JARED WUNSCH The trace of the generalized harmonic oscillator

Annales de l'institut Fourier, tome 49, nº 1 (1999), p. 351-373 <http://www.numdam.org/item?id=AIF_1999_49_1_351_0>

© Annales de l'institut Fourier, 1999, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 49, 1 (1999), 351-373

THE TRACE OF THE GENERALIZED HARMONIC OSCILLATOR

by Jared WUNSCH

1. Introduction.

Let M be a compact manifold with boundary endowed with a scattering metric g as defined by Melrose [9]. Thus in a neighborhood of ∂M , we can write

(1.1)
$$g = \frac{\mathrm{d}x^2}{x^4} + \frac{h}{x^2}$$

where x is a boundary-defining function for ∂M , *i.e.* is smooth, nonnegative, and vanishes exactly at ∂M with $dx \neq 0$ at ∂M , and where $h \in C^{\infty}(\text{Sym}^2(T^*M))$ restricts to be a metric on ∂M . Scattering metrics form a class of complete, asymptotically flat metrics that includes asymptotically Euclidian metrics on \mathbb{R}^n , radially compactified to the *n*-ball; this class also includes metrics on \mathbb{R}^n that are not asymptotically Euclidian but that look like arbitrary; non-round metrics on the sphere at infinity (see [9] for details).

We consider a generalization of the quantum-mechanical harmonic oscillator on the manifold M: let x be a boundary-defining function for ∂M with respect to which g has the form (1.1), *e.g.* $|z|^{-1}$ on flat \mathbb{R}^n (modified to be a smooth function at z = 0). For any $\omega \in \mathbb{R}_+$, we consider the associated time-dependent Schrödinger equation

(1.2)
$$\left(D_t + \frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v\right)\psi = 0$$

Keywords: Schrödinger equation – Harmonic oscillator – Propagation of singularities – Trace theorem – Scattering metric.

Math. classification: 58G17 - 58G25 - 58G15 - 35Q40.

where v is a formally self-adjoint perturbation term that can include both magnetic and electric potential terms. We will take v to be an error term in a sense to be made precise later on; potentials of the form $v \in C^{\infty}(M)$ are certainly allowed. Note that for such a v,

$$\frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v$$

is semi-bounded, hence the Friedrichs extension gives a self-adjoint operator on $L^2(M)$ (with respect to the metric dg). Our class of operators thus includes compactly supported metric and potential perturbations of the standard harmonic oscillator on \mathbb{R}^n .

Perturbations of the free-particle Schrödinger equation on manifolds with scattering metrics were studied in [13] using a calculus of pseudodifferential operators on manifolds with boundary called the *quadratic-scattering* (or qsc) calculus and denoted $\Psi_{qsc}(M)$. This calculus is a microlocalization of the Lie algebra of "quadratic-scattering vector fields" on M, given by

(1.3)
$$\mathcal{V}_{\rm qsc}(M) = x^2 \mathcal{V}_{\rm b}(M)$$

where

(1.4)
$$\mathcal{V}_{\mathbf{b}}(M) = \{ \text{vector fields on } M \text{ tangent to } \partial M \}.$$

Near ∂M , $\mathcal{V}_{qsc}(M)$ is locally spanned over $\mathcal{C}^{\infty}(M)$ by vector fields of the form $x^3\partial_x$, $x^2\partial_{y_j}$ where x, y_j are product-type coordinates on M near ∂M , *i.e.* the y_j 's are coordinates on ∂M . The Lie algebra $\mathcal{V}_{qsc}(M)$ can be written as the space of sections of a vector bundle:

$$\mathcal{V}_{\rm qsc}(M) = \mathcal{C}^{\infty}(M; {}^{\rm qsc}TM);$$

we call ${}^{qsc}TM$ the quadratic scattering tangent bundle of M. Let ${}^{qsc}T^*M$ be the dual bundle (the quadratic scattering cotangent bundle). Let ${}^{qsc}\overline{T}^*M$ be the unit-ball bundle over M obtained by radially compactifying the fibers of ${}^{qsc}T^*M$ (see [9] or [13]). This is a manifold with corners. The principal symbols of operators in the qsc-calculus are conormal distributions on ${}^{qsc}\overline{T}^*M$ with respect to the boundary (a precise definition of such distributions will be given in § 2). There is an associated wavefront set, WF_{qsc} , which is a closed subset of $\partial({}^{qsc}\overline{T}^*M)$.

In [13], propagation of WF_{qsc} was described for perturbations of the free particle Schrödinger equation on M. In this paper, we discuss

the analogous results for the harmonic oscillator, referring to [13] for all technical details. We can conclude from the propagation results that if there are no trapped geodesics on \mathring{M} , then except at a certain set of times

(1.5)
$$S_{\omega} = \left\{ \frac{L}{\omega} : \text{there exists a closed geodesic in } \partial M \text{ of length } \pm L \right\}$$
$$\cup \left\{ \pm \frac{n\pi}{\omega} : \text{ there exists a geodesic } n\text{-gon in } M \\\text{with vertices in } \partial M \right\} \cup \{0\},$$

there is no recurrence of WF_{qsc} for solutions to (1.2). In the above definition of S_{ω} we adopt the convention that the sides of a geodesic *n*-gon in M with vertices in ∂M are maximally extended geodesics in \mathring{M} (which automatically have infinite length) and geodesics in ∂M of length π ; the latter geodesics appear naturally as limits of geodesics through $\mathring{M} - cf$. Prop. 1 of [10]. Using very general properties of the qsc calculus, in § 5 we use the non-recurrence result to conclude that if U(t) is the solution operator for the Cauchy problem for (1.2) then

(1.6)
$$\operatorname{sing\,supp\,Tr} U(t) \subset S_{\omega}.$$

For example, if we have a compactly-supported potential perturbation of the standard harmonic oscillator on \mathbb{R}^n , $S_{\omega} = 2\pi\mathbb{Z}$: If M is the radial compactification of \mathbb{R}^n , ∂M is the unit (n-1)-sphere. Geodesics on \mathring{M} connect antipodal points on ∂M and geodesics in ∂M are great circles, hence consecutive vertices of a geodesic n-gon are antipodal points and there exist geodesic n-gons iff n is even; closed geodesics in ∂M also only occur with lengths in $2\pi\mathbb{Z}$. Hence for a potential perturbation of the harmonic oscillator on \mathbb{R}^n , the trace of the solution operator can only be singular at multiples of 2π . One can deduce this easily from Mehler's formula in the unperturbed case.

The trace theorem (1.6) closely resembles a result of Chazarain [1] and Duistermaat-Guillemin [6] which says that on a compact Riemannian manifold without boundary,

sing supp Tr $e^{it\sqrt{\Delta}} \subset \{\pm \text{lengths of closed geodesics}\} \cup \{0\};\$

related results of Colin de Verdière using heat kernels can be found in [3] and [4]. Chazarain [2] has also proved a semi-classical trace theorem for the time-dependent Schrödinger equation, in which the lengths of closed bicharacteristics of the total symbol appear. By contrast, the trace theorem

of this paper is a non-semi-classical result, and over $S^* \mathring{M}$, the relevant bicharacteristic flow is that of the symbol $\frac{1}{2} |\xi|^2$ rather than the full symbol as in [2]. Results on singularities of perturbations of the harmonic oscillator have been obtained by Zelditch [15], Weinstein [12], Fujiwara [7], Yajima [14], Kapitanski-Rodnianski-Yajima [8], and Treves [11]. Periodic recurrence of singularities for perturbations of the harmonic oscillator on \mathbb{R}^n was demonstrated by Zelditch [15] and Weinstein [12], and the trace theorem (1.6) was proven by Zelditch for perturbations of the harmonic oscillator in \mathbb{R}^n by potentials in $\mathcal{B}(\mathbb{R}^n)$.

The author is grateful to Richard Melrose, who supervised the Ph.D. thesis of which this work formed a part. The comments of an anonymous referee were also helpful, as was Hubert Goldschmidt's help in reducing the level of illiteracy of the French abstract. The work was supported by a fellowship from the Fanny and John Hertz Foundation.

2. The quadratic-scattering calculus.

In this section, we briefly review the properties of the algebra $\Psi_{qsc}(M)$, which was constructed in [13], and is closely related to the "scattering algebra" of Melrose [9].

Let $\mathcal{V}_{qsc}(M)$ and $\mathcal{V}_{b}(M)$ be defined by (1.3) and (1.4), and let $\operatorname{Diff}_{qsc}(M)$ and $\operatorname{Diff}_{b}(M)$ be the order-filtered algebras of smooth linear combinations of products of elements of $\mathcal{V}_{qsc}(M)$ and $\mathcal{V}_{b}(M)$ respectively. There exists a bi-filtered star-algebra $\Psi_{qsc}(M)$, the "quadratic-scattering calculus" of pseudodifferential operators on M such that

- $\operatorname{Diff}_{\operatorname{qsc}}^m(M) \subset \Psi_{\operatorname{qsc}}^{m,0}(M).$
- $\Psi^{m,\ell}_{\mathrm{qsc}}(M) = x^{\ell} \Psi^{m,0}_{\mathrm{qsc}}(M) = \Psi^{m,0}_{\mathrm{qsc}}(M) x^{\ell}.$
- $\Psi_{\text{qsc}}^{m,\ell}(M) \subset \Psi_{\text{qsc}}^{m',\ell'}(M)$ if $m \leq m'$ and $\ell' m' \leq \ell m$.
- $\bigcap_{m,\ell} \Psi_{qsc}^{m,\ell}(M) \equiv \Psi_{qsc}^{-\infty,\infty}(M)$ consists of operators whose Schwartz kernels are smooth functions on $M \times M$, vanishing to infinite order at $\partial(M \times M)$.
- Elements of $\Psi^{0,0}_{asc}(M)$ are bounded operators on $L^2(M)$.
- Given a sequence $A_j \in \Psi_{qsc}^{m-j,\ell+j}(M)$ for j = 0, 1, 2, ..., there exists an "asymptotic sum" $A \in \Psi_{qsc}^{m,\ell}(M)$, uniquely determined modulo $\Psi_{qsc}^{-\infty,\infty}(M)$, such that $A - \sum_{0}^{N-1} A_j \in \Psi_{qsc}^{m-N,\ell+N}(M)$.

Let $C_{qsc}M = \partial({}^{qsc}\overline{T}^*M)$. Let σ be a boundary defining function for the boundary face ${}^{qsc}S^*M$ of ${}^{qsc}\overline{T}^*M$ created by the fiber compactification. Let x be the lift of a boundary defining function on M to ${}^{qsc}\overline{T}^*M$ – thus x defines the boundary face ${}^{qsc}\overline{T}^*_{\partial M}M$. Let $\dot{C}^{\infty}(M)$ denote smooth functions on M vanishing to infinite order at ∂M and $\mathcal{C}^{-\infty}(M)$ the dual space to $\dot{\mathcal{C}}^{\infty}(M)$ -valued densities. Following Melrose [9], we define conormal distributions on ${}^{qsc}\overline{T}^*M$ with respect to $C_{qsc}M$ as follows:

$$\mathcal{A}^{p,q}({}^{\operatorname{qsc}}\overline{T}^*M) = \{ u \in \mathcal{C}^{-\infty}({}^{\operatorname{qsc}}\overline{T}^*M) : \operatorname{Diff}_{\operatorname{b}}^k({}^{\operatorname{qsc}}\overline{T}^*M)u \subset \sigma^p x^q L^{\infty}({}^{\operatorname{qsc}}\overline{T}^*M) \text{ for all } k \};$$

here $\operatorname{Diff}_{b}^{k}$ is defined on the manifold with corners $\operatorname{qsc}\overline{T}^{*}$ exactly as it was defined on manifolds with boundary: as the span of products of vector fields tangent to (all faces of) the boundary. Let

$$\mathcal{A}^{[m,\ell]}(C_{\operatorname{qsc}}M) = \mathcal{A}^{m,\ell}({}^{\operatorname{qsc}}\overline{T}^*M)/\mathcal{A}^{m-1,\ell+2}({}^{\operatorname{qsc}}\overline{T}^*M).$$

There exists a symbol map

$$j_{\mathrm{qsc},m,\ell}: \Psi^{m,\ell}_{\mathrm{qsc}}(M) \to \mathcal{A}^{[-m,\ell-m]}(C_{\mathrm{qsc}}M)$$

such that

• There is a short exact sequence

 $(2.1) \quad 0 \to \Psi_{\rm qsc}^{m-1,\ell+1}(M) \longrightarrow \Psi_{\rm qsc}^{m,\ell}(M) \xrightarrow{j_{\rm qsc},m,\ell} \mathcal{A}^{[-m,\ell-m]}(C_{\rm qsc}M) \to 0.$

- The symbol map is multiplicative.
- The Poisson bracket extends continuously from the usual bracket defined on the interior of ${}^{qsc}\overline{T}^*M$ to $\mathcal{A}^{[\cdot,\cdot]}$, and

$$j_{\text{qsc},m_1+m_2-1,\ell_1+\ell_2}([P,Q]) = \frac{1}{i} \{ j_{\text{qsc},m_1,\ell_1}(P), j_{\text{qsc},m_2,\ell_2}(Q) \}.$$

Furthermore, if $a \in \mathcal{A}^{m,\ell}({}^{qsc}\overline{T}^*M)$, $\{a,b\} = H_a(b)$ where H_a is the extension of the usual Hamilton vector field on the interior of ${}^{qsc}\overline{T}^*M$ to an element of $\sigma^{-m+1}x^{\ell+2}\mathcal{V}_{\mathrm{b}}({}^{qsc}\overline{T}^*M)$. (We refer to the flow along H_a or $\sigma^{m-1}x^{-\ell-2}H_a$ as bicharacteristic flow.)

• There exists a (non-unique) "quantization map"

$$Op: \mathcal{A}^{-m,\ell-m}({}^{qsc}\overline{T}^*M) \longrightarrow \Psi^{m,\ell}_{qsc}(M)$$

such that

$$j_{\operatorname{qsc},m,\ell}(\operatorname{Op}(a)) = [a] \in \mathcal{A}^{[-m,\ell-m]}(C_{\operatorname{qsc}}M).$$

DEFINITION 2.1. — An operator $P \in \Psi_{qsc}^{m,\ell}(M)$ is said to be elliptic at a point $p \in C_{qsc}M$ if $j_{qsc,m,\ell}$ is locally invertible near p. The set of points at which P is elliptic is denoted ell P. If P is elliptic everywhere, it is simply said to be elliptic.

DEFINITION 2.2. Let $P \in \Psi_{qsc}^{m,\ell}(M)$. A point $p \in C_{qsc}M$ is in the complement of $WF'_{qsc}P$ (the operator wavefront set or microsupport of P) if there exists $Q \in \Psi_{qsc}^{-m,-\ell}(M)$ such that Q is elliptic at p and $PQ \in \Psi_{qsc}^{-\infty,\infty}(M)$.

We can now define the *qsc wavefront set* of $u \in C^{-\infty}(M)$ as the subset $WF_{qsc}u$ of $C_{qsc}M$ such that $p \notin WF_{qsc}u$ if and only if there exists $A \in \Psi^{0,0}_{qsc}(M)$ with $p \in \text{ell } A$ such that $Au \in \dot{C}^{\infty}(M)$.

The qsc wavefront set and microsupport enjoy the following properties:

- If $A, B \in \Psi_{qsc}(M)$, then $WF'_{qsc}AB \subset WF'_{qsc}A \cap WF'_{qsc}B$ and $WF'_{qsc}A^* = WF'_{qsc}A$.
- Microlocal parametrices exist at elliptic points: if $P \in \Psi_{qsc}^{m,\ell}(M)$ is elliptic at $p \in C_{qsc}M$ then there exists $Q \in \Psi_{qsc}^{-m,-\ell}(M)$ such that

$$p \notin WF'_{qsc}(PQ - I)$$
 and $p \notin WF'_{qsc}(QP - I)$

• Microlocality: let $P \in \Psi_{qsc}(M)$ and $u \in \mathcal{C}^{-\infty}(M)$. Then

$$WF_{qsc}Pu \subset WF'_{qsc}P \cap WF_{qsc}u.$$

• Microlocal elliptic regularity: Let $P \in \Psi_{qsc}(M)$ and $u \in \mathcal{C}^{-\infty}(M)$. Then

$$WF_{qsc}(u) \subset WF_{qsc}(Pu) \cup (\text{ell } P)^c.$$

• We can (and do) choose the map Op in such a way that

$$WF'_{asc} \operatorname{Op}(a) \subset \operatorname{ess\,supp} a$$

(ess supp a is the set of points in $C_{qsc}M$ near which a does not vanish to infinite order).

We will also require a notion of qsc wavefront set that is uniform in a parameter.

DEFINITION 2.3. — Let $u \in C(\mathbb{R}; \mathcal{C}^{-\infty}(M))$. For $S \subset \mathbb{R}$ compact, we say that $p \notin WF^S_{qsc}(u)$ if there exists a smooth family $A(t) \in \Psi^{0,0}_{qsc}(M)$ such that A(t) is elliptic at p for all $t \in S$ and $Au \in \mathcal{C}(S; \dot{\mathcal{C}}^{\infty}(M))$.

Associated to $\Psi_{qsc}(M)$ is a family of Sobolev spaces

$$H^{m,\ell}_{\mathrm{qsc}}(M) = \left\{ u \in \mathcal{C}^{-\infty}(M) : \Psi^{m,-\ell}_{\mathrm{qsc}}(M) u \subset L^2(M) \right\}$$

such that

• If $A \in \Psi^{m',\ell'}_{qsc}(M)$ then

$$A: H^{m,\ell}_{qsc}(M) \longrightarrow H^{m-m',\ell+\ell'}_{qsc}(M)$$

is continuous for any m, ℓ .

• For any $\ell \in \mathbb{R}$,

$$\bigcap_{m} H^{m,\ell}_{qsc}(M) = \dot{\mathcal{C}}^{\infty}(M) \quad \text{and} \quad \bigcup_{m} H^{m,\ell}_{qsc}(M) = \mathcal{C}^{-\infty}(M).$$

• If a_n is a bounded sequence in $\mathcal{A}^{-m,\ell-m}(M)$ and $a_n \to a$ in some $\mathcal{A}^{p,q}(M)$, then $\operatorname{Op}(a_n) \to \operatorname{Op}(a)$ in the strong operator topology on

$$\mathcal{B}\left(H^{M,L}_{\mathrm{qsc}}(M), H^{M-m,M+\ell}_{\mathrm{qsc}}(M)\right)$$

for all M, L.

3. The propagation of WF_{qsc} .

For details of all computations in this section, see [13], especially §11.

We consider the symbol and corresponding bicharacteristic flow for the operator

$$\mathcal{H} = \frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v$$

where

$$v \in \operatorname{Diff}_{\operatorname{qsc}}^{1,1}(M)$$

is formally self-adjoint and x is a boundary-defining function with respect to which g takes the form (1.1).

Let the canonical one-form on ${}^{\operatorname{qsc}}T^*M$ be

$$\lambda \frac{\mathrm{d}x}{x^3} + \mu \frac{\mathrm{d}y}{x^2}$$

The joint symbol of \mathcal{H} is represented in $\mathcal{A}^{[-2,-2]}(C_{qsc}M)$ by a conormal distribution of the form

(3.2)
$$j_{qsc,2,0}(\mathcal{H}) = \frac{1}{2x^2} \left(\lambda^2 + |\mu|^2 + \omega^2 + xr(\lambda,\mu) \right);$$
$$r(\lambda,\mu) \in \lambda^2 x \, \mathcal{C}^{\infty}(x,y) + \lambda \mu \, \mathcal{C}^{\infty}(x,y) + \mu^2 \, \mathcal{C}^{\infty}(x,y)$$

where $|\mu|$ denotes the norm of μ with respect to the metric $\bar{h} = h_{|\partial M}$. Note that (3.1) shows that \mathcal{H} is an elliptic element of $\Psi_{qsc}^{2,0}(M)$; the perturbation v does not enter into the expression (3.1) as it has lower order than $\frac{1}{2}\Delta + \frac{\omega^2}{2x^2}$ in both indices. The Hamilton vector field of \mathcal{H} is

$$X = \tilde{X} + P$$

where

(3.2)
$$\widetilde{X} = \lambda x \partial_x + \left(\lambda^2 - |\mu|^2 + \omega^2\right) \partial_\lambda + \langle \mu, \partial_y \rangle + 2\lambda \mu \cdot \partial_\mu - \frac{1}{2} \partial_y |\mu|^2 \cdot \partial_\mu$$

is the Hamilton vector field for the symbol $\frac{1}{2x^2}(\lambda^2 + |\mu|^2 + \omega^2)$, and

$$(3.3) P = p_1 x^2 \partial_x + p_2 x \partial_y + q_1 x \partial_\lambda + q_2 x \partial_\mu$$

is the Hamilton vector field for the "error term" $\frac{1}{2}x^{-1}r(\lambda,\mu)$. Here we adopt the convention that

$$\langle a,b
angle = \sum a_i b_j ar{h}^{ij}(y) \quad ext{and} \quad a \cdot b = \sum a_i b_i.$$

The vector field P is identically zero if h is a function of y only, and always vanishes at x = 0.

Under the flow along \widetilde{X} ,

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\lambda+i|\mu|\right) = \left(\lambda+i|\mu|\right)^2 + \omega^2,$$

hence

(3.4)
$$\lambda + i|\mu| = \omega \frac{\sin \omega (t - t_0) + iR \cos \omega (t - t_0)}{\cos \omega (t - t_0) - iR \sin \omega (t - t_0)}$$

for some $R \in [0, 1]$. For R > 0, this gives a periodic orbit with period π/ω . On $\{\mu \neq 0\}$ (*i.e.* R > 0), we set $\hat{\mu} = \mu/|\mu|$, and introduce the rescaled time parameter $s = \int |\mu| dt$ to rewrite the flow along \tilde{X} as

(3.5)
$$\frac{\mathrm{d}y_i}{\mathrm{d}s} = \bar{h}^{ij}\hat{\mu}_j, \qquad \qquad \frac{\mathrm{d}\hat{\mu}_i}{\mathrm{d}s} = -\frac{1}{2}\hat{\mu}_j\hat{\mu}_k\partial_{y_i}\bar{h}^{jk},$$

 $\frac{\mathrm{d}\lambda}{\mathrm{d}s} = \frac{\lambda^2 - |\mu|^2}{|\mu|} + \omega^2, \qquad \frac{\mathrm{d}|\mu|}{\mathrm{d}s} = 2\lambda,$

(3.6)

(3.7) $\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{\lambda x}{|\mu|}.$

As the set $\mu = 0$ plays an important role in the geometry of \widetilde{X} , we give it a name:

DEFINITION 3.1. — Let $\mathcal{N} \subset {}^{\operatorname{qsc}}\overline{T}^*M$ be the set given in our coordinates by $\{x = \mu = 0\}$. Let $\mathcal{N}_{\pm} \subset \mathcal{N}$ be the subsets on which $\pm \lambda \geq 0$. Let $\mathcal{N}_{\pm}^c = \mathcal{N}_{\pm} \cap {}^{\operatorname{qsc}}S^*M$ (i.e. \mathcal{N}^c is the intersection of \mathcal{N} with the corner). We refer to \mathcal{N} as the "normal set," with \mathcal{N}_+ being the "incoming normal set" and \mathcal{N}_- the "outgoing normal set."

Figure 1. Integral curves of \widetilde{X} , projected onto the (λ, μ) -plane and radially compactified. The vertical line is the solution $\mu = 0$.

While $(\lambda, |\mu|)$ are undergoing a flow described by (3.4) (see Fig. 1), then provided $R \neq 0$, (3.5) shows that $(y, \hat{\mu})$ are undergoing *unit speed* geodesic flow in ∂M with rescaled time parameter s. For $R = 0, \mu$ is

identically zero, y is constant, and λ blows up at $t - t_0 = \pm \pi/2\omega$, *i.e.* the flow crosses \mathcal{N} from \mathcal{N}^c_- to \mathcal{N}^c_+ in time π/ω . More generally the integral curve starting at $\mu = 0$, $\lambda = \lambda_0$, reaches the corner at time $t = \omega^{-1} \arctan(\omega/\lambda_0)$.

Note that all terms in X are homogeneous of degree 1 in (λ, μ) except the term $\omega^2 \partial_{\lambda}$, which is homogeneous of degree -1. If we let σ be the defining function for $\operatorname{qsc} S^* M$ in $\operatorname{qsc} \overline{T}^* M$ given by

$$\sigma = \left(\lambda^2 + |\mu|^2\right)^{-\frac{1}{2}}$$

and set

$$\bar{\lambda} = \sigma \lambda, \quad \bar{\mu} = \sigma \mu$$

then the vector field σX is tangent to the boundary of ${}^{\operatorname{qsc}}\overline{T}^*M$, and we have

(3.8)
$$\sigma X = \bar{\lambda} x \,\partial_x - |\bar{\mu}|^2 \partial_{\bar{\lambda}} + \langle \bar{\mu}, \partial_y \rangle + \left(\bar{\lambda} \bar{\mu} - \frac{1}{2} \partial_y |\bar{\mu}|^2 \right) \partial_{\bar{\mu}} - \bar{\lambda} \sigma \,\partial_\sigma + O(\sigma^2) + O(x)$$

where $O(\sigma^2)$ and O(x) denote error terms of the form $\sigma^2 Y_1$ and xY_2 , with Y_i tangent to $\partial({}^{qsc}\overline{T}^*M)$; the $O(\sigma^2)$ term is just $\sigma\omega^2\partial_{\lambda}$, while the O(x) term is what has above been denoted P.

The vector field X differs from the free-particle Hamilton vectorfield $X_{\rm fp}$ described in [13]⁽¹⁾ only in the term $\omega^2 \partial_{\lambda}$, hence since this term is $O(\sigma)$, we have

(3.9)
$$\sigma X|_{\operatorname{qsc} S^*M} = \sigma X_{\operatorname{fp}}|_{\operatorname{qsc} S^*M}.$$

DEFINITION 3.2. — A maximally extended integral curve of σX on $q^{sc}S^*M$ is said to be non-trapped forward/backward if

$$\lim_{t \to \pm \infty} x(t) = 0.$$

A point in ${}^{qsc}S^*M \setminus \mathcal{N}^c$ is said to be non-trapped forward/backward if the integral curve through it is non-trapped. A point in \mathcal{N}^c is said to be non-trapped forward/backward if it is not in the closure of any

⁽¹⁾ Unfortunately, this vector field is called X as well in [13].

forward-/backward-trapped integral curves. Let \mathcal{T}_{\pm} denote the set of forward-/backward-trapped points in ${}^{qsc}S^*M$.

The only zeros of σX on ${}^{qsc}S^*M$ are on the manifolds \mathcal{N}^c_- (attracting) and \mathcal{N}^c_+ (repelling), so we can define

$$N_{\pm\infty}$$
: ${}^{\operatorname{qsc}}S^*M \setminus (\mathcal{N}_{\pm} \cup \mathcal{T}_{\pm}) \longrightarrow \mathcal{N}_{\mp}^c$

by

$$p \longmapsto \lim_{t \to \pm \infty} \exp(t\sigma X)[p].$$

We extend this definition of $N_{\pm\infty}$ to ${}^{\operatorname{qsc}}\overline{T}^*M\setminus(\mathcal{N}_{\pm}\cup\mathcal{T}_{\pm})$ by homogeneity. We further define

$$Y_{\pm\infty}: {}^{\operatorname{qsc}}\overline{T}^*M \setminus (\mathcal{N}_{\pm} \cup \mathcal{T}_{\pm}) \longrightarrow \partial M$$

to be the projection of $N_{\pm\infty}$ to ∂M .

THEOREM 3.3. — $N_{\pm\infty}$ and $Y_{\pm\infty}$ are smooth maps. If we let C^{ϵ}_{\pm} be the submanifold of $\operatorname{qsc} S^*M$ given by

$$C_{\pm}^{\epsilon} = \left\{ x^2 + |\bar{\mu}|^2 = \epsilon, \bar{\lambda} \gtrless 0 \right\}$$

then for ϵ sufficiently small, C^{ϵ}_{\mp} is a fibration over ∂M with projection map $Y_{\pm\infty}$, and every integral curve of σX which is not trapped forward/backward passes through C^{ϵ}_{\mp} . The sets $\mathcal{T}_{\pm} \setminus \mathcal{N}^{c}_{\pm}$ are closed subsets of $\operatorname{qsc} S^* M \setminus \mathcal{N}^{c}_{\pm}$.

By (3.9), this theorem follows from Theorem 11.6 of [13].

We can thus define the scattering relation:

DEFINITION 3.4. — Let $S \subset \mathcal{N}^c_{-} \setminus \mathcal{T}_{-}$. The scattering relation on S is

$$\operatorname{Scat}(\mathcal{S}) = N_{-\infty} \left(N_{+\infty}^{-1}(\mathcal{S}) \right) \subset \mathcal{N}_{+}^{c}.$$

It is shown in [13] that Scat takes closed sets to closed sets and Scat^{-1} takes open sets to open sets.

Example 3.5. — If M is the radial compactification of \mathbb{R}^n with an asymptotically Euclidian metric, we can identify the manifolds \mathcal{N}_{\pm}^c with $S^{n-1} = \partial M$. Then for $\theta \in S^{n-1}$, Scat θ consists of all $\theta' \in S^{n-1}$ such that there exists a geodesic γ in (uncompactified) \mathbb{R}^n with $\lim_{t \to -\infty} \gamma'(t) = -\theta'$ and $\lim_{t \to +\infty} \gamma'(t) = \theta$. In other words, Scat consists of all directions in \mathbb{R}^n that can scatter to the direction θ . In the Euclidian case, Scat is the antipodal map on S^{n-1} .

We now state theorems on propagation of WF_{qsc} that will suffice to obtain results on sing supp Tr U(t). (Slightly more sophisticated theorems, corresponding to Theorems 12.1–12.5 of [13], in fact hold here as well.)

THEOREM 3.6 (propagation over the boundary). — Let p in $({}^{qsc}\overline{T}^*_{\partial M}M)^\circ$ and assume

$$\exp(TX)[p] \in \left({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M\right)^{\circ}.$$

Then $p \notin WF_{qsc}\psi(0)$ if and only if there exists $\delta > 0$ such that $\exp(TX)[p] \notin WF_{qsc}^{[T-\delta,T+\delta]}\psi$.

THEOREM 3.7 (propagation into the interior). — Let $p \in {}^{qsc}$ $S^*M \setminus \mathcal{N}_{-}^c$ be non-backward-trapped and let $T \in (0, \pi/\omega)$. If

$$\exp(-TX)[N_{-\infty}(p)] \notin WF_{qsc}\psi(0)$$

then there exists $\delta > 0$ such that $p \notin WF_{qsc}^{[T-\delta,T+\delta]}\psi$.

THEOREM 3.8 (scattering across the interior). — Let $q \in \mathcal{N}_{-}^{c}$ be non-backward-trapped. If

$$\exp(-T_0 X) \left[\operatorname{Scat}(q) \right] \cap WF_{\operatorname{qsc}} \psi(0) = \emptyset$$

for some $T_0 \in (0, \pi/\omega)$, then for every $T \in (T_0, T_0 + \pi/\omega)$, there exists $\delta > 0$ such that $\exp((T - T_0)X)[q] \notin WF_{qsc}^{[T-\delta,T+\delta]}\psi$.

THEOREM 3.9 (global propagation into the boundary). — Let $q \in \mathcal{N}^c_-$ be non-backward-trapped. If

$$\overline{N_{+\infty}^{-1}(q)} \cap WF_{\rm qsc}\psi(0) = \emptyset$$

(closure taken in ${}^{qsc}S^*M$), then for $T \in (0, \pi/\omega)$, there exists $\delta > 0$ such that

$$\exp(TX)[q] \notin WF_{qsc}^{[T-\delta,T+\delta]}\psi.$$

The proofs are by the same positive-commutator arguments used in [13] (which were in turn adapted from Craig-Kappeler-Strauss [5]), although the symbol constructions need to be slightly modified from those in [13] because the maps $Y_{\pm\infty}$ are not exactly constant along the flow of X; we discuss these issues in an appendix.

4. Non-recurrence of singularities.

We assume throughout this section that there are no trapped geodesics in \mathring{M} .

This section is devoted to proving

THEOREM 4.1. — Let S_{ω} be defined by (1.5). For $T \notin S_{\omega}$ and for any $p \in C_{qsc}M$, there exists an open neighborhood \mathcal{O} of p and $\epsilon > 0$ such that if $WF_{qsc}\psi(0) \subset \mathcal{O}$ then $WF_{qsc}^{[T-\epsilon,T+\epsilon]}\psi \cap \mathcal{O} = \emptyset$.

In order to deduce this theorem from Theorems 3.6–3.9, we first define a relation on $C_{qsc}M$ which describes from what points singularities may reach a point $p \in C_{qsc}M$:

DEFINITION 4.2. — Let $p, q \in C_{qsc}M$. We write $p \stackrel{t}{\sim} q$ if there exists a continuous path γ from p to q in $C_{qsc}M$ that is a concatenation of maximally extended integral curves of σX such that

(4.1)

 $\sum (\text{lengths of integral curves in } {}^{\operatorname{qsc}} \overline{T}^*_{\partial M} M) = t,$

where we define the length of an integral curve in ${}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M$ to be its length as an integral curve of X (and hence a finite number).

Then for $S \subset C_{qsc}M$, let

 $\mathcal{G}_t(S) = \{ p \in C_{\text{asc}}M : p \stackrel{t}{\sim} q \text{ for some } q \in S \}.$

If $p \stackrel{s}{\sim} q$ and $q \stackrel{t}{\sim} r$, then $q \stackrel{s+t}{\sim} r$, hence

(4.2)
$$\mathcal{G}_{s+t}(S) = \mathcal{G}_s \circ \mathcal{G}_t(S).$$

We also have

(4.3)
$$\mathcal{G}_t(S \cup T) = \mathcal{G}_t(S) \cup \mathcal{G}_t(T).$$

The relation $p \stackrel{t}{\sim} q$ is closed in the following sense:

LEMMA 4.3. — Let $R \subset C_{qsc}M \times C_{qsc}M \times \mathbb{R}$ be defined by

$$(p,q,t) \in R \quad \text{iff} \quad p \stackrel{t}{\sim} q.$$

Then R is a closed subset of $C_{qsc}M \times C_{qsc}M \times \mathbb{R}$.

Proof. — Suppose $p_i \to p$, $q_i \to q$, and $t_i \to t$ as $i \to \infty$, and that $(p_i, q_i, t_i) \in R$. We will show that $(p, q, t) \in R$.

For simplicity, we reformulate (4.1) as follows: let k be a Riemannian metric on the manifold $({}^{qsc}\overline{T}^*_{\partial M}M)^\circ$ such that the norm of X with respect to k is one. (As $X = O(\sigma^{-1})$, k vanishes at ${}^{qsc}S^*_{\partial M}M$.) Let $\theta = k(\cdot, X) \in \Omega^1(({}^{qsc}\overline{T}^*_{\partial M}M)^\circ)$; extend θ to be zero on the interior of the boundary face ${}^{qsc}S^*M$. Then the condition (4.1) is equivalent to

(4.4)
$$\int_{\gamma} \theta = t.$$

Now by hypothesis there exists a sequence γ_i of paths as in Definition 4.2 such that $\gamma_i(0) = p_i$, $\gamma_i(1) = q_i$, and $\int_{\gamma_i} \theta = t_i$ for all *i*. As the γ_i are all integral curves of σX , we apply Ascoli-Arzelà to obtain a path γ between p and q, made up of integral curves of σX with $\int_{\gamma} \theta = t$.

Definition 4.4. - Let

$$\mathcal{G}_t^{-1}S = \{ p : \mathcal{G}_t(p) \subset S \}.$$

We now prove that \mathcal{G}_t is, in an appropriate sense, a continuous set map.

LEMMA 4.5. — If
$$K \subset \mathbb{R}$$
 is compact then

$$\bigcup_{t \in K} \mathcal{G}_t$$

takes closed sets to closed sets, and

$$\bigcap_{t\in K}\mathcal{G}_t^{-1}$$

takes open sets to open sets.

Proof. — Let π_L and π_R denote the projections of $C_{qsc}M \times C_{qsc}M \times \mathbb{R}$ onto the "left" and "right" factors of C_{qsc} and let π_t denote projection to \mathbb{R} . Then we can write

$$\bigcup_{t\in K} \mathcal{G}_t(S) = \pi_L(\pi_R^{-1}S \cap \pi_t^{-1}K \cap R)$$

and

$$\bigcap_{t\in K}\mathcal{G}_t^{-1}(S) = \left[\pi_R(\pi_L^{-1}(S^c) \cap \pi_t^{-1}K \cap R)\right]^c$$

hence the result follows from Lemma 4.3.

Theorems 3.6–3.9 can now be conveniently recast as

Main propagation theorem. — If $S \subset C_{qsc}M$ and

 $\mathcal{G}_t(S) \cap WF_{\rm qsc}\psi(0) = \emptyset$

then there exists $\epsilon > 0$ such that

$$S \cap WF_{qsc}^{[T-\epsilon,T+\epsilon]}\psi = \emptyset.$$

Proof. — By (4.3), it suffices to prove the result for $S = \{p\}$, a single point in $C_{qsc}M$. By (4.2), it suffices to prove the result for small t; we take $t < \pi/\omega$ for simplicity. If

$$p \in \left({}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M\right)^{\circ} \backslash \mathcal{N},$$

then for any t, as discussed in §3, $\mathcal{G}_t(p)$ is a single point in $({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ$, and the result follows from Theorem 3.6.

Let arctan_+ denote the branch of arctan taking values in $[0, \pi)$. If $p \in \mathcal{N}^\circ$, then for $t \in (0, \omega^{-1} \operatorname{arctan}_+(\lambda(p)/\omega))$, $\mathcal{G}_t(p)$ is again a point in \mathcal{N}° , and again the theorem follows from Theorem 3.6. At $t = \omega^{-1} \operatorname{arctan}_+(\lambda(p)/\omega)$, $\exp(-tX)[p] \in \mathcal{N}_-^c$, and

$$\mathcal{G}_t(p) = \overline{N_{+\infty}^{-1}(\exp(-tX)[p])} \subset^{\operatorname{qsc}} S^*M,$$

hence Theorem 3.9 takes care of this case. For

$$\omega^{-1} \arctan_{+}(\lambda(p)/\omega) < t < \pi/\omega,$$

we once again have $\mathcal{G}_t(p) \subset ({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ$, and Theorem 3.8 finishes the proof.

If, on the other hand, $p \in {}^{qsc} S^*M$, $\mathcal{G}_t(p) \subset ({}^{qsc}\overline{T}^*M)^\circ$ for $t \in (0, \pi/\omega)$: $\mathcal{G}_t(p)$ is a single point if $p \notin \mathcal{N}^c_+$, or a whole set, given by the scattering relation, if $p \in \mathcal{N}^c_+$. The theorem then follows from Theorem 3.7 in the former case, and Theorem 3.8 in the latter. \Box

The relation \mathcal{G}_t is non-recurrent except at certain times:

LEMMA 4.6. — For any $T \notin S_{\omega}$ and $p \in C_{qsc}M$, there exists an open neighborhood \mathcal{O} of p and $\epsilon > 0$ such that

$$\mathcal{G}_t(\mathcal{O}) \cap \mathcal{O} = \emptyset \quad \text{for all } t \in [T - \epsilon, T + \epsilon].$$

Proof. — By compactness of ∂M , S_{ω} is closed. Hence if $T \notin S_{\omega}$, there exists $\epsilon > 0$ such that

$$K = [T - \epsilon, T + \epsilon] \subset \mathbb{R} \backslash S_{\omega}.$$

By Lemma 4.5, $\bigcup_{t \in K} \mathcal{G}_t(p)$ is closed. If this set does not contain p then we can choose an open set \mathcal{U} containing $\bigcup_{t \in K} \mathcal{G}_t(p)$ but such that $p \notin \overline{\mathcal{U}}$. By Lemma 4.5, we can then set

$$\mathcal{O} = \bigcap_{t \in K} \mathcal{G}_t^{-1}(\mathcal{U}) \setminus \overline{\mathcal{U}}.$$

Thus it will suffice to prove that for $t \notin S_{\omega}$, $p \notin \mathcal{G}_t(p)$.

First we take the case $p \in {}^{qsc} S^*M \setminus \mathcal{N}^c_-$. Then for $t \in (0, \pi/\omega)$,

$$\mathcal{G}_t(p) = \exp(-tX)[N_{-\infty}(p)] \subset ({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ,$$

and this set certainly doesn't contain p. Let \mathcal{I} be the involution of \mathcal{N}^c swapping \mathcal{N}^c_+ and \mathcal{N}^c_- . Then

$$\mathcal{G}_{\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ N_{-\infty}(p)},$$

and this set doesn't contain p unless $Y_{+\infty}(p) = Y_{-\infty}(p)$, *i.e.* unless p lies on a geodesic 1-gon with vertex in ∂M . For $t \in (\pi/\omega, 2\pi/\omega)$,

$$\mathcal{G}_t(p) = \exp\left(-(t - \pi/\omega)X\right)\left[\operatorname{Scat}\circ\mathcal{I}\circ N_{-\infty}(p)\right],$$

again a subset of $({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ$. The set

$$\mathcal{G}_{2\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ \operatorname{Scat} \circ \mathcal{I} \circ N_{-\infty}(p)},$$

and this set certainly does contain p. Continuing in this manner, we find that if $t = n\pi/\omega + r$ with $r \in (0, \pi/\omega)$ then

$$\mathcal{G}_t(p) = \exp(-rX) \big(\operatorname{Scat} \circ \mathcal{I})^n N_{-\infty}(p) \subset \big({}^{\operatorname{qsc}} \overline{T}^*_{\partial M} M \big)^{\circ},$$

while

$$\mathcal{G}_{n\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ (\operatorname{Scat} \circ \mathcal{I})^n \circ N_{-\infty}(p)},$$

hence $p \in \mathcal{G}_t(\omega)$ iff there exists a geodesic *n*-gon passing through *p* with vertices in ∂M (this is always the case for *n* even, as we are allowed to repeat edges).

Figure 2. A point p on a geodesic triangle with vertices in ∂M .

Now we take the case $p \in ({}^{qsc}\overline{T}^*_{\partial M}M)^{\circ}\backslash\mathcal{N}$. The flow of X in $({}^{qsc}\overline{T}^*_{\partial M}M)^{\circ}\backslash\mathcal{N}$ is, as discussed in §3, given by unit speed geodesic flow in ∂M with time parameter $s = \int |\mu| dt$, while $(\lambda, |\mu|)$ undergo the motion (3.4). The only fixed-point of the $(\lambda, |\mu|)$ flow is given by $\lambda = 0, |\mu| = \omega$; all other orbits are periodic with period π/ω . Hence if $(\lambda(p), |\mu(p)|) \neq (0, \omega)$ and $t \notin (\pi/\omega)\mathbb{Z}$ then $p \notin \mathcal{G}_t(p)$, since the $(\lambda, |\mu|)$ coordinates distinguish between these two points. If, on the one hand, $t = n\pi/\omega$, we have by (3.4)

(4.5)
$$s = \int_{0}^{n\pi/\omega} |\mu| dt$$
$$= \Im \int_{0}^{n\pi/\omega} \omega \frac{\sin \omega (t - t_0) + iR \cos \omega (t - t_0)}{\cos \omega (t - t_0) - iR \sin \omega (t - t_0)} dt$$
$$= n\omega \Im \int_{-\pi/2\omega}^{\pi/2\omega} \frac{\tan \omega t - iR}{1 + iR \tan \omega t} dt$$
$$= n\pi$$

(recall that R = 0 only on \mathcal{N}). Thus by (3.5), for $(\lambda, |\mu|) \neq (0, \omega)$, $p = \mathcal{G}_{n\pi/\omega}(p)$ only if there is a closed geodesic of length $n\pi$ in ∂M . On the other hand, if $(\lambda(p), |\mu(p)|) = (0, \omega)$, $(\lambda, |\mu|)$ remains constant along the flow, so $p = \mathcal{G}_t(p)$ only if there is a closed geodesic in ∂M of length ωt . This proves the result for $p \in ({}^{qsc}\overline{T}^*_{\partial M}M)^{\circ}\backslash\mathcal{N}$.

The proof for $p \in \mathcal{N}$ (including \mathcal{N}^c) proceeds like the proof for $p \in {}^{\operatorname{qsc}} S^*M \setminus \mathcal{N}_-$; certainly if $t \notin (\pi/\omega)\mathbb{Z}$, $p \notin \mathcal{G}_t(p)$, as λ is constant on $\mathcal{G}_t(p)$ at fixed t, and equals $\lambda(p)$ only for $t \in (\pi/\omega)\mathbb{Z}$. The same geometrical discussion used in the proof for points in $({}^{\operatorname{qsc}}S^*M)^\circ$ also shows that $p \notin \mathcal{G}_{n\pi/\omega}(p)$ unless there is a geodesic n-gon with vertices in ∂M , with one vertex at y(p).

Proof of Theorem 4.1. — The theorem follows directly from the Main Propagation Theorem and Lemma 4.6. $\hfill \Box$

From Theorem 4.1, we deduce the following, which is the key result for our trace theorem.

COROLLARY 4.7. — Given $T \notin S_{\omega}$, there exists $\epsilon > 0, k \in \mathbb{Z}_+$, and $A_i \in \Psi^{0,0}_{qsc}(M), i = 1, \dots, k$ such that

$$A_i U_{\omega}(t) A_i \in \mathcal{C}^{\infty}([T-\epsilon, T+\epsilon]; \Psi_{qsc}^{-\infty,\infty}(M))$$

and

$$I = \sum_{i=1}^{k} A_i^2 + R$$

(I denotes the identity operator) with $R \in \Psi^{-\infty,\infty}_{asc}(M)$.

Proof. — By Theorem 4.1, we can find a partition of unity $(b_{1,i})^2$, subordinate to a cover \mathcal{O}_i of $C_{qsc}M$, such that $WF_{qsc}\psi(0) \subset \mathcal{O}_i$ implies that $WF_{qsc}^{[T-\epsilon,T+\epsilon]}\psi \cap \mathcal{O}_i = \emptyset$. Extend the $b_{1,i}$ to be smooth functions on $qsc\overline{T}^*M$ with ess $supp b_{1,i} \subset \mathcal{O}_i$. Set $B_{1,i} = Op(b_{1,i})$. Then

$$\sum_{i} B_{1,i}^2 - I = C_1 \in \Psi_{qsc}^{-1,1}(M).$$

Let c_1 denote a representative of the symbol of C_1 in $\mathcal{A}^{1,2}(\operatorname{qsc} \overline{T}^*M)$. Setting $b_{2,i} = -\frac{1}{2}c_1b_{1,i}$ and $B_{2,i} = \operatorname{Op}(b_{2,i})$, we have

$$\sum_{i} (B_{1,i} + B_{2,i})^2 - I = C_2 \in \Psi_{qsc}^{-2,2}(M).$$

Now let c_2 represent the symbol of C_2 , set $b_{3,i} = -\frac{1}{2}c_2b_{1,i}$ and $B_{3,i} = \operatorname{Op}(b_{3,i})$, and continue in this manner, defining $B_{j,i}$ inductively. Then use asymptotic summation to obtain

$$A_i \sim \sum_j B_{j,i},$$

with $WF'_{qsc}A_i \subset \mathcal{O}_i$ and $I = \sum A_i^2 + R$ with $R \in \Psi_{qsc}^{-\infty,\infty}(M)$.

By our construction of \mathcal{O}_j , for all $i = 1, \ldots, k$ we have

$$WF'_{qsc}A_i \cap WF^{[T-\epsilon,T+\epsilon]}_{qsc}U(t)A_i\psi(0) = \emptyset$$

for $t \in [T - \epsilon, T + \epsilon]$, hence by microlocality,

$$WF_{qsc}^{[T-\epsilon,T+\epsilon]}A_iU(t)A_i\psi(0) = \emptyset$$

for any $\psi(0) \in \mathcal{C}^{-\infty}(M)$, *i.e.* $A_i U(t) A_i \in \mathcal{C}([T - \epsilon, T + \epsilon]; \Psi_{qsc}^{-\infty,\infty}(M))$. Smoothness in t follows similarly, as

$$D_t^k A_i U(t) A_i = A_i (-\mathcal{H})^k U(t) A_i,$$

and since $\mathcal{H} \in \Psi_{qsc}(M)$,

$$WF_{qsc}^{[T-\epsilon,T+\epsilon]}(-\mathcal{H})^{k}U(t)A_{i}\psi(0) \subset WF_{qsc}^{[T-\epsilon,T+\epsilon]}U(t)A_{i}\psi(0).$$

5. The trace.

We begin the study of $\operatorname{Tr} U(t)$ by showing that it exists as a distribution:

PROPOSITION 5.1. — For $\phi \in \mathcal{S}(\mathbb{R})$,

$$\int \phi(t) U(t) \, \mathrm{d}t \in \Psi_{\mathrm{qsc}}^{-\infty,\infty}(M)$$

and

$$\phi \longmapsto \operatorname{Tr} \int \phi(t) U(t) \, \mathrm{d}t$$

is a tempered distribution on \mathbb{R} .

Proof. — The structure of the argument is standard – see, for example, part II of [2]. We reproduce it only owing to the slight novelty of the Sobolev spaces involved.

Choose $\kappa \in \mathbb{R}$ below the spectrum of \mathcal{H} . Then by ellipticity of \mathcal{H} ,

$$(\kappa + \mathcal{H})^{-k} : H^{0,0}_{qsc}(M) \longrightarrow H^{2k,0}_{qsc}(M).$$

Since

$$U(t) = (\kappa + \mathcal{H})^{k} (\kappa + \mathcal{H})^{-k} U(t) = (\kappa - D_t)^{k} (\kappa + \mathcal{H})^{-k} U(t),$$

we can write

(5.1)
$$\int \phi(t)U(t) \, \mathrm{d}t = \int (\kappa - D_t)^k \phi(t)(\kappa + \mathcal{H})^{-k} U(t) \, \mathrm{d}t.$$

U(t) is unitary on $H^{0,0}_{qsc}(M)$, so

$$(\kappa + \mathcal{H})^{-k}U(t) : H^{0,0}_{qsc}(M) \longrightarrow H^{2k,0}_{qsc}(M)$$

is bounded uniformly in t. Since $\bigcap_{k} H^{2k,0}_{qsc}(M) = \dot{\mathcal{C}}^{\infty}(M), (5.1)$ shows that

$$\int \phi(t) U(t) \, \mathrm{d}t : \mathcal{C}^{-\infty}(M) \longrightarrow \dot{\mathcal{C}}^{\infty}(M),$$

i.e.

$$\int \phi(t) U(t) \, \mathrm{d}t \in \Psi_{\mathrm{qsc}}^{-\infty,\infty}(M).$$

Furthermore, if we take k large enough so that $(\kappa + \mathcal{H})^{-k}U(t)$ is traceclass, we see that $\phi \mapsto \operatorname{Tr} \int \phi(t)U(t) \, dt$ is a tempered distribution of order at most k.

We are now in a position to prove our main theorem:

THEOREM 5.2. — If there are no trapped geodesics in \mathring{M} then

sing supp $\operatorname{Tr} U(t) \subset S_{\omega}$.

Proof. — Let $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$ be 0 for x > 2 and 1 for x < 1. Set

$$W_n = \operatorname{Op}\left[(1 - \phi(nx))(1 - \phi(n\sigma))\right] \in \Psi^{0,0}_{qsc}(M);$$

then $W_n \to I$ strongly on $L^2(M)$. We regularize $\operatorname{Tr} U(t)$ by examining instead $\operatorname{Tr} U(t)W_n$; this is a smooth function on \mathbb{R} since $D_t^p \operatorname{Tr} U(t)W_n = \operatorname{Tr}(-\mathcal{H})^p U(t)W_n$.

Given $T \notin S_{\omega}$, we choose A_i , $i = 1, \ldots, k$ as in Corollary 4.7, and write

$$\operatorname{Tr} U(t)W_n = \operatorname{Tr} IU(t)W_n = \sum_{i=1}^k \operatorname{Tr} A_i^2 U(t)W_n + \operatorname{Tr} RU(t)W_n.$$

 $A_i U(t) W_n$ is trace-class, so we may now rewrite

$$\operatorname{Tr} U(t)W_n = \sum_{i=1}^k \operatorname{Tr} A_i U(t)W_n A_i + \operatorname{Tr} RU(t)W_n$$

As $n \to \infty$, $D_t^p RU(t)W_n$ converges to $D_t^p RU(t)$ in the norm topology on operators $H^{m,\ell}_{qsc}(M) \to H^{m',\ell'}_{qsc}(M)$ for any m, ℓ, m', ℓ' , and any $p \in \mathbb{Z}_+$; thus $\operatorname{Tr} RU(t)W_n$ approaches a smooth function as $n \to \infty$. Thus, if we can also show that

1) $\lim_{n \to \infty} \operatorname{Tr} U(t) W_n = \operatorname{Tr} U(t), \text{ and}$ 2) $\lim_{n \to \infty} \operatorname{Tr} A_i U(t) W_n A_i = \operatorname{Tr} A_i U(t) A_i \text{ for all } i = 1, \dots, k,$

in the sense of distributions, we will have $\operatorname{Tr} U(t) \in \mathcal{C}^{\infty}([T-\epsilon, T+\epsilon])$ for some $\epsilon > 0$, and we will be done.

Both 1) and 2) follow from the following identity, which holds, in the distributional sense, for any $A \in \Psi_{qsc}^{p,q}(M)$ (and any p,q):

$$\lim_{n \to \infty} \operatorname{Tr} AU(t) W_n A = \operatorname{Tr} AU(t) A.$$

To prove this, let $\phi \in \mathcal{S}(\mathbb{R})$ be a test function, let κ lie below the spectrum of \mathcal{H} , and write

$$\lim_{n \to \infty} \int \phi(t) \operatorname{Tr} AU(t) W_n A \, dt$$

$$= \lim_{n \to \infty} \operatorname{Tr} \int \phi(t) U(t) W_n A^2 \, dt$$

$$= \lim_{n \to \infty} \operatorname{Tr} \int \phi(t) (\kappa - D_t)^m (\kappa + \mathcal{H})^{-m} U(t) W_n A^2 \, dt$$

$$= \lim_{n \to \infty} \int \left[(\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[(\kappa + \mathcal{H})^{-m} U(t) W_n A^2 \right] dt$$

$$= \lim_{n \to \infty} \int \left[(\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[A(\kappa + \mathcal{H})^{-m} U(t) W_n A \right] \, dt$$

$$= \int \left[(\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[A(\kappa + \mathcal{H})^{-m} U(t) A \right] dt$$

$$= \int \phi(t) \operatorname{Tr} AU(t) A \, dt;$$

here we take m large enough that $(\kappa + \mathcal{H})^{-m}U(t)$ is trace-class; the penultimate equality follows from the norm convergence

$$A(\kappa + \mathcal{H})^{-m}U(t)W_nA \longrightarrow A(\kappa + \mathcal{H})^{-m}U(t)A$$

as operators $H^{0,0}_{qsc}(M) \to H^{2m-2p-\epsilon,2q-\epsilon}_{qsc}(M)$ for all p,q and all $\epsilon > 0$. \Box

Appendix: the propagation theorems.

As noted above, the only obstacle to proving Theorems 3.6–3.9 in exactly the same manner as Theorems 12.1–12.5 of [13] is the fact that $(Y_{\pm\infty})_*X \neq 0$ in the harmonic oscillator case; we merely have

$$(Y_{\pm\infty})_*X = O(\sigma).$$

This makes no difference in proving Theorems 3.6 or 3.8, but we must modify the constructions of the symbols a_{\pm} and \tilde{a}_{\pm} used to prove the other three theorems.

We modify the symbols $a_{+}^{m,\ell}$ and $\tilde{a}_{+}^{m,\ell}$ defined in §13 of [13] by replacing the factor $\psi_{-\infty} = \phi(d(Y_{-\infty}(p), y_0))$ (ϕ is a cutoff function) by

$$\widehat{\psi}_{-\infty} = \phi(d(Y_{-\infty}(p), y_0)^2 - \epsilon \sigma).$$

Since $X\sigma = -\bar{\lambda} + O(\sigma^2) + O(x) = -1 + O(\sigma^2) + O(x) + O(|\bar{\mu}|^2)$ and since $(Y_{-\infty})_* X = O(\sigma)$,

$$\begin{aligned} -X(\widetilde{\psi}_{-\infty}) \\ &= -\phi'(d(Y_{-\infty}(p), y_0)^2 - \epsilon\sigma) \left[O(\sigma) + \epsilon + O(\sigma^2) + O(x) + O(|\bar{\mu}|^2) \right]. \end{aligned}$$

The quantity in square brackets is strictly positive for $x, \sigma, \bar{\mu}$ sufficiently small, and the constructions of a_+ and \tilde{a}_+ in [13] go through as before, with $\tilde{\psi}_{-\infty}$ replacing $\psi_{-\infty}$, and b_+ constructed so as to ensure that σ is small on supp a_+ .

Similarly, in the construction of a_{-} and \tilde{a}_{-} , we replace $\psi_{+\infty}(q) = \phi(d(Y_{+\infty}(q)), y_0)$ with

$$\widetilde{\psi}_{+\infty}(q) = \phi(d(Y_{+\infty}(q), y_0)^2 + \epsilon \sigma).$$

BIBLIOGRAPHY

- J. CHAZARAIN, Formule de Poisson pour les variétés riemanniennes, Inv. Math., 24 (1974), 65–82.
- J. CHAZARAIN, Spectre d'un Hamiltonien quantique et méchanique classique, Comm. PDE, 5 (1980), 599-644.
- [3] Y. COLIN DE VERDIÈRE, Spectre de laplacien et longueurs des géodésiques periodiques I, Comp. Math., 27 (1973), 83–106.
- [4] Y. COLIN DE VERDIÈRE, Spectre du laplacien et longueurs des géodésiques périodiques II, Comp. Math., 27 (1973), 159–184.

- [5] W. CRAIG, T. KAPPELER, W. STRAUSS, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1995), 769–860.
- [6] J.J. DUISTERMAAT, V.W. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39–79.
- [7] D. FUJIWARA, Remarks on the convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559–600.
- [8] L. KAPITANSKI, I. RODNIANSKI, K. YAJIM, On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), 77–106.
- [9] R.B. MELROSE, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory, M. Ikawa ed., Marcel Dekker, 1994.
- [10] R.B. MELROSE, M. ZWORSKI, Scattering metrics and geodesic flow at infinity, Inv. Math., 124 (1996), 389–436.
- F. TREVES, Parametrices for a class of Schrödinger equations, Comm. Pure Appl. Math., 48 (1995), 13–78.
- [12] A. WEINSTEIN, A symbol class for some Schrödinger equations on \mathbb{R}^n , Amer. J. Math., 107 (1985), 1–21.
- J. WUNSCH, Propagation of singularities and growth for Schrödinger operators, Duke Math. J., to appear.
- [14] K. YAJIMA, Smoothness and non-smoothness of the fundamental solution of time-dependent Schrödinger equations, Comm. Math. Phys., 181 (1996), 605-629.
- [15] S. ZELDITCH, Reconstruction of singularities for solutions of Schrödinger equations, Comm. Math. Phys., 90 (1983), 1–26.

Manuscrit reçu le 3 juin 1998, accepté le 11 septembre 1998.

Jared WUNSCH, Columbia University Department of Mathematics 2990 Broadway, Mailcode 4406 New York NY 10027 (USA). jwunsch@math.columbia.edu