product 2 x 91 are extended to the relations
i) m*x=-mx*nd, nxIm=—-nxmJ

for any m,m’ € M, n,n’ € N and g € g. To avoid confusion, we denote
this later tensor product by 9t x4 91. For instance, the Leibniz g-algebras
P+ N and DM x; N coincide if the maps p and v are surjective.

THEOREM 5.1. — Let (9, u) be a pre-crossed Leibniz g-algebra and
let (M, v) and (P, A) be crossed Leibniz g-algebras. There is an isomorphism
of K-modules

Hompc-Leib(g)) (M, Bidery (M, P)) = Hom c.Leib(g)) (P %5 N, B)-
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Proof. — Let ¢ € Hompc Leib(g) (MM, Bidery(9M,P)) and put
(dm, D, gm) := ¢(m) for m € M. Notice that we have g, = u(m) thanks
to the relation p¢ = pu, where p : Bidery(M,P) — g is the crossing mor-
phism. We associate to ¢ the map ® : 9 x; 91 — P defined on generators
by

®(mx*n):=—Dp(n) and P®(nxm):=dn(n), VmeMneMN

LEMMA 5.2. — The map ® is a morphism of crossed Leibniz g-
algebras.

Conversely, given an element 0 € Hom(c Leib(g)) (I *g N, P), we
associate the map X : 9t — Bidery (M, P) defined by

X(m) := (6, A, u(m)), Vm € M,

where
bm(n) :=0(nxm) and Ap(n):=—-o(mx*n), VneN
LEMMA 5.3. — The map ¥ is a morphism of pre-crossed Leibniz
g-algebras.

It is clear that the maps ¢ — ® and o — ¥ are inverse to each other,
which proves the adjunction theorem. O

Proof of Lemma 5.2. — There is a lot of things to check in order to
show that the map ® is well-defined. Let us give some examples of these
verifications. For any m,m’ € MM, n,n’ € 9 and h € g, we have

d("mxn' —n*m™) = — Doty (n') — d,uer (n)
= = (“"™Dp)(n') - ((dm)"™)(n)
= =YD, (0 4 dyp (V) ~dp (1)) -y (7))
= =" (1) o ({1, 1']) = () + ([, ')
=dm([n,n]) = ®([n,n'] * m).
We also compute
®(m * ") = =Dy ("n) = Dp(n) = —®(m * n"),
®(n +"m) = dun(n) = (") (n) = —((dm)")(n) = —dpn (n) = —B(n + m")
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and
B(m™ x m’n') = - Dmu(n)(“(m')n’) = _((Dm)V(n))(#(m’)nl)
= — Dm(n(m’)n')r/(n) + Dm((u(m’)n/)v(n))
_ Dm(n(m’)n')v(n) + Dm([u(m')n',n])
— Do(n)?* %) = D, ()P ()
[Dim(n), Dp (n')] = [®(m * n), ®(m xn')]
=®([m x n,m’ xn']).
Now let m € 9, n € M and g € g. One has successively
B (m*n)) =P(m *xn) — ®(n * m) = —Dep(n) — dp(%n)
= (D) (n) — dm(n) = —9D,,(n) = %®(m * n),
®(In*xm)) = —®((m=n)) = —9®(mx*n) = ID;(n) = 9y, (n) = %@(n*xm),
O((m*n)9) =®(m? *n) + ®(m *xn9) = —Dye(n) — Dy (n9)
= — ((Dm)?)(n) = Dp(n?) = —Dm(n)? = &(m xn)?,
®((n*m)9) =®(n? xm) + ®(n+xm?) = dp(n?) + dpms(n)
=dm(n?) + ((dm)?)(n) = dm(n)? = &(n * m)?;
A®(m x ) = =MD (n)) = v(*™n) = [u(m), v(n)] = n(m «n),
A®(n * m) = Mdm(n)) = v(n*™) = [v(n), u(m)] = n(n xm).
Therefore the map ® is a morphism of crossed Leibniz g-algebras. 0

Proof of Lemma 5.3. — Let us first show that X(m) is a well-defined
biderivation. For any n,n’ € N, we have

5m(n)*™) 47 (M5, (n)
=a(nxm)"™) +*Mo(n’ xm) = o((nxm)*™)) + o(*™(n’ x m))
=a(’™) xm) + o(n*m*™)) + o(*®n/ xm) — ¢(*®m xn')
=20([n,n'] ¥ m) — o(*™m x 0’ — nxm*™))
=20([n,n'] xm) — o([n,n'] *xm) = a([n,n'] *x m) = 6,([n, n']),
thus é,, is a derivation. Moreover, we have
Apm(n)"™) = A ()™
= —o(mxn)"™) 4+ g(m xn')"™ = g((mxn')"™) = o((m * n)*™))
=o(m*™ xn') + o(m * 0" ™) — g(M*™) ¥ n) — o(m * n*™))
=o(m*™ xn/ —m*™) xn) — o(m* ') — o(m x ™))
=a(m*[n,n']) — a(m * [n,n']) — a(m * [n,n'])

= — a(m * [n, n’]) = Am([n’ nl])’
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thus A,, is an anti-derivation. We have also

A(Em()) = Mo (n xm)) = n(n x m) = [p(n), p(m)] = v(rs™),

MArm(m)) = ~Mo(m* n)) = —n(m x n) = ~[u(m), v(n)] = —v(-"n),
bsm(n) = Po(nxm) = a("(nxm)) = —o(M(mxn)) = —Fo(mxn) = —PA,(n),
Ap () = —o(m* ") = o(m xnh) = —~A,,(n?).

Therefore X(m) = (6m, Am, 1(m)) is a biderivation from (N, v) to (P, A).

For any h € g, m € M and n € N, we have »

("(6,m)) (1) =6 (n™) = (M) = o(n™ ¥ m) — o(n * m)?

= — o'('n,*mh) = o(n * h’m) = 6mp(n),

"MAm)) (1) ="Am(n) = (M) = Po(m x n) — o("n +m)
=o("mxn) = Anp(n);

and obviously [k, u(m)] = w(*m), thus we have £("m) = "(m). On the
other side, we have

((6m)")(R) =bm(n)* = 6m(n) = a(nxm)* — o (n" x m)

=o(n*mh) = §,,»(n)
and
((Am)")(n) = A (n)* = 6m(n) = —o(m * )" + o(m * ")
= —a(m" xn) = Apn(n).

Since [u(m),h] = pu(mh), we get (mh) = E(m)". By definition of the
map X, we have pX(m) = u(m). Therefore the map ¥ is a morphism of
pre-crossed Leibniz g-algebras. O

6. Cohomological characterizations.

6.1. Non-abelian Leibniz cohomology.

Let g be a Leibniz algebra viewed as the crossed Leibniz g-algebra
(g,idg), and let (91, u) be a crossed Leibniz g-algebra. Given an element
m € M, we denote by d,, (resp. D,,) the derivation (resp. anti-derivation)
g — 9n (resp. ¢ — —m9) from (g,idg) to (M, p), and by u(m) :=
u(m) mod Z(g), where Z(g) is the centre of g. One easily checks that
the triple (dm, Dm, u(m)) is a well-defined element of Bidery(g, ).
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DEFINITION-PROPOSITION 6.1. — Let J be the K-module freely
generated by the biderivations (dy,, D, p(m)),m € M. Then J is a two-
sided ideal of Bidery(g, ). The Leibniz algebra Bidery(g, M)/J is denoted
by ﬁ‘cl(g’ EIn)

Proof. — For any m € M and (d, D, g) € Bidery(g, M), we have

[(d, D, 9), (dms Dony )] = (625 A, lg, 1)
with
bm(z) = dm([z, g)) — d([z, p(m)) = ¥ Im — d([z, u(m)))
= H(d=@Dm, — d(z)*™) — 2d(u(m))
= [d(z), m] — [d(z), m] — “D(u(m))
= dm1 (‘T)
where m; := —D(u(m)),
Am(z) = = D([z, u(m)]) — dm([9,2]) = —D([z, u(m)]) — *%m
= — D(z)“™ — D(u(m))* + *PEy,
= — [D(z),m] + D(u(m))* + [D(z), m]
=Dp, (z),
p(my) = —p(D(u(m))) = [g, p(m)] = [g, p(m)];

thus we have [(d, D, g), (dm, D, pt(m))] € J. On the other side, we have

[(dm, Dim, w(m)), (d, D, 9)] = (81, A7y, [1(m), g])
with
b (@) = d([z, p(m)]) = dm([z, 9]) = d([z, p(m)]) — ©Im
=d(z)*™ + Zd(p(m)) — #@=Dy
=[d(z), m] + *d(u(m)) — [d(z),m]
= dmz (17)
where my := d(u(m)),
AL(z) = = Din([z, 9]) — d([u(m), 2]) = m™9) — d([u(m), 2])
=mHa@) _ d(u(m))® — #m™d(z)
=[m, d(z)] — d(p(m))* — [m, d(z)]
= D, (2),

u(ma) = p(d(p(m))) = [u(m), g] = [u(m), g];



A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS 1171

thus we have [(dp, Dm, u(m)), (d, D, g)] € J. Therefore the set J is a two-
sided ideal of Biderg(g, 901). 0

Similarly, given a crossed Leibniz g-algebra (90, u), one defines
HL (g, M) :={meM:m=md =0, Vgeg}
that is, the set of invariant elements of 9t. From the relations
[m,m'] = mH(m) = = #my = [m/,m], m € HL°(g, M), m' € M,
it is clear that $£°(g, M) is contained in the centre of the Leibniz algebra
m.

PROPOSITION 6.2. — For any exact sequence of crossed Leibniz g-
algebras

0— (#0) % (B, 5 (Ew —o,
there exists an exact sequence of K-modules
0 — $£°(g, ) — H£°(g,B) — H£°(5,€) S H£(g, %)
- 5£(g,B) 5 529,€)

where 3! is a Leibniz algebra morphism.

Proof. — Everything goes smoothly except the definition of the
connecting homomorphism 9. Given an element ¢ € $£°(g,€), let b € B
be any pre-image of ¢ in 8. For any x € g, we have

B() =" =0=c" = B(b°).

Thus the element % (resp. b®) is in ker(8) = im(a). Since the morphism
«a is injective, the map d° : z — o }(%) (resp. D : = — a~1(b%)) is
a derivation (resp. an anti-derivation) from (g,idgy) to (2,0). One easily
checks that the triple (d¢, D¢,0) is a well-defined element of Biderg(g, )
whose class in $£'(g,2) does not depend on the choice of the pre-image b.
We put

9(c) := class(d®, D°,0). O

6.2. Non-abelian Leibniz homology.

Let g be a Leibniz algebra viewed as the crossed Leibniz g-algebra
(g,idg), and let (M, v) be a crossed Leibniz g-algebra.
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DEFINITION-PROPOSITION 6.3. — The map ¥y : M*x g — N given
on generators by
Un(nxg):=n9 and Un(g*n):=%, g€g, neN,

is a morphism of crossed Leibniz g-algebras. We define the low-degrees
non-abelian homology of g with coefficients in I to be

HL(g, M) :=cokery and  HL,(g, M) := ker ;.

Proof. — To see that the map ¥y is a Leibniz algebra morphism is
equivalent to the fact that the Leibniz action of 91 on g is well-defined. The
definition of the crossing homomorphism 7y : M % g — g implies that Uy

is a morphism of crossed Leibniz g-algebras. a
PROPOSITION 6.4. — For any exact sequence of crossed Leibniz g-
algebras

0 (%,0) % (B,A) 2 (€p) o,
there exists an exact sequence of K-modules

5£,(g,%) — H9£.(9,B) — 9£.(8,€) S $5L(8,%) — HLo(8,B)
— ﬁso(ga Q:) — 0.

Proof. — We know that the functor — g is right exact (Proposition
4.5). Therefore Proposition 6.4 is nothing but the “snake-lemma” applied
to diagram
Axg— Brxg— Cxg— 0
| @ R 2 1 Pe
00— A— B— c— 0

which is obviously commutative. ]

6.3. Universal central extension.

Let g be a Leibniz algebra and let ¥ := ¥, be the morphism defining
the homolgy H£.(g, g). From the relations v) of Definition-Theorem 4.1, it
is clear that ¥ : gxg — [g, g] is a central extension of Leibniz algebras (see

(4])-
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THEOREM 6.5. — If the Leibniz algebra g is perfect and free as a
K-module, then the morphism ¥ : gxg — [g, 8] = g is the universal central
extension of g. Moreover, we have an isomorphism of K-modules

H%,(9,9) = HL,(g).

Proof. — Tt is enough to prove the universality of the central exten-
sion U:g*xg—»[g,g] = g. Let a: € - g be a central extension of g. Since
ker(a) is central in €, the quantity [@~!(z),a"!(y)] does not depend on
the choice of the pre-images a~!(z) and a~!(y) where z,y € g. One easily
checks that the map ¢ : g x g — € given on generators by

¢z *y) = a7 (2),a7 ()]
is a well-defined Leibniz algebra morphism such that a¢ = V. The

uniqueness of the map ¢ follows from Lemma 2.4 of [4] since the perfectness
of g implies that of g x g:

Try = (Z[zl,x;]) * (Z[yj,y;]) = Z[mz * T4, Y5 * Yj].

By definition we have $£,(g,g) = ker(). After [4] the kernel of the
universal central extension of a Leibniz algebra g is canonically isomorphic
to HL3(g). Therefore we have

H£,(9,9) = HL,(g). g

7. The Milnor-type Hochschild homology.

Let A be an associative algebra viewed as a Leibniz (in fact Lie)
algebra for the bracket given by [a,b] := ab — ba,a,b € A. Recall that
the K-module [,(A) := A®2/im(b3) is a Leibniz (non-Lie) algebra for the
bracket defined by

[z®y,2' ®y']:= (zy —yz) ® (z'y' —y'2’), Va,y,2',y' € A.

PROPOSITION 7.1. — The operations given by
A X L(A) = L(4), (z®y) =[a,2]®y — [a,y] ® 7,
L(4) x 4 > L(4), (©®Y)" = [o,ad] @y +2® [y,d]
confer to L(A) a structure of Leibniz A-algebra. Moreover the map

pa:L(A) - A zQyw [z,y] =zy—yx
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equips L(A) with a structure of crossed Leibniz A-algebra.

Proof. — The operations are well-defined since we have
b3(z@Y®2) =b3(az QYR 2z-a®z2QTYy —2a QT QY
+aQyYz®r+a®22 QY- a® YR 2x)
and
(b3(z®yY®2))* =b3(~axRYR 2+ zYRa®2+ QY za
—TRaBYz—22QaQy — 22 QYR a).

One easily checks that the couple (L(A), a) is a pre-crossed Leibniz
A-algebra. Moreover we have

e @y) - [2®y,2' @Y = bs(lz, Y] ® 2’ ©Y ~ [z,4] ©y ® ')
(@) —z@y,2’ @y =bze [,y 0y -0y ,y]).
Thus the Leibniz A-algebra (L(A), pa) is crossed. m}

It is clear that the inclusion map [A, A] — A induces a structure of
crossed Leibniz A-algebra on the two-sided ideal [A, A], and that the map

pa : L(A) — [A, A] is a morphism of crossed Leibniz A-algebras. Moreover
we have an exact sequence of K-modules

0 — HH;(A) - L(4) 24 [4,4] — 0.
LEMMA 7.2. — The Leibniz algebra A acts trivially on HH; (A).

Proof. — One easily checks that
“rRy)=aQ[r,y] +b3(a®z®Yy—a®yRz) =a® [z,y] in L(A)
and
(zy)=[zy®a+b3(zR®aQRy—r®yQa) = [r,y] ®a in L(A).

Therefore, if w = Y X\i(z; ® y;) € HH;(A), that is Y A;[zs,y:] = 0, then
we have

W= Z)\ia(% ®y) = Z)\i(a® [z, y])) =a® Z)\i[wi,yi] =0

and
w® = Z/\i(xz' ®y)" = Z/\i([wi,yi] ®a) = (Z Ailzi, yi]) ®a =0
for any a € A. O

As an immediate consequence, we get the following
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COROLLARY 7.3. — The sequence
0 — HH;(A) —» L(A) 244, 4 —0

is an exact sequence of crossed Leibniz A-algebras. 1]

We deduce from Proposition 6.4 an exact sequence of K-modules
HL, (A HH, (A)) — HL, (A, L(A)) — HL, (A, [A,2A]) —
— HE,(A, HH, (A)) — HE(A, L(A)) — HL(A, [A,A]) — o.
Since A and HH; (A) act trivially on each other, we have
HL,(A, HH, (%)) = HH, (%)
and

HL, (2, HH, (1)) = A«HH, () = /[, A QHH, (%) & HH, (%) @2/[21, ).

On the other hand, it is clear that
HL (A, [, 2A]) = [A,A] /[, [A, A]).

Therefore we can state

THEOREM 7.4. — For any associative algebra A with unit, there
exists an exact sequence of K-modules
A/[A, A]J@HH, (A)eHH,; (A)® A/[A, A] — HL,(A, L(A)) — HL, (A, [A,2A))

— HH;(A) — HHY(4) — [4, 4]/[A,[4, A = 0

where HH (A) denotes the Milnor-type Hochschild homology of A.

Proof. — Recall that HHM (A) is defined to be the quotient of A® A
by the relations

a®[b,c =0, [a,b]@c=0, b3(a®b®c) =0
for any a,b,c € A (see [6, 10.6.19]). By definition L(A) = A ® A/im(b3)
and from the proof of Lemma 7.2, we get
Vpa(a*x(z®y) =% (r®y) =a® [z,y]
and
V) ((z®y)*xa) = (z®y)* = [z,y] ®a.

Therefore it is clear that HCo(2, L(™A)) = coker(g(x) is isomorphic to
HHM (A). o
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Remark. — The K-modules HH; (A) and HHY (A) coincide when the
associative algebra A is superperfect as a Leibniz algebra that is, A = [A, A]
and HL;(A) = 0. Also, if the associative algebra A is commutative, then
we have

HH, (A) = HHY (4) = Q) k.

Let us also mention that the Milnor-type Hochschild homology ap-
pears in the description of the obstruction to the stability

HLy,(gln-1(A)) — HLy(gln(A)) — HHL, (4) — 0

where gl,,(A) is the Lie algebra of matrices with entries in the associative
algebra A (see [2], [6, 10.6.20]).
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