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CURVATURE FLOWS OF MAXIMAL INTEGRAL
TRIANGULATIONS

by Roland BACHER

We describe maximal integral triangulations in terms of a function
(p : E^ —>• Z on the set of oriented edges E~^ of such triangulations.

Such functions </9, called curvature flows ̂  satisfy for each interior vertex
of the triangulation an identity which is a kind of discrete Gauss-Bonnet
formula (Theorem 1.3).

We give then locally necessary and sufficient conditions (Theorem 3.2
for interior vertices and Theorem 2.2 for vertices on straight parts of the
boundary) on a function ̂ : E~^ —> Z to be the curvature flow of a maximal
integral triangulation.

1. Maximal integral triangulations.

We denote by Aff(M2) the group of affine transformations of the
plane R2. This group is the semi-direct product of the general linear group
GL2(R) with the group R2 of translations. We denote by Aff^R2) its
subgroup of index 2 consisting of all orientation-preserving elements.

By Aff^Z2) we mean the subgroup of Aff^R2) whose elements
induce bijections on the affine lattice Z2 C IR2 of integral points. This group
is isomorphic to the semi-direct product of SL»2 (Z) with the lattice Z2 and
its elements preserve the usual Lebesgue measure (i.e. the area) ofR2.

Keywords: Curvature flow - Farey sequence - Farey tree - Maximal integral trian-
gulation.
Math. classification : 05B45 - 11A55 - 11H06 - 52C05.
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1.1. Definitions. — A triangulation of a subset D c M2 is a set
T = {A^}^j of triangles such that D = (J A^ and the intersection A% D A^-

i€J
of two distinct triangles A^ 7^ Aj is either a common edge, a common
vertex or empty.

A triangulation is locally finite if every compact set K C D of D
intersects only a finite number of triangles.

In the sequel we consider only locally finite triangulations of connected
subsets D C M2 with boundary 9D a (generally non-smooth) 1-submanifold
ofM2.

A triangle A of R2 is integral if all vertices of A have integral
coordinates.

An integral triangulation is a triangulation containing only integral
triangles (this implies that the boundary 9D of D is a union of segments
joining points in Z2).

An integral triangulation is maximal if all triangles have area j.

1.2. Remark. — Any integral triangulation can be refined to a maximal
integral triangulation. This results from Picks Formula (cf. for instance [C])
which states that

Area(P) = «{Z2 H D0} + ^{Z2 H 9D} - x{D)

(where D° denotes the interior, 9D the boundary and x(D) the Euler
characteristic of D) for any compact subset D C M2 with boundary 9D a
union of segments having endpoints in Z2.

The affine group Aff^R2) acts on triangulations. Aff^Z2) acts
on integral triangulations and maximal integral triangulations. Two
triangulations are isomorphic or equivalent if they are in the same orbit
ofAI^^II^2). For integral triangulations we require equivalent triangulations
to be in the same orbit ofAff^Z2). Two triangulations are combinatorially
isomorphic^ if their 1-skeletons are isomorphic as embedded planar graphs.

Let A and A' be two triangles as in Figure 1.1 which have the same
area and share a common edge AB.

Working with affine coordinates we get for the distinct vertices C ^ C'
of A and A'

C' = -C + (A + B) + \(B -A) = -C + (A + B) + (-A)(A - B),

C = -C' + (A + B) + (-A)(A - B) = -C' + (A + B) + \(B - A),
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^A

•C

Figure 1.1. Two adjacent triangles of the same area.

for some real number A, which is unique and depends only on the
isomorphism class of the triangulation A U A'.

If both triangles A and A' are integral triangles of area ^, then it is
easy to check that the number A relating them is integral.

We associate the number A to the oriented edge starting at A and
ending at B. The oriented edge starting at B and ending at A corresponds
hence t o — A . The number A shows how to construct the triangle at the
right side of an oriented edge from the triangle at the left side. Such an
edge, which is always common to exactly two triangles of the triangulation
is called an interior edge.

Given a triangulation r consisting of triangles with the same area,
we get in this way a real function (p on the set E^ of oriented interior
edges which satisfies (^(a""") = —^p(ci~) with a~" and a^~ denoting the two
opposite orientations of an edge a.

We call this function (p the curvature flow of the triangulation r.
It describes the triangulation r up to equivalence.

We denote by a; (a") the endpoint of an oriented edge a~^. A flow is
a function /: E~^ —> R on the set of oriented edges of a graph such that
f(a^) = —/(a"~) and

E ^a^)==o
a""", a/(a-+)=^'

for any vertex v. The following result shows that the curvature flow ^p of a
maximal integral triangulation r is almost a flow.

1.3. THEOREM. — Let r be a maximal integral triangulation of some
subset D C R2 and let (p : E^ —> Z be its curvature flow. Let v be an
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interior vertex with degree deg(i?) of the triangulation r. We have then

2(6-deg(^))= ^ ^(a-).
a^CE^
uj{a~*)=v

This result will be an easy corollary of Theorem 3.2 which describes all
possible configurations around a vertex in a maximal integral triangulation.

1.4. Remarks.

(i) Theorem 1.3 does not hold for non-integral triangles. The following
figure shows five triangles of area ^ surrounding a central vertex at the
origin:

(-!,-!) ^

Figure 1.2. A triangulation with non-integral triangles.

The curvature flows of the five edges directed toward the vertex
(0,0) are 1/2, -1/3, -1/2, 2/3, 2 (read counterclockwise, starting at the
horizontal edge). Since

1-il-^l-^j^6-5^2'
the curvature flow of this triangulation does not satisfy the equation of
Theorem 1.3.

(ii) An easy corollary of Theorem 1.3 is a special case of the following
well-known result: A compact orientable surface S without boundary which
can be endowed with an affine structure is necessarily a torus.

If the affine structure on E is integral, then we can always get a
maximal integral triangulation r on E. Realizing S by gluing isometrical
regular Euclidean triangles accordingly to r, one sees that the total
curvature of E is necessarily zero.
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(iii) Theorem 1.3 reminds the Gauss-Bonnet theorem (cf. for
instance [DC])

27T^(S)= [ KdfJi
JE

where K, denotes the curvature of a compact oriented surface S without
boundary endowed with a Riemannian metric and associated area
measure d/^.

2. Halfstars and halfstar-sequences.

2.1. Definitions. — A k-halfstar is (up to action of AfF^Z2)) a
maximal integral triangulation of "half" a neighbourhood of (0,0) which
is contained in the the halfplane H = {(x,y), y ^ 0} and which consists
of k triangles all containing (0,0) among their vertices. We require that the
points (1,0) and (-1,0) are among the vertices of the halfstar. The segment
[(-1,0), (1,0)] is the base of the halfstar (see Figure 2.1 for an example).

The curvature flow of a fc-halfstar r is only defined on the (k - 1)
interior (oriented) edges. Its values (for instance read clockwise around the
origin) yield a sequence A = ( A i , . . . , Afc_i) which we call the k-half star-
sequence Of T.

Halfstars are determined (up to action of Aff^Z2)) by their halfstar
sequence. The Figure 2.1 shows an example.

(-1,2) (1,2)

-2,1) (2,1)

(-1,0) (0,0) (1,0)

Figure 2.L The 8-halfstar (0, -2,0, -3,0, -2,0).
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The following theorem yields an algorithm which checks whether a
given sequence ( A i , . . . , \k-i) is a A;-halfstar-sequence.

2.2. THEOREM. — A sequence A = ( A i , . . . ,\k-i) is a k-halfstar-
sequence if and only if either

(i) k = 2 and A = (1) or

(ii) there exists 1 <^ i < k - 1 such that \i == 0 and the sequence

(AI, ..., A^—2, A^—i + 1, A^+i + 1, A^-i-2,..., Afc—i)

is a (A; - l)-halfstar-sequence (of course, ifi = 1, respectively i = k - 1, the
term Ao + 1, respectively \k + 1, does not occur in the above sequence).

Moreover, condition (ii) is equivalent to condition

(if) there exists an integer 1 < z ^ k - 1 with A^ = 0 and for any such
integer i the sequence

(Ai,..., A^_2, A^-i + 1, A^+i + 1, A^+2? • • • ? A^-i)

is a (k — l)-halfstar-sequence.

2.3. DEFINITION. — A generalized Farcy-sequence is a sequence

po. = ° pl. Pfc-i Pfc _ 1
9o 1 qi ' gfe-i5 gfe 1

of rational numbers pi/qi € [0,1] such that

P^z+i - Pi-^iqi = -1 for all 0 ^ z < A:.

In particular, generalized Farey sequences are strictly increasing.

The Farcy-tree FT is the infinite planar 3-regular tree in the oriented
plane R2 with one semi-infinite edge streching down from the "root"
(0, +oo) € R2, splitting into two downward edges which both in turn split
into two such edges and so on (see Figure 2.2). The connected components
of M2 \ FT are then labeled by rational numbers as follows: Label the two
uppermost components 0/1 and 1/1. Every other component C has then
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exactly two adjacent components C", C" which stretch out higher than C,
Label C by (a -I- c)/(b + d) where a/b and c/d are the labels of C" and C".

Figure 2.2. A part of the Farey tree.

This labelling induces a bijection of all connected components in
R2 \ FT and the set of rational numbers in [0,1] and the combinatorics of
the Farey tree encodes all the arithmetic properties of continued fractions.
In particular, finite connected subtrees stretching out to the root (0, +oo)
of FT and which have only interior vertices of degree 3 (we call such trees
finite 3-regular rooted trees) are easily proved to be in bijection with Farey
sequences (c/. Figure 2.2 which shows a small part of the Farey tree.

One has the following result which we state without (the straightfor-
ward) proof.

2.4. THEOREM. — Given a generalized Farey sequence

0 ^ p o P ] _ ^ ^ J _
1 <7o qi qk 1

there exists a unique locally finite k-halfstar with base [(0,—1), (0,1)],
center (0,0) and vertices

(0,0) U {(po, go) = (0,1), (pi^i),..., (pfe, qk) = (1,1), (0, -1)}.

Moreover, this application induces a bijection between generalized Farey
sequences (or finite 3-regular rooted subtrees of FT) and equivalence classes
of (locally finite) halfstars.
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2.5. COROLLARY. — There exist exactly

/2(/c-2)\_J_
V k-2 } k - l

distinct equivalence classes of k-halfstars.

Proofs.

Given a ^-halfstar r and a triangle A C T with vertices (0,0), A, f?, we
get a (fc+ l)-halfstar T' by replacing the triangle A with the two triangles A'
and A" having respectively vertices (0,0), A, (A+B) and (0,0), (A+B), B.
We say that r ' is obtained by an elementary subdivision of r.

2.6. LEMMA. — (i) Every (k + l)-halfstar with k > 2 contains an
interior edge with zero curvature flow.

(ii) An interior edge of zero curvature flow in a (k + l)-halfstar separates
two triangles A' and A" obtained by elementary subdivision of some
k-halfstar r with respect to some triangle A € T.

Proof of Lemma 2.6. — Let r be a {k + l)-halfstar. Choose a vertex
(a;, ^/) € Z x N of maximal Euclidean norm among all vertices of r. The
edge e between (0,0) and (a;, y) is then necessarily an interior edge. Denote
by A its curvature flow (directed from (a;, y) to (0,0)) and let A' and A" be
the two triangles of r which are at the left and at the right of the oriented
edge e. The triangle A' has vertices (0,0), (a, b) and (x, y) and the triangle
A" has vertices (0,0), (a;, y) and (a, f3). We have then

(a,/?)=-(a^)+(l-A)(^)

with A e Z. Since r is a halfstar, the curvature flow A must be < 0. The
triangle inequality and the maximality of the norm of (a;, y ) imply A = 0.
This proves (i).

A more geometric proof of (i) is given by remarking that the
quadrangle with vertices (0,0), (a,/?), (x,y) and (a,^) is strictly convex
and has area 1. The area of the integral triangle with vertices (0,0), (a, f3)
and (a, b) must hence be ^ and a sketch on a sheet of paper (or a short
computation) shows that we have (a;, y) = (a, f3) + (a, b).

Assertion (ii) follows from a short computation. D
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2.7. LEMMA. — Let A = ( A i , . . . , A,, A,+i , . . . , A^-i) be the k-halfstar
sequence associated to a k-halfstar r. Let r ' be the (k + l)-halfstar obtained
by elementary subdivision of the triangle A having interior edges associated
to the curvature flows \i and A,+i. The (k + l)-halfstar sequence A' ofr'
is then given by

A' = ( A I , . . . , A ^ - I , A Z - l,0,Az+i - l ,A^2, . . . ,AA;-i) .

Proof of Lemma 2.7. — Denote by A and B the two vertices
of A which are different from (0,0). Suppose that the oriented edge
e~* from A to (0,0) has curvature flow \i. The unique triangle distinct
from A with common oriented edge e~^ has then vertices (0,0), A and
-B + (1 - A,)A = -(A + B) + (1 - (A, - 1))A. This shows that the
curvature flow of the edge e in the elementary subdivision of A takes the
value \i — 1. For the adjacent triangle with common oriented edge from B
to (0,0) we get similarly-A-h(l-A,+i)B = -(A+^)+(l-(A,+i))B which
yields a curvature flow of A^+i - 1 of the corresponding (oriented) edge
in the elementary subdivision. Finally we have B = —A + (1 — 0)(A + B)
which shows that the curvature flow between the two triangles A' and A"
replacing A is zero. This shows the result. D

Proof of Theorem 2.2. — There exists (up to action of the afflne group
Aff^Z2)) a unique 2-halfstar and it is easy to check that the associated
halfstar sequence is (1).

By induction, we can suppose that Theorem 2.2 describes all A;-halfstar
sequences for a given integer k > 2. By Lemma 2.6 every (k + l)-halfstar
sequence is associated to an elementary subdivision of some A;-halfstar r
and Lemma 2.7 relates the corresponding halfstar-sequences.

The equivalence of conditions (ii) and (if) follows from Lemma 2.6 (ii)
and Lemma 2.7. Q

Proof of Corollary 2.5. — The corresponding result is well known for
rooted planar 3-regular subtrees of FT (see for instance exercice 14, p. 85,
of [A] for the equivalent problem of counting parenthesis systems or reprove
it using generating series).

The bijection (Theorem 2.4) between generalized Farey sequences
(which correspond to finite 3-regular rooted subtrees of FT) and equivalence
classes of halfstars implies then the result. 0
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3. Stars and star-cycles.

Stars have many common features with halfstars. This explains the
scent of "deja vu" in this section.

3.1. Definitions. — A k-star is a maximal integral triangulation of
a neighbourhood of some integral point v (called the center of the star)
consisting of k triangles all containing v among their vertices.

A fc-star gives rise to a cyclic sequence of k integers by reading
cyclically the values of the curvature flow of the k edges pointing to its
center v. We call such a sequence a k-star-cycle.

Given a A;-star a with center z?, a straight line through v which
intersects every triangle of the star either at v or along an edge, is a cut
The number cut (a) of such cuts is the cut number of a.

A A;-star is exceptional if it has cut number > 1.

Stars (analogously to half-stars) are determined (up to action of
Aff^Z2)) by their star-cycles.

» < ( 0 , 1 )

/ /————^ (1,0)y /^\^

(-!,-!) ^^

Figure 3.1. A 3-star of star-cycle (2,2,2).

3.2. THEOREM. — A cyclic sequence C = ( A i , . . . , \k) is a k-star-cycle
if and only if one (at least) of the following conditions holds:

(i) G = ( 2 , 2 , 2 ) ;

(ii) G=(1,A:+1,1,-A;+1);

(iii) there exist 1 < % < k with \i == 0 such that

(AI, . . . , A^_i + 1, A^+i + 1, . . . . Afc)

is a {k — ^-star-cycle (indices are modulo fc, i.e. Ao is identified with \k
and Ai with Afc+i).
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Moreover, condition (iii) is equivalent to condition

(iii') For every 1 < i <^ k with \i = 0 the cyclic sequence

( A i , . . . , A^_i -+-1, \i-^i + 1,..., \k)
is a {k — ^-star-cycle.

It is straightforward to check that Theorem 3.2 implies Theorem 1.3.

3.3. PROPOSITION. — Every k-star with k > 4 has a cut.

The number of equivalence classes of A;-stars is not finite for k > 4.
Indeed, cutting a A;-star along a cut, one gets fci- and A;2-halfstars for some
integers A;i, k^ > 2 with k^ + k^ = k. Conversely, a ki- and a A;2-halfstar can
always be glued together thus producing a (A;i + A;2)-star and this can be
done in infinitely many non-equivalent ways.

There exists however only finitely many exceptional fc-stars (up to
equivalence) for any given natural number k.

More precisely, one can give a kind of "mass-formula" for exceptional
A;-stars. We need some definitions before stating the result.

Given a A;-halfstar r with base [(-1,0), (1,0)] which is contained in
the upper halfplane {(x,y) | x € R, y ^ 0} C M2, the second coordinate y
(called the height) of a vertex (a;, y) e r is well-defined. Let

hi= {(x,i) CZ^tr}

denote the number of vertices in r with second coordinate equal to i. We
call the vector

^^i^^^...)^

the height vector of the halfstar r. The sum

^=E^
T

of all height-vectors of non-equivalent A-halfstars r is then the total height-
vector of k-halfstars. We denote by (V, Y1) the usual scalar product of
height vectors or total height vectors (no convergence problems arise since
only a finite number of coordinates are non-zero).

Given a fc-star a, we denote by Aut(a) C Aff^Z2) the subgroup of
all orientation-preserving integral affine transformations which preserve a.
This group, called the automorphism group of a, is cyclic of order 1,2,3,4
or 6.
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3.4. THEOREM. — One has for k >_ 4

^ (cut(a))(cut(a) - 1) ^
4 " A u t ( ^ ) — — — — - Z . < y ^ y ^ • )

where the sum at the left side is over representants a of all equivalence
classes ofk-stars {only exceptional k-stars yield non-zero contributions).

3.5. LEMMA. — Up to action ofAff^Z2) there exists a unique 3-star
with associated star-cycle (2,2,2).

We leave the easy proof of this lemma to the reader, n

3.6. LEMMA. — The set of all equivalence classes of ^-star-cycles is
represented by the set

{(1^+1,1,-^+1)}^.

Proof. — We can suppose that a given 4-star o- has center (0,0) and
contains the triangle with vertices (0,0), (1,0) and (0,1).

First case: a contains the triangle with vertices (0,0), (0,1) and
(—1,0). This implies that the remaining two triangles of a share a common
vertex of the form (A:, —1) and an easy computation ends the proof.

Second case: a contains the triangle with vertices (0,0), (0,1) and
(-1, -k) for some integer k. In this case, a rotation of angle - TT around the
origin sends the triangulation a into a triangulation of the first case. D

Elementary subdivisions of stars (with respect to some triangle) are
defined in the obvious way.

Proof of Proposition 3.3. — The proof is by induction on k. Lemma 3.6
shows that every 4-star has a cut.

Let now a be a A;-star with center (0,0). Proceed as in the proof of
lemma 2.6 and choose a vertex (a;, y) of a which has maximal Euclidean
norm. An inspection of the proof of Lemma 2.6 shows that the curvature
flow A of the oriented edge from (a;, y) to (0,0) is either 0, 1 or 2.

• If A = 0, then the A;-star a is obtained from a k — 1 star a ' by
an elementary subdivision (same proof as for (ii) of Lemma 2.6). Since
elementary subdivisions preserve cuts, we get a cut for a ' by induction.



CURVATURE FLOWS OF MAXIMAL INTEGRAL TRIANGULATIONS 1127

• If A == 1 then the line through (x, y) and (-x, -y) is a cut of a.

• If A = 2, then k > 4 and a little thought show that (-x, -y) is
among the vertices of a. The line through (x,y) and (-a;, -y) is hence a
cut. Q

3.7. LEMMA. — If Theorem 3.2 holds for some k-star a, then it holds
for any elementary subdivision a' of a.

The proof coincides with the proof of Lemma 2.7.

Proof of Theorem 3.2. — It holds for k = 3,4 by Lemma 3.5 and
Lemma 3.6. Proposition 3.3 shows that every A;-star a with k > 5 has a
cut and one of the two halfstars obtained by cutting open has at least 3
triangles. This implies by Lemma 2.6 that a is obtained by elementary
subdivision from a (k - l)-star a for which the result holds by induction.
It holds hence for a by Lemma 3.7.

Edges with 0-curvature flow in a A;-star a are associated with
elementary subdivisions of suitable (k - l)-stars leading to a. This
implies (iii'). Q

Proof of Theorem 3.4. — Given a A:-star a there exist 2 cut(a)/|Aut(cr) |
non-isomorphic ways to cut it open into an ordered pair of halfstars (some
of the obtained ordered pairs may be isomorphic but then they have
been glued together non-isomorphically). In each such ordered pair r , r '
of halfstars there are exactly (cut(cr) - 1) pairs of vertices (v C r, v ' e r')
which corresponds to vertices on cuts of a. The vertices v € r and v/ € r'
must have identical height > 1 in the halfstars r and r ' (otherwise they can
never yield a cut).

On the other hand, given vertices v e r and v ' e r' of the same height
on two halfstars r, r' these halfstars can be uniquely glued together to form
a star a having a cut through the vertices v and v ' . Hence the formula. D

4. Conclusion.

4.1. Definition. — A function ̂ : E^ —> Z on the set E^ of oriented
interior edges is called a local curvature flow if it satisfies the following
conditions:

(i) ^(a"") = —^(a^") for every interior edge a of F;
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(ii) the cyclic values of ^ on the oriented edges around any interior
vertex v € r form a star sequence;

(if) if r has a straight boundary, then every sequence associated to a
boundary vertex of r is a halfstar sequence.

It is obvious that a local curvature flow is associated to a maximal
integral triangulation which is local: every point of F is contained in a
subgraph of F isomorphic to some integral maximal triangulation and these
pieces can be glued together using elements in Aff^Z2). However, there
may be global problems leading to overlappings.

It is possible to define ramified triangulations and to get results ana-
logous to those of this paper for ramified integral maximal triangulations:
One has to introduce ramified stars, halfstars etc and to classify them.

One can also study (ramified) star-sectors. They correspond to
ramified triangulations which do not "close up" and should be considered
according to the height of their last vertex (which is an element of Z except
for stars; ramified halfstars corresponding to the case 0).
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