
ANNALES DE L’INSTITUT FOURIER

EIICHI BANNAI
Modular invariance property of association schemes,
type II codes over finite rings and finite abelian groups
and reminiscences of François Jaeger (a survey)
Annales de l’institut Fourier, tome 49, no 3 (1999), p. 763-782
<http://www.numdam.org/item?id=AIF_1999__49_3_763_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_3_763_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 3 (1999), 763-782

MODULAR INVARIANCE PROPERTY
OF ASSOCIATION SCHEMES, TYPE II CODES

OVER FINITE RINGS AND FINITE
ABELIAN GROUPS, AND REMINISCENCES

OF FRANCOIS JAEGER (A SURVEY)

by Eiichi BANNAI

To the memory of Francois Jaeger

0. Introduction.

This paper is based on my talk at the Jaeger Memorial Conference
in Grenoble, August 31-September 4 in 1998. The composition of this
paper, though slightly expanded, is essentially the same as my talk in the
conference.

First in §1, I briefly recall, from a very personal viewpoint, how we
encountered Francois Jaeger and how our joint work started and progressed.
When we think of our mathematical connection with Jaeger, the modular
invariance property of association schemes played a central role. In my talk
and in this paper we will focus on this subject, as well as a new application
of this property to coding theory; namely we define the concept of Type II
codes over finite abelian groups, by using the modular invariance property
of the association schemes of abelian groups. (See §3 of the present paper
for the definition of the modular invariance property of the association
schemes of abelian groups.) Then we discuss how to apply these codes to
study certain modular forms.

Keywords: Modular invariance — Association scheme — Spin model — Code over finite
ring - Type II code - Hermitian modular form.
AMS classification: 05E30 - 94B05 - 11F55.
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Our starting point of this research was a joint work of Eiichi and
Etsuko Bannai and Francois Jaeger [7], where we determined completely
the solutions of the modular invariance property of the association schemes
of finite abelian groups. The original motivation in [7] was to use these
solutions to construct 4-weight spin models on finite abelian groups. Our
key observation, which will be discussed extensively in this paper, is that
these solutions are also used to define the concept of Type II codes over
arbitrary finite abelian groups. In addition, we discuss the relations among
(multiple) weight enumerators of Type II codes over finite rings and/or
finite abelian groups and invariant polynomial rings of certain finite group
actions, and then we discuss its applications to modular forms.

We conclude our talk by mentioning how the generators of the
hermitian modular forms of genus 2 (due to Freitag and Nagaoka) are
interpreted in terms of the (multiple) weight enumerators of Type II codes
over the finite ring Z[z]/2Z[z]. (This last part is based on an ongoing joint
work with Masaaki Harada, Akihiro Munemasa and Manabu Oura.)

Table of Contents

1. How we met Francois Jaeger.

2. Review of codes over F^.

3. Type II codes over finite rings and finite abelian groups.

4. Type II codes over Z[%]/2Z[%] and an application to hermitian modular forms.
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and Manabu Oura. Also, I feel strongly the influence of Francois Jaeger on
our overall research, and I miss him greatly mathematically and personally.

1. How we met Frangois Jaeger.

In 1991 Professor Louis Kauffman visited Kyushu University to give
a colloquium talk (by the invitation of Professor Toshitake Kohno then
at Kyushu University). He showed us a preprint of the paper [29] of
Frangois Jaeger: Strongly regular graphs and spin models for the Kauffman
polynomial, which was later published in Geometriae Dedicata 44 (1992),
23-52.1 was fascinated with the paper, and we read the paper very carefully
in our weekly seminars. Before that, I knew the name of Francois Jaeger as
a specialist in graph theory and matroids, and I was very much surprised
that he was seriously interested in strongly regular graphs and association
schemes - usually association schemes and matroids are regarded as very
disjoint subjects in combinatorics. I was also surprized to find that Jaeger's
understanding of association schemes was quite thorough and quite deep.
(Later, he told me that he learned the detailed properties of association
schemes from our book [11].) At that time, partly by the influence of
Toshitake Kohno, I was interested in some aspect of mathematical physics
(though I have to admit that my understanding of the subject was clearly
that of a nonexpert), and I had already obtained the following results:

1. Connection between fusion algebras (at the algebraic level) and the
character algebras in the sense of Kawada [33] (see also [II], Section 2.5)
which is the concept of purely algebraic level of the Bose-Mesner algebras
of an association scheme. (Cf. [2].)

2. How the concept of modular invariance property in fusion algebras
is interpreted in the context of association schemes. (Cf. [2].)

3. We obtained a family of solutions of the modular invariance
property in the Hamming association schemes H(d,q). (Cf. [4].)

(The complete determination of the solutions of the modular invari-
ance property in the Hamming association schemes H(d^ q) was obtained
later by Stanton [46]. Also, it should be remarked that Curtin-Nomura
[16] determined the possible solutions of the modular invriance property
for self-dual P-polynomial association schemes, or equivalently, self-dual
P- and Q-polynomial association schemes. Namely, all the parameters of
those association schemes which have a solution of the modular invariance
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property are described explicitly by using 2 parameters. On the other hand,
it is still an interesting open question whether the association schemes with
such parameters actually exist or not.)

The theme of Jaeger [29] is summarized as follows. In order to find
spin models, association schemes are very useful. In particular, he showed
that if an association scheme is associated with a spin model, then it must
be a self-dual association scheme. We were interested in constructing more
examples of spin models using association schemes. The most notable self-
dual association schemes are Hamming association schemes H(d, q), and so
we started to find spin models on the Hamming association scheme H(d^ q).
To our surprise, we discovered that the solutions of the modular invariance
property we just found for the Hamming association scheme H(d^ q) can
be used to construct spin models on H(d^q)^ and we succeeded in proving
the claim. It took us several months to finish our calculations, then we
told our result ([6]) to Francois Jaeger. He appreciated our results, but it
turned out that our examples are equivalent to those constructed by the
tensor product contruction of spin models of Potts models (a remark due
to Jaeger and de la Harpe). So, we were disappointed with the fact that
our results were not really new. But also we were encouraged greatly with
the fact that it became very clear that the modular invariance property of
an association scheme is in fact a key to the construction of spin models.
(It was some years later that this fact was rigorously proved by Jaeger [30],
Nomura [39] and Jaeger-Matsumoto-Nomura [32].) (Cf. survey papers by
Jaeger [30] and Nomura [40].) Encouraged with this observation, we started
to find further examples of spin models by trying to find the solutions of
the modular invariance property of self-dual association schemes. This also
gave a motivation for Nomura to construct his spin models from Hadamard
graphs (Cf. [38].) Further developments in the study of spin models will be
seen in the survey papers by Jaeger [30] and Nomura [40], and so we will
not discuss these topics here.

As I mentioned before, I was very much fascinated with the work of
Francois Jaeger on spin models. I first invited him to visit Japan for 2 weeks
in November-December of 1992. He visited Kyoto for a conference (the
topic in the conference was centered on algebraic combinatorics including
association schemes and spin models), and then visited Kyushu University.
Many fruitful collaborations between Jaeger and Japanese mathematicians
were started then. For example, [5] was born with the influence of Jaeger.
Namely, we generalized (or clarified) the concept of the modular invariance
property to non-symmetric commutative association schemes. We invited
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Jaeger again for the international conference: Algebraic Combinatorics,
Fukuoka,1993, which we organized. Then we arranged him to visit RIMS
(Research Institute for Mathematical Sciences) of Kyoto University for 3
months (Oct. 1994-Dec. 1994) in the RIMS Project: The Year of Algebraic
Combinatorics, which we organized. At that period, we had very active
seminars with Jaeger, and it was while Jaeger was visiting Japan that he
proved the breakthrough that to any (symmetric) spin model an association
scheme is in fact always associated. (As soon as he arrived in Japan, he told
me that he had an idea which may prove this fact, then within a few weeks
he suceeded in proving this.) Motivated by this work of Jaeger, Nomura
immediately obtained a purely algebraic proof of this fact, and then the
joint work of Jaeger-Matsumoto-Nomura [32] was started in this period. (I
think this work is a highlight of the work of Jaeger on spin models.) Also,
joint work with Frangois Jaeger, Etsuko Bannai and myself in this period,
was materialized in the paper [7], where we determined the solutions of
the modular invariance property for any finite abelian group, as well as the
constructions of 4-weight spin models, among others. (Applications of this
work is the main topic in §3 of this paper.)

I visited Jaeger in Grenoble in June 1995 after I visited Hungary for
a conference. (Jaeger was also in the conference in Hungary.) When Jaeger
was in Fukuoka in 1994, we took him for a hiking to a nearby mountain
named Nijotake. We enjoyed it very much. When I visited Grenoble, he
took me to the hiking to the top of a nearby mountain named Dent de
Crolles. It was an unforgettable visit for me. At that time, it seems that
Francois was basically in a good health and he himself was not aware of
any possibility of cancer (although he told me that he has a problem in the
nerves in his backbone, and he mentioned a possibility that it might become
suddenly fatal.) In January 1996, I received an unexpected and surprising
letter from him in India that he got ill. Soon, it turned out that he had
cancer. He explained his illness very clearly to me, and he was ready to and
willing to fight his illness. I visited him in Grenoble again in September
1996 with Kazumasa Nomura. Although he was fighting with the illness,
he could spare a week to work for mathematics. We talked mathematics
very extensively. Kazumasa Nomura and I were planning to visit him again
in September 1997, but that visit was not realized as Frangois passed away
on August 18.
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2. Review of codes over F-z.

First, we give a review of the classical results concerning the relations
between binary Type II (i.e., self-dual doubly even) codes, even unimodular
lattices, invariant rings of certain finite groups, and ordinary modular
forms.

Let V = F^ be the n-dimensional vector space over the binary field
F^ = {0,1}. A vector subspace C of V is called a (linear) code. For two
elements

and

x= {x^x^...,Xn) <E V

V= (2/ i52/2,.. . ,2/n) ^ V

we define

X ' y = X^ + rZ-22/2 + • • - + XnVn ^ ^2.

The dual code C^~ is defined by

C1- ={yeV\x'y=0,\/xeC}.

We say that C is self-dual if C = C1-. We have k := dimG = n/2 for a
self-dual code C. We call C doubly-even if

4|wt(n),V'a € C7.

Here, for u = (ni, ^2, • • • , ̂ n) ^ C, we define w^(n) = \{j\uj 7^ 0}|. We say
that a code C is a Type II code (over F^) if G is self-dual and doubly-even.

DEFINITION (Weight enumerator of a code). — For a code C, the
weight enumerator Wc(x, y) of the code C is defined as follows:

Wc(x^y) = ̂ ^-^tW^tW e C[x^y].
u^C

(Note that Wc(x,y) is a homogeneous polynomial of degree n in the
indeterminates x and y . )

Now, let G be the finite group of order 192 generated by the two

elements —= ( ) and ( ) . Here note that the group G is a\ /2 \ 1 -ly \° v
finite unitary reflection group (No. 9 in the list of Shephard and Todd). It
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is known that for a binary Type II code C, its weight enumerator Wc(x, y)
is in the invariant ring C[x,y\° (by the action of the group G on the
polynomial ring C[a;, y]). Moreover, it is known as Gleason's theorem (1970)
([26]) that v /

(1) the vector space spanned by the weight enumerators of Type II
codes coincides with the invariant ring C^y]0, and that

(2) the invariant ring C[a;, y]0 is a polynomial ring C[/i, /a] generated
by the following two algebraic independent polynomials /i and /a, where

A = We, (x, y) = Xs + 14a; V + y8

is the weight enumerator of the [8,4,4]-Hamming code eg, and

/2 = Wg,,(x,y) = x24 + 759zl6y8 + 2576xl2yl2 + 759^y16 + y24

is the weight enumerator of the [24,12,8]-Golay code g^.

Now, let us recall the procedure (Construction A) of constructing an
integral lattice from a binary code. Let y be the natural homomorphism
from Zn to (Z/2Z)Tl ̂  F^. For a code C over F^ define

Lc= 72 <p~^c)CRn•

It is known that if G is a binary Type II code, then Lc is an even
unimodular lattice. The theta function of a lattice L is defined by

QL(T)=^ql2x•x, (q=e2viT).
XGL

(Here r takes the value in the upper half plane.) Note that if L is an even
unimodular lattice, then O^r) is a modular form of weight k = n/2 with
respect to the full modular group SL(2, Z). Here we recall that the complex
valued function / defined on the upper half plane H is called a modular
form of weight k (with respect to the full modular group SL{2, Z)) if the
following three conditions are satisfied:

(1) / is a holomorphic function on H.

(2)

^^^A^V^ ^eSL(2,Z).
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(3) /(r) has a Fourier expansion

f(r)=^arqr (q = e2—).
r^O

THEOREM (Broue and Enguehard, [14], 1972). — IfC is a Type JJ
code (over F^), then we have

QLc(r)=WcWr)Wr)).

(Here note that 6^(2r) = A(r) is the theta series of the 1-dimensional
integral lattice {V2z\z € Z} and 02(2r) = B(r) is the theta series of the
translate (by —=) of the lattice {^/2z\z e Z}.)

v2
It should be pointed out that by the map

x ̂  03(2r)

2/^^(2r),

we get an isomorphism

C[x^ ̂ ^€[£74^12]

where £'4 is the Eisenstein series of weight 4, and Aia is the cusp form of
weight 12. Note that C[E^ Ai2] is a subspace of the space of all the modular
forms which is isomorphic to the polynomial ring C[E^ EQ\ generated by £"4
and EQ (the Eisenstein series of weight 6). Here, £4 and EG are algebraically
independent.

It is interesting to point out (cf. Ozeki [42] or Runge [43]) that if we
take the index 2 subgroup H (of order 96) of G defined by

1 + z / l 1 \ /I 0\
H=<-^[l -iRo i ) > -

then the above map defines an isomorphism

C^y^^C^Ee}.

Moreover, C[x,y}11 = C[/i,/3J, where

fi=We,(x,y)

and

f3=xl2-33x8y4-^x4ys+yl2.
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Note that H is another finite unitary reflection group (No. 8 in the list of
Shephard and Todd.)

The important implication of this fact is that we can understand the
space of modular forms completely through the invariant ring of the finite
group H. Interestingly enough, this situation can be generalized in several
directions. We list some of them in the following table.

Generalizations.

automorphic
forms

(ordinary)
modular forms
Siegel modular
forms (Runge)
Jacobi forms

(Bannai-Ozeki, Runge)

Siegel-Jacobi forms

Hilbert modular forms

(Hirzebruch

-van der Geer)
...

codes

weight enumerator
Wc(x^y)

multi-weight
enumerator
certain joint

weight enumerator
(Jacobi polynomials

in the sense of Ozeki)
*

...
Lee weight enumerator

(over Fp)

invariant rings
of finite groups

H(orG)cGL(2,C)
C[x^]11

H=Z^Z^lSp(2g^)^
H CGL(29,C)
simultaneous

diagonal action of
H (of order 96)
H cGL(2r,C)

*

...

certain finite group G,

r1 r r'T (^ ~ ^U C Ul^[ , U J

...

3. Type II codes over finite rings
and finite abelian groups.

Codes are considered not only over binary field F^ but also over other
finite fields ^3,^4,...,^, or over Z/4Z (as was studied by many people,
including Hammons-Kumar-Calderbank-Sloane-Sole [27], and others), over
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Z / l k Z (by M. Harada et al. [19], [9]) and so on. Also, recently, there are
many interesting works on codes over some finite rings (by Wood [48],
Bachoc [I], etc.).

The purpose of our study is to study codes over finite rings and
arbitrary finite abelian groups. I believe that considering (additive) codes
over any finite abelian group is the most natural and most reasonable
framework for this kind of study. (A preliminary idea is due to Delsarte
[17], who considered self-dual codes in this context.) The main purpose of
this section is to define Type II codes in this general setting. I believe that
the definition given here is reasonable and gives the correct generalization.

Before considering codes over finite abelian groups in general, we
review some basic concepts on codes over the finite rings Z/4Z and Z / l k Z .

On Z/4Z, we define the E-wt(a) for a € Z/4Z as follows {E-wt stands
for Euclidean weight):

a<EZ/4Z 0 1 2 3
E-wt(a) 0 1 4 1 .

Then for u = (^i, i^,..., Un) C (Z/4Z)71, we define

n

E-wt(u) =^E-wt(ui).
i=l

We call C a Type II code over Z/4Z if

(1) C is self-dual, that is C = C1- with respect to the usual inner
product in { Z / ^ Z ^ , namely C1- = {y C V\x • y = O.Vrr € C} with
x ' y = x^ + x^y-2 + • • • + XnVn e Z/4Z, and

(2) 8\E-wt(u),\/ueC.

On Z / 2 k Z , we define the E-wt{a) for a € Z/2kZ as follows:

a € Z/2kZ 0 1 2 3 • • • i ' " 2k - 2 2k - 1
E-wt{a) 0 1 4 9 • • • i2 ' " 4 1.

Similarly, we define the code C to be a Type II code, if

(1) C is self-dual with respect to the ordinary inner product in
(Z/2kZ)n, and

(2) ^k\E-wt{u)^ueC.
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In this case, if we define the natural homomorphism from Z" to
{ZftkZY by y, then for each code C in (Z/2fcZ)", the set Lc =
•/j^V"1^) C .R" becomes an even unimodular lattice in fi".

Now let us consider codes on any finite abelian group G. By a code
over (7, we mean an additive subgroup C ' o f G ' " = G ' x G ' x . . . x G ' (the
direct product of n G"s).

In order to define the concept of self-dual code, we consider the
character table of the abelian group G.

A character table P of the group G = Z/mZ is given as follows:

1 1 1 1 ... 1
l C C2 C3 ... C"1-1

1 C 2 C4 C6 ... ^(m-1)
1 C 3 C6 C9 ... ^3(TO-1)
1 :

 :

 : • . . ;

1 ^m-1 ^2(m-l) ^3(m-l) __ ^(m-1)2

Note that in a character table we can choose, in principle, the orderings
of the elements of G and the irreducible characters of G in any order.
However, note that here we arranged the character table P in such a way
that tP= P holds.

We can take the following matrices P as character tables of the group
Z-i x Z-i: " '

1 1 1 1
p = 1 -1 1 -1

1 1 - 1 - 1

or
1 - 1 - 1 1

1 1 1 1
p^ 1 1 -1-1

1 - 1 1 - 1
1 -1 -1 1.

Again, we arranged so that *? = P holds. Namely, we have \a(b) =
^b(a),Va,6 € G. This is equivalent to saying (in the terminology of [7])
that we fix a duality

a<—^Xa
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where \a, is the (irreducible) linear character corresponding to the element
aeG.

We define the concept of self-dual code by considering the following
inner product < x, y > on G71. Fix a character table P of the abelian group
G. It is important that we take P in such a way that *P = P holds. As
the above example of the group G = Z/2Z x Z/2Z shows, the choice of
duality, i.e., the choice of the character table P with t? = P is not unique
in general.

For two elements

and

we define

x= (a;i,a;2,.. . ,^n) € Gn

V= (2 / i ,2 /2 , . . . ,2 /n) € G"

n

<x,y>=]^[xxi(yi)'
i=l

Then we define

C-L={ye G^l < x,y >== l^x G C}.

A code C is called self-dual if C1' = (7. The problem we want to discuss
here is: how to define the concept of Type II code? Here we give an answer
to this question. Now, let us recall our notation again.

G is a finite abelian group of order g. Let P be a character table of
G with *P = P (so, P is a g x p-matrix.) That is, we fix a duality

0<——>Xa'

We say that a diagonal matrix

fto 0
0 ^i 0r= .
: 0

\Q .. 0 ^-i/

0 \
0

has the modular invariance property if

(PT)3 = (scalar). I .
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We remark that for each G, the dualities, and the solutions T of
the modular invar iance property (for each fixed duality) are completely
determined. (See Bannai-Bannai-Jaeger [7]. See also [12bis], where it is
shown which of the dualities are coming from the dualities of the cyclic
groups which appear in the decomposition of the abelian group.)

It is shown in [7] that if the order of the group G is even, then the
solution T can be expressed in the following way, by using rj = e27" ̂  , where
(is the exponent of the abelian group G. (The exponent is the largest order
of the elements of the abelian group G.)

/^ao 0 • 0 \
0 ^al 0 0

T=
: 0 ' • . 0

\ 0 • • • 0 y^-1

Here the a(€ G)th diagonal element is y^0. (If |G| is odd, we can take
rj = e2^^ and get a similar expression for T.) Also, here we assume that
OQ == 0 holds.

Example. — Note that if G = Z/2kZ then we have a solution

(r?
0

0 \

T=

0 r^-1)2/

Now, for each solution T of the modular invariance property

/ ^ o 0 .
o n^ o

yyOO 0 o \
o0 ^al

: 0
r=

\ 0 • • • 0 7^-1 /

we define for each a C G, Wt(a) == a^. Then for u = (ua)aeG we define

Wt(u) = ̂  Wt(ua).
a€G

Note that in the case of G = Z / 2 k Z , (and for P and T given above), our
weight Wt{u) coincides with the Euclidean weight E-wt(u). So our weight
is a generalization of the Euclidean weight.
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DEFINITION. — We define a code C (over an abelian group G of even
order) to be a Type II code (over an abelian group G of even order) if C
is self-dual and

2l\Wt(u},\/ueC.

(Note that this definition of Type II codes depends not only on G but also
on P and T.)

Complete weight enumerator.

The complete weight enumerator of a code C is defined as follows:

Wc({x^\aeG})=^ n^0^
uCCaGG

where for ^ = = ( ^ 1 , ^ 2 , . . . , Un) G G71, we define

^oc(u]= \{j\Uj =a}\.

Then

Wc{{x^\a e G}) G C[x^\a e G}0

where

Q-'=< -^P,T>CGL(<7,G)
\J9

is a finite group. It can be proved that if G = Z/2rnZ, and if P and T
are as before, then the group G is a group of order 192 • 2m-l. It is very
interesting that this group Q is always a finite group for any G, P and T.
(This fact will be discussed in a separate paper. See [9] for a discussion of
a special case.) It is an interesting question to know the structure of this
group explicitly for any G, P and T.

We conclude this section by giving the following remarks.

First we remark that considering codes over a finite abelian group is
more general than considering codes over a finite commutative ring. For a
code G over a finite ring R, i.e., G is an additive subgroup of JT1, the dual
code G-1- is defined by using the multiplication of the ring

(1) C ± = { y e R n \ x ' y = 0 ^ x e G},

where x ' y = x^ 4- x^ + . . . + XnVn' On the other hand, for a code G
over an abelian group G, i.e., an additive subgroup of G71, the dual code
G-1 is defined by

C± = {y e Gn\ < x,y>= l,\/x € G}.



MODULAR INVARIANCE PROPERTY OF ASSOCIATION SCHEMES 777

Note that (1), generally corresponds to fixing a duality in the additive
abelian group G = {R, -(-). So codes over a finite ring may be regarded as
a special case of codes over a finite abelian group (with a certain choice of
duality). (See also Question 4 at the end of this section.)

Next we consider how we may construct lattices, in certain general
situation, from codes over finite abelian groups. Let K be a finite Galois
extension of the rational number field Q. Let o = o^ be the ring of the
integers of K. Let I be any ideal in o, and let

o / I ^ R

where R is a finite commutative ring. Let (p be the natural homomorphism
from (o)77' to (o/J)71. For a code C in J?71, (^^(C) may be regarded as a
lattice in c^. Many interesting lattices arise in this way (see for example
Bachoc [I], etc.) Finally we emphasize that the following situation is very
interesting and worthy of further study.

Example. — K = Q(i) where i = ^/^T. OK = Z[i}, p = 2, and
I = 2Z[z]. Then o/J = R and GR,+) ^ Z / 2 Z x Z / 2 Z . By considering
the codes over the ring R or equivalently codes over the abelian group
G == Z/2Z x Z / 2 Z , we can obtain hermitian modular forms. Further details
will be treated in a separate paper [10] (see also §4).

We would like to point out that, in this way, we can get many
automorphic forms, and also get better understandings of automorphic
forms. It is very interesting to note that essentially finite objects such
as weight enumerators of codes or polynomial invariants of certain finite
groups enable us to control essentially infinite objects such as automorphic
forms.

4. Type II codes over Z[i]/2Z[z\
and an application to hermitian modular forms.

We will not give the detailed explanations of hermitian modular
forms. Instead we refer the reader to Nagaoka [37] for the definition and
basic properties of hermitian modular forms. Briefly speaking, a function
from the hermitian upper half plane Hg to the complex numbers C is said to
be a hermitian modular forms (with respect to the full hermitian modular
group Tg •= ^g(Q[i})) if (1) it is holomorphic and (2) if it satisfies an
automorphic condition (for weight k). (If the genus g is equal to 1, a further
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condition on holomorphy at cusps is necessary, but we mostly consider the
cases g ^ 2.) (See [37], pages 526-527, for example.) Here, hermitian upper
half plane of genus g is defined as the set of g by g complex matrices Z with
— - ( Z — Z * ) being positive definite, where Z* denotes the transpose of the
2z
complex conjugate of Z. A hermitian modular form (f> is called symmetric
if (f)(Z) = 0(*Z) for all Z € Hg. We denote by [Tg, k] the space of hermitian
modular forms of weight k. We denote by [Fp, k]^ the space of symmetric
hermitian modular forms of weight A:. It is known that dimensions of these
spaces are 0 for negative integers k, and finite for positive integers k. The
genus g = 1 case is nothing but the case of ordinary modular forms, so
we will not discuss the case g = 1. For g = 2, it seems that the dimension
formula for symmetric modular forms is known to be given by the following
form (cf. Nagaoka [36]):

00 1 4-f16

EW,̂ ")'* = (i-,.)(i-,^-,..)(i.,^-

A set of generators of the space of symmetric hermitian modular forms
is given by Freitag [24]. Nagaoka [37] gives another set of generators, and
also gives a relation satisfied by these generators. (It seems still unknown
whether there are further relations among them. This is related with the
fact that the dimension formula is as expected above. A set of generators
'04, X8, Xio, Xi2, $12, Xi6, is given by Nagaoka [37]. Although we will not give
the details of our result here, in our joint paper Bannai-Harada-Munemasa-
Oura [10] (in preparation), we obtained the following results:

(1) We consider Type II codes over the finite ring R = Z[z]/2Z[z],
or equivalently over the finite ring F^ + uF^ in the sense of Bachoc [I],
or Dougherty-Harada-Gaborit-Sole [18]. Bachoc [1] (see also Dougherty-
Harada-Gaborit-Sole [18]) defined an analogue of Gray map (over Z/4Z)
from the codes (of length n) over the ring R to the codes (of length 2n)
over F'2. They also proved that Type II codes over J?(^ F^ + uF^) are
mapped to Type II codes over jF^ which admit fixed point free involutive
automorphism of the code. We prove that the equivalence of such codes over
R is determined by the pair of the equivalence in Type II codes over F^ and
the conjugacy classess of fixed point free involutions in the automorphism
group of the code.

(2) Since Type II codes over F^ are determined up to length 32, in
principle, this makes it possible to classify Type II codes over R of length
up to 16, (though it is not trivial from the computational view point, as the
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automorphism groups become very large in some cases.) We expect that we
will be able to finish this. (Dougherty-Harada-Gaborit-Sole [18] did this up
to length 8. In order to determine them up to the equivalence, they used
mass formula, instead of our simple criterion for the equivalence.)

(3) It is shown that the (symmetric) biweight enumerators of Type
II codes over R are invariant by the group action of G, which is defined in
[18].

Also, substituting the indeterminates of the polynomials by certain
appropriate theta series, we can conclude that (symmetric) biweight (of
multi-weight of genus g) enumerators of Type II codes over R always
give symmetric hermitian modular forms of genus 2 (of genus g). We can
show that the generators of weight multiple of 4 by Freitag and Nagaoka
are expressed by using the symmetric biweight enumerators of Type II
codes. For example, we have the following results. For n = 4 there are
2 nonequivalent Type II codes over R. Both of them give the Nagaoka's
generator ^4. For n = 8 there are 10 nonequivalent Type II codes over
R. 6 of them are coming from an indecomposable Type II code d^ over
F-^, and each of them gives ^g- Another 4 of them are coming from the
decomposable Type II code eg ® eg. 3 of them give the Nagaoka's generator
'0| and the remaining one gives (15^g - 7^|)/8. Further details will be
given in [10].

It is hoped that the study of codes over finite rings and finite abelian
groups are useful to study various automorphic forms. We are particularly
interested in the following questions:

Question 1. Can we determine, or characterize, which finite rings are
obtained as the quotient ring O K / I for an ideal I of the ring of integers OK
with K a finite Galois extension of the rational number field Q? It seems
that many partial answers are available in the book [36] or the papers
referred there, but it seems that the complete solution is not yet obtained.

Question 2. For each finite abelian group and its fixed duality, when
(how many ways) can one associate a ring structure on it where the duality
with respect to this ring structure corresponds to the given duality in the
abelian group.

Question 3. Although we noticed that the solutions of the modular
invariance property (for the character table of a finite abelian group) are
used very nicely to define the concept of Type II codes (over the abelian
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group), so far we do not know any real (or intrinsic) reason why this works.
Can one give a reason to explain why this works?

Question 4. We need to study more on the relations between codes
over a ring and codes over an abelian group (in which the additive group
of the ring is isomorphic to the abelian group.) It is observed that in
many cases the ring structure is characterized by a single duality of
the abelian group. However, this seems not always be the case, and it
might be necessary to consider the set of dualities. Also, for some rings,
the better Type II condition may use more than one solutions of the
modular invariance property (possibly corresponding to different dualities
of the abelian group). Here we remark that we do not know how many
nonisomorphic ring structures exist for a fixed abelian group, but we know
how may dualities and how many solutions of the modular invariance
properties exist for each fixed duality. This seems to give an advantage
in considering codes over finite abelian groups over considering the codes
over general finite rings.
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