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THE TRACE OF THE GENERALIZED
HARMONIC OSCILLATOR

by Jared WUNSCH

1. Introduction.

Let M be a compact manifold with boundary endowed with a
scattering metric g as defined by Melrose [9]. Thus in a neighborhood
of 9M, we can write

dx2 h
(1.1) ^^-^
where a; is a boundary-defining function for 9M, i.e. is smooth,
nonnegative, and vanishes exactly at 9M with dx -^ 0 at 9M, and
where h € C°° (Sym2 (T* M)) restricts to be a metric on 9M. Scattering
metrics form a class of complete, asymptotically flat metrics that includes
asymptotically Euclidian metrics on R71, radially compactified to the n-ball;
this class also includes metrics on R71 that are not asymptotically Euclidian
but that look like arbitrary,' non-round metrics on the sphere at infinity
(see [9] for details).

We consider a generalization of the quantum-mechanical harmonic
oscillator on the manifold M: let a; be a boundary-defining function for 9M
with respect to which g has the form (1.1), e.g. \z\~1 on flat ̂  (modified to
be a smooth function at z = 0). For any uj € R+, we consider the associated
time-dependent Schrodinger equation

(^)___ {Dt+^+^+v)1p=o
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where v is a formally self-adjoint perturbation term that can include both
magnetic and electric potential terms. We will take v to be an error term
in a sense to be made precise later on; potentials of the form v e C°°(M)
are certainly allowed. Note that for such a v,

1 . ^
^+^+v

is semi-bounded, hence the Friedrichs extension gives a self-adjoint operator
on L'2(M) (with respect to the metric dg). Our class of operators thus
includes compactly supported metric and potential perturbations of the
standard harmonic oscillator on R".

Perturbations of the free-particle Schrodinger equation on manifolds
with scattering metrics were studied in [13] using a calculus of pseudodiffe-
rential operators on manifolds with boundary called the quadratic-scattering
(or qsc) calculus and denoted ^qsc(M). This calculus is a microlocalization
of the Lie algebra of "quadratic-scattering vector fields" on M, given by

(1.3) Vqsc(M)=^Vb(M)

where

(1.4) Vb(M) = {vector fields on M tangent to 9M}.

Near 9M, Vqsc(M) is locally spanned over C°°(M) by vector fields of the
form x^Qx, x29yy where x, yj are product-type coordinates on M near 9M,
i.e. the %'s are coordinates on 9M. The Lie algebra Vqsc(M) can be written
as the space of sections of a vector bundle:

V^c{M)=COQ{M^SCTM)',

we call ^TM the quadratic scattering tangent bundle of M. Let ^T^M
be the dual bundle (the quadratic scattering cotangent bundle). Let ̂ T^M
be the unit-ball bundle over M obtained by radially compactifying the
fibers of ^T^M (see [9] or [13]). This is a manifold with corners.
The principal symbols of operators in the qsc-calculus are conormal
distributions on ̂ T^M with respect to the boundary (a precise definition
of such distributions will be given in § 2). There is an associated wavefront
set, WFqsc, which is a closed subset of 9(qscT*M).

In [13], propagation of TVFqsc was described for perturbations of
the free particle Schrodinger equation on M. In this paper, we discuss
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the analogous results for the harmonic oscillator, referring to [13] for all
technical details. We can conclude from the propagation results that if there
are no trapped geodesies on M, then except at a certain set of times

(1.5) S^ = ^ — : there exists a closed geodesic in 9M of length ± L\

{ TITF
U ± — : there exists a geodesic n-gon in M

UJ 1with vertices in 9M ̂  U {0},

there is no recurrence of WFqsc for solutions to (1.2). In the above definition
of S^ we adopt the convention that the sides of a geodesic n-gon in
M with vertices in 9M are maximally extended geodesies in M (which
automatically have infinite length) and geodesies in 9M of length TT; the
latter geodesies appear naturally as limits of geodesies through M — cf.
Prop. 1 of [10]. Using very general properties of the qsc calculus, in § 5
we use the non-recurrence result to conclude that if U(t) is the solution
operator for the Cauchy problem for (1.2) then

(1.6) singsuppTr^) C S^.

For example, if we have a compactly-supported potential perturbation of
the standard harmonic oscillator on R72, S^ = 27rZ: If M is the radial
compactification of R71, 9M is the unit (n - l)-sphere. Geodesies on M
connect antipodal points on 9M and geodesies in 9M are great circles,
hence consecutive vertices of a geodesic n-gon are antipodal points and there
exist geodesic n-gons iff n is even; closed geodesies in 9M also only occur
with lengths in 27rZ. Hence for a potential perturbation of the harmonic
oscillator on R71, the trace of the solution operator can only be singular at
multiples of 27r. One can deduce this easily from Mehler's formula in the
unperturbed case.

The trace theorem (1.6) closely resembles a result of Chazarain [1]
and Duistermaat-Guillemin [6] which says that on a compact Riemannian
manifold without boundary,

singsuppTr e'*^ C {±lengths of closed geodesies} U {0};

related results of Colin de Verdiere using heat kernels can be found in [3]
and [4]. Chazarain [2] has also proved a semi-classical trace theorem for
the time-dependent Schrodinger equation, in which the lengths of closed
bicharacteristics of the total symbol appear. By contrast, the trace theorem
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o
of this paper is a non-semi-classical result, and over 5'*M, the relevant
bicharacteristic flow is that of the symbol 11$|2 rather than the full
symbol as in [2]. Results on singularities of perturbations of the harmonic
oscillator have been obtained by Zeiditch [15], Weinstein [12], Fujiwara [7],
Yajima [14], Kapitanski-Rodnianski-Yajima [8], and Treves [11]. Periodic
recurrence of singularities for perturbations of the harmonic oscillator
on R71 was demonstrated by Zeiditch [15] and Weinstein [12], and the trace
theorem (1.6) was proven by Zeiditch for perturbations of the harmonic
oscillator in R71 by potentials in ^(M71).

The author is grateful to Richard Melrose, who supervised the
Ph.D. thesis of which this work formed a part. The comments of an
anonymous referee were also helpful, as was Hubert Goldschmidt's help
in reducing the level of illiteracy of the French abstract. The work was
supported by a fellowship from the Fanny and John Hertz Foundation.

2. The quadratic-scattering calculus.

In this section, we briefly review the properties of the algebra ^qsc(M),
which was constructed in [13], and is closely related to the "scattering
algebra" of Melrose [9].

Let Vqsc(M) and Vb(M) be defined by (1.3) and (1.4), and let
Diffqsc(M) and Diffb(M) be the order-filtered algebras of smooth linear
combinations of products of elements of Vqsc(^) and V\)(M) respectively.
There exists a bi-filtered star-algebra ^qgc(M), the "quadratic-scattering
calculus" of pseudodifferential operators on M such that

• Diff^(M) C ^c°(M).

. ̂ (M) = x^°(M) = ̂ o{M)x£.

• ^^(M) <= ̂ s/W if m <- ml and V -m' <i-m.
• Q ^^(M) =. ^^'^(M) consists of operators whose Schwartz

rn,£
kernels are smooth functions on M x M, vanishing to infinite order
at 9(M x M).

• Elements of ^°s^(M) are bounded operators on L<2(M).

• Given a sequence Aj G ̂ ^'^(M) for j = 0,1,2, . . . , there exists
an "asymptotic sum" A e ^^(M), uniquely determined modulo

^y°°(M), such that A - ̂  Aj e ̂ -^-^(M).
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Let Cqsc-^f = Q^^T^M). Let a be a boundary denning function
for the boundary face ^S^M of ^J^M created by the fiber
compactification. Let x be the lift of a boundary defining function on
M to ̂ T^M - thus x defines the boundary face ̂ T^M. Let C°°(M)
denote smooth functions on M vanishing to infinite order at 9M and
C~°°(M) the dual space to C°°(M)-valued densities. Following Melrose
[9], we define conormal distributions on ^T^M with respect to CqscM
as follows:

A^C^M)

= {u € C-^^r'M) ̂ iffj^TM)^ C apxqLOO(qscT''M) for all A;};

here Diff^ is defined on the manifold with corners ̂ T* exactly as it was
defined on manifolds with boundary: as the span of products of vector
fields tangent to (all faces of) the boundary. Let

^'^(CqscM) = ̂ ^sc^^^m-l,W^sc^^^

There exists a symbol map

Jqsc,̂  : ̂ scfW ̂  ̂ -^-^(GqscM)

such that
• There is a short exact sequence

(2.1) 0 ̂  ̂ ^'^(M) —— ̂ (M) A!̂ ^ ̂ [-r^-m]^^ ̂  o^

• The symbol map is multiplicative.

• The Poisson bracket extends continuously from the usual bracket
defined on the interior of ̂ T^M to A ^ ' ' ' ̂  and

Jqsc^mi+r^-lA+^d^Q]) = - {jqsc,mi^i (^)^qsc,m2,^2 (Q) }•^

Furthermore, if a C A771'^^?*^^), {a, b} = ^(^) where Ha is
the extension of the usual Hamilton vector field on the interior of
^T^M to an element of a-^1;^2^8^*^). (We refer to the
flow along Ha or arn~lx~£~2Ha as bicharacteristic flow.)

• There exists a (non-unique) "quantization map"

Op ̂ -^-^^M) —> ̂ ^(M)

such that

.7qsc,^(0p(a)) = [a] € ^-^-^(CqscM).
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DEFINITION 2.1. — An operator P e ̂ (M) is said to be elliptic
at a point p e CqscM if j^c,m,e is locally invertible near p. The set of
points at which P is elliptic is denoted ell P. JfP is elliptic everywhere,
it is simply said to be elliptic.

DEFINITION 2.2. — Let P e ^(M). A point p e CqscM is in
the complement ofWF^P (the operator wavefront set or microsupport
of P) if there exists Q e ̂ ^(M) such that Q is elliptic at p and
PQ € ^qs?'°W.

We can now define the qsc wavefront set of u e C~°°(M) as the
subset WF^scU of CqscM such that p ^ WF^u if and only if there exists
A e ^s?(M) with p € ell A such that Au € C°°(M).

The qsc wavefront set and microsupport enjoy the following
properties:

• If A,B e ^qsc(M), then WF' AB c WF_A H WF_B and
WF^A-=WF^A.

• Microlocal parametrices exist at elliptic points: if P e ^^(M) is
elliptic at p € CqscM then there exists Q e ^qs^'^M) s^Tch that

PiWF^(PQ-I) and p i WF'^QP - I) .

• Microlocality: let P e ^qsc(M) and u € C-°°(M). Then

WF^Pu C WFqscP n WF^u.

• Microlocal elliptic regularity: Let P e ^qsc(M) and u e C~°°(M).
Then

WF^(u) C WF^(Pu) U (ellP)0.

• We can (and do) choose the map Op in such a way that

^qsc^^O C esssuppa

(esssuppa is the set of points in CqscM near which a does not
vanish to infinite order).

We will also require a notion of qsc wavefront set that is uniform in
a parameter.
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DEFINITION 2.3. — Let u G C{R\C~°°(M)). For 5 C R compact,
we say that p ^ WFq^^) if there exists a smooth family A(t) € ^°s^(M)
such that A(^) is elliptic at p for all t 6 S and Au e C(S ; C°°(M)).

Associated to ^qsc(Af) is a family of Sobolev spaces

H^W = [u € C-°°(M): ̂ -\M)u c L\M)}

such that

• IfAe^/(M)then

A:H^(M) —— H^'^^M)

is continuous for any m, £.

• For any ^ 6 R,

n^(M)=C°°(M) and J^(M) = C-°°(M).
m m

• If On is a bounded sequence in A~'m^~'m(M) and On —>- a in some
^^(M), then Op(a^) -^ Op(a) in the strong operator topology on

B (^(M), H^^^M))

for all M, L.

3. The propagation ofWFqsc.

For details of all computations in this section, see [13], especially
§11.

We consider the symbol and corresponding bicharacteristic flow for
the operator

^=|A+^+.
where

v € Diff^(M)

is formally self-adjoint and a; is a boundary-defining function with respect
to which g takes the form (1.1).
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Let the canonical one-form on ̂ T^M be

da- dy
A—r "^—Ir-a:3 • x2

The joint symbol of U is represented in A^~^(C^cM) by a conormal
distribution of the form

(3.2) ^sc,2,o(^) = ̂  (A2 4-|/.|2 + a;2 + a;r(A, /.));

r(A,/,) e A^C00^, 2/) + A/,C°°(^,/) + ̂ 2 C00^, i/)

where |̂ | denotes the norm of ^ with respect to the metric h = /i|^.
Note that (3.1) shows that U is an elliptic element of ^^(M); the
perturbation v does not enter into the expression (3.1) as it has lower

order than ^ A + —— in both indices. The Hamilton vector field of H is

X = X + P

where

(3.2) X = \x9^ + (A2 - |^|2 + o;2)^ + (^ 9,} + 2A/.. ̂  - ^ 9 |̂2 . ̂

is the Hamilton vector field for the symbol -1^ (A2 4-1//|2 + c^2), and
ZtX

(3-3) P = P\^Qx + p2^ + gi^A + q2x9^

is the Hamilton vector field for the "error term" ^"^(A,^). Here we
adopt the convention that

<a,&)=^a^/^(2/) and a .6=^aA.

The vector field P is identically zero if h is a function of ^/ only, and
always vanishes at x = 0.

Under the flow along X,

d
~dt
A(A+^|)=(A+^|)2+^2,

hence

(3.4) A + i\u\ = u; s"M^o)+^cosa;ft-fo)
cosu>(t - to) - iRsinuj(t - to)
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for some R € [0,1]. For R > 0, this gives a periodic orbit with period T T / U J .
On {/^ -^ 0} {i.e. R > 0), we set fl = /V|/^|, and introduce the rescaled
time parameter s = f \p.\ dt to rewrite the flow along X as

dfti
(3.5)

(3.6)

(3.7)

dyi
ds
dX

~ds

dx
~ds

= h13^,

\2 - H
1^1

Xx=w

2

+^2,

-^=-^9y^\

M =2A,
ds

As the set p, == 0 plays an important role in the geometry of X, we give it
a name:

DEFINITION 3.1. — Let At C ^T^M be the set given in our
coordinates by {x = p, = 0}. Let jV± C At be the subsets on which
±\ ̂  0. Let Afg = A/± D^S^M (i.e. At0 is the intersection of At with the
corner). WerefertoAfasthe "normal set /? withAf-^- being the "incoming
normal set" and At- the tf outgoing normal set."

Figure 1. Integral curves ofX, projected onto the (A, p) -plane
and radially compactified. The vertical line is the solution
/.=0.

While (A, \fjL\) are undergoing a flow described by (3.4) (see Fig. 1),
then provided R ̂  0, (3.5) shows that (y, /2) are undergoing unit speed
geodesic flow in 9M with rescaled time parameter s. For R = 0, p, is
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identically zero, y is constant, and A blows up at t — to = ±7r/2a;, i.e.
the flow crosses At from A/^ to J\T^. in time TT/O;. More generally the
integral curve starting at [i = 0, A = Ao, reaches the corner at time
t = uj~1 arctan(o;/Ao).

Note that all terms in X are homogeneous of degree 1 in (A,/^)
except the term UJ29\^ which is homogeneous of degree —1. If we let a be
the defining function for ^S^M in ̂ T^M given by

^(A2^!2)-^

and set

A = aA, /2 == (TJJL

then the vector field aX is tangent to the boundary of ^T^M, and we
have

(3.8) aX^XxQ^-^Q-^^Qy}

+ (A/2 - j^|/2|2) ̂  - \aQ^ + 0((72) + O(^)

where 0(a2) and 0(rr) denote error terms of the form o^Yi and xY^,
with V, tangent to Q^T^M)', the 0(a2) term is just a^Q\, while the
0{x) term is what has above been denoted P.

The vector field X differs from the free-particle Hamilton vector-
field Xfp described in [13]̂  only in the term a;2^, hence since this term
is 0(cr), we have

(3.9) (rX\^cs^M = crXfp\qscs^M'

DEFINITION 3.2. — A maximally extended integral curve of crX on
qsc^*^ ^ g^ ̂  ̂  non-trapped forward/backward if

lim x(t) = 0.
t-^±oo v /

A point in qscS*M\J\fc is said to be non-trapped forward/backward if
the integral curve through it is non-trapped. A point in Af0 is said
to be non-trapped forward/backward if it is not in the closure of any

^ Unfortunately, this vector field is called X as well in [13].
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forward- /backward-trapped integral curves. Let 7± denote the set of
forward-/backward-trapped points in ̂ S^M.

The only zeros of aX on ^S^M are on the manifolds A/'0

(attracting) and Af^. (repelling), so we can define

N^: ̂ 5*M\(A4 U T±) —^ AT0

by
pi—> lim exp(taX)[p].

t—^±00

We extend this definition of 7V±oo to ̂ T" M\(J\f^ U 7±) by homogeneity.
We further define

V±oo : ̂ ^MVA^ U T±) — 9M

to be the projection of N^oo to 9M.

THEOREM 3.3. — N^oo and y±oo are smooth maps. If we let C^ be
the submanifold of^S^M given by

ci^+i/^^o}

then for e sufficiently small, C^_ is a fibration over 9M with projection
map Vdboo; ^d every integral curve ofaX which is not trapped forward/
backward passes through C 6 . The sets '7±\A/^ are closed subsets
of^S^MVA/^.

By (3.9), this theorem follows from Theorem 11.6 of [13].

We can thus define the scattering relation:

DEFINITION 3.4. — Let S C .A/^YTI . The scattering relation on S is

Scat(<S) = 7V_oo (A^,(<S)) C X^.

It is shown in [13] that Scat takes closed sets to closed sets
and Scat"1 takes open sets to open sets.
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Example 3.5. — If M is the radial compactification of R" with an
asymptotically Euclidian metric, we can identify the manifolds ̂  with
5" = QM. Then for 0 € 5"-x, Scat 0 consists of all 0' e S"-1 such that
there exists a geodesic 7 in (uncompactified) R" with lim y(() = -Q>
and (i™^7^) = Q- In other ̂ ^s, Scat consists of ali'directions in R»
that can scatter to the direction ff. In the Euclidian case, Scat is the
antipodal map on 5'"-1.

We now state theorems on propagation of WF^ that will suffice to
obtain results on sing supp Tr U(t). (Slightly more sophisticated theorems
corresponding to Theorems 12.1-12.5 of [13], in fact hold here as well.) '

_ THEOREM 3.6 (propagation over the boundary) — Let n in
(^T^M)0 and assume '

exp(TX)\p} € (^T^M)0.

Then p ^ WFq^(O) if and only if there exists 6 > 0 such that
exp(TX)[p] i WF^^.

THEOREM 3.7 (propagation into the interior). _ Let p e^
5"l'Af\.A/'.c be non-backward-trapped and let T e (0, TT/O;). If

exp(-:TX)[ALoo(p)] i WFqsc^(O)

then there exists 6 > 0 such thatp ^ WF^'6'7'^^.

THEOREM 3.8 (scattering across the interior). — Let q e ̂  be
non-backward-trapped. If

exp(-ToX) [Scat(g)] n WFqsc^(O) = 0

for some To € (0,7r/o;), then for every T e (To, To + TT/^), there exists
6 > 0 such that exp((T - To)X)[q] i WF^6'^^.

THEOREM 3.9 (global propagation into the boundary). — Let
q € M'°_ be non-backward-trapped. If

N^{q) n WFqsc^(O) = 0
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(closure taken in ̂ S^M), then for T e (0, TT/O;), there exists 6 > 0 such
that

e^TXMiWF^^

The proofs are by the same positive-commutator arguments used
in [13] (which were in turn adapted from Craig-Kappeler-Strauss [5]),
although the symbol constructions need to be slightly modified from
those in [13] because the maps y±oo ^lr^ n0^ exactly constant along the
flow of X; we discuss these issues in an appendix.

4. Non-recurrence of singularities.

We assume throughout this section that there are no trapped geodesies
0

in M.

This section is devoted to proving

THEOREM 4.1. — Let S^ be defined by (1.5). For T ^ 5^ and for
anyp € Cqsc-^? there exists an open neighborhood 0 ofp and e > 0 such
that ifWFqsc^(O) C 0 then WF^c'^^^ 00=0.

In order to deduce this theorem from Theorems 3.6-3.9, we first
define a relation on Cqsc^ which describes from what points singularities
may reach a point p € CqscM:

DEFINITION 4.2. — Let p, q € CqscM. We write p ~ q if there exists
a continuous path 7 from p to q in CqscAf that is a concatenation of
maximally extended integral curves of aX such that

(4.1) ^(lengths of integral curves in ̂ T^^M) = t,

where we define the length of an integral curve in ^T^j^M to be its
length as an integral curve of X (and hence a finite number).

Then for S C CqscM, let

Gt{S) = {p 6 Cqsc-^ •* P ~ Q for some q € 5'}.

I f p ^ q and q ~ r, then q sr^ r, hence

(4.2) Gs+t{s)=g,og,(s).
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We also have

(4.3) Gt{SUT)=gt(S)UGt(T).

The relation p ~ q is closed in the following sense:

LEMMA 4.3. — Let R C CqscM x CqscM x R be defined by

(p, g, t) € R iff p ^ q.
Then R is a closed subset ofCqscM x CqscM x R.

Proof. — Suppose pi —>- p, qi —> g, and ii —> t as i —> oo, and
that (p^, <^, ̂ ) € .R. We will show that (p, 9, t) 6 -R.

For simplicity, we reformulate (4.1) as follows: let A; be a Riemannian
metric on the manifold (^T^M)0 such that the norm of X with
respect to k is one. (As X = 0((7~1), k vanishes at ^S^j^M.) Let
6 = k { ' , X) C ̂ ((^T^M)0); extend 0 to be zero on the interior of the
boundary face ^fi^M. Then the condition (4.1) is equivalent to

(4.4) /(
J^l

Now by hypothesis there exists a sequence 7^ of paths as in
Definition 4.2 such that 7%(0) = pi, 7z(l) = (?z, and f 0 = ti for all
i. As the 7^ are all integral curves of crX, we apply Ascoli-Arzela to
obtain a path 7 between p and q, made up of integral curves of aX with
f^=t. D

DEFINITION 4.4. — Let

Gtls={p:gt(p)cs}.
We now prove that Qt is, in an appropriate sense, a continuous set

map.

LEMMA 4.5. — I f K c R i s compact then

U^
t€K

takes closed sets to closed sets, and

n^-1
teK

takes open sets to open sets.
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Proof. — Let TI-L and TTR denote the projections of CqscM x CqscM x
R onto the "left" and "right" factors of Cqsc and let T^ denote projection
to R. Then we can write

(J ^(6') = Tr^Ti^1,? n TT^-1^ n R)
t^K

and

0 ̂ "'(^ = [^L^s0) n Tr,-1^ n R)]0
te^

hence the result follows from Lemma 4.3. Q

Theorems 3.6-3.9 can now be conveniently recast as

MAIN PROPAGATION THEOREM. — I f S C CqscM and

Gt{S)nWF^(0)=9
then there exists e > 0 such that

s^}WF^-€-T^=^
Proof. — By (4.3), it suffices to prove the result for 6' = {p}, a

single point in CqscM. By (4.2), it suffices to prove the result for small t\
we take t < T T / U J for simplicity. If

pe^T^M)0^,
then for any t, as discussed in §3, Qt{p) is a single point in (^T^M)0,
and the result follows from Theorem 3.6.

Let arctan+ denote the branch of arctan taking values in [0,7r).
If peA^°, then for t e (0,Ct;-larctan+(A(p)/a;)), Qt{p) is again a
point in A/"0, and again the theorem follows from Theorem 3.6.
At t = c^arctan^^A^)/^;), exp(-tX)\p} e A^, and

Gt(p) = N^(exp(-tX)\p]) c^ 5*M,
hence Theorem 3.9 takes care of this case. For

cc^arctan.^A^/ci;) < t < T T / U J ,
we once again have Qt{p) C (^T^M)0, and Theorem 3.8 finishes the
proof.

If, on the other hand, p e^0 5*M, g^p) C (^T^M)0 for
t € (O.-TT/O;): Qt(p) is a single point if p ^ A/^, or a whole set, given
by the scattering relation, if p e A/^. The theorem then follows from
Theorem 3.7 in the former case, and Theorem 3.8 in the latter. D
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The relation Qt is non-recurrent except at certain times:

LEMMA 4.6. — For any T ^ S ^ a n d p e CqscM, there exists an open
neighborhood 0 ofp and c > 0 such that

^(0)0(9=0 forallte [T-e.T+c].

Proof. — By compactness of 9M, S^ is closed. Hence if T <f. 5^,
there exists e > 0 such that

^=[T-e,r4-e]cR\^.

By Lemma 4.5, |j Gt(p) is closed. If this set does not contain p then
tCK

we can choose an open set U containing |j <^(p) but such that p 4. U.
t^K

By Lemma 4.5, we can then set

0= m'̂ v7-
t^K

Thus it will suffice to prove that for t ^ 5^, p ^ Gt{p)'

First we take the case p e^ S*M\Af^. Then for t G (0, TT/O/),

^(p) = exp(-tX)[N.^(p)} c ̂ T^M)°,

and this set certainly doesn't contain p. Let T be the involution of J\f°
swapping A/^ and AT0.. Then

^(p)=A^oZo7v_^(p),

and this set doesn't contain p unless V+ooh) = ^-oo(p), z ' e . unless p lies
on a geodesic 1-gon with vertex in QM. For t € (TT/O;, 2-K/uj),

Gt(p) = exp(-(^ - 7r/a;)X) [Scat oZ o N,^(p)],

again a subset of (^T^M)0. The set

^27r/o/(p) = A^o o Z o Scat oZ o X-oo(p),

and this set certainly does contain p. Continuing in this manner, we find
that if t = ri7r/^ + r with r G (0, TT/O;) then

^(p) = exp^rX^ScatoZ)71^^) c (^T^M)0,
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while

Gn^/^p) = N^ o J o (Scat oZ)^ o ^v-oo(p),

hence p € Gt(^) iff there exists a geodesic n-gon passing through p with
vertices in 9M (this is always the case for n even, as we are allowed to
repeat edges).

9MY^(P)

Y-oc (P)

Figure 2. A point p on a geodesic triangle with vertices in 9M.

Now we take the case p e (^T^M)0^. The flow of X in
(qscT]Q^M)o\A/' is, as discussed in §3, given by unit speed geodesic flow
in 9M with time parameter s = f \^\dt, while (A, |/^|) undergo the motion
(3.4). The only fixed-point of the (A, |^|) flow is given by A = 0, \p,\ = uj\ all
other orbits are periodic with period TT/O;. Hence if (A(p), |/^(p)|) 7^ (0,o;)
and <; ^ (7r/a;)Z then p ^ fft(p), since the (A, |/A|) coordinates distinguish
between these two points. If, on the one hand, t = UTT/C*;, we have by (3.4)

(4.5)
'mr/w"/Jo

\^\dt

n7r/u) sin uj(t - to) + iR cos u(t - to)i=Q
/o cosuj(t — to) — iRsmu;(t — to)
. r^ tan^-%J? ,-L= nuj^ I ————-—— dt

-7r/2o/ 1 + iRta.n^t

dt

= n7r

(recall that R = 0 only on At). Thus by (3.5), for (A, |/^|) ^ (0,^),
p = Gn7r/u;(p) OIUV ^ there is a closed geodesic of length mr in 9M. On
the other hand, if (A(p), |/^(p)|) = (0,o;), (A, |/^|) remains constant along
the flow, so p == Gt(p) only if there is a closed geodesic in 9M of length
ujt. This proves the result for p 6 (^T^M)0^.
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The proof for p 6 At (including AT0) proceeds like the proof for
p C^ 5'*M\A/'-; certainly if t ^ (7r/o;)Z, p ^ Qt{p), as A is constant
on Qt(p) at fixed t, and equals \(p) only for t € (7r/o;)Z. The same
geometrical discussion used in the proof for points in (^S^M)0 also
shows that p ^ Gmv/^{p) unless there is a geodesic n-gon with vertices in
9 My with one vertex at y(p). D

Proof of Theorem 4.1. — The theorem follows directly from the
Main Propagation Theorem and Lemma 4.6. D

From Theorem 4.1, we deduce the following, which is the key result
for our trace theorem.

COROLLARY 4.7. — Given T ^ 6^, there exists e > 0, k € Z+, and
A, e ^S(M), i = 1,.... k such that

A,U^t)A, € C°°([T - e,r + e]; ^°°(M))
and

I=^A^+R
1=1

(J denotes the identity operator) with R e ̂ ^'^(M).

Proof. — By Theorem 4.1, we can find a partition of unity (&i,i)2,
subordinate to a cover 0^ of CqscM, such that WFqsc'0(0) C C^ implies
that WFclIc"6^"^6^ ri Oi = 0. Extend the 61^ to be smooth functions on
qsc^*^ ̂ ^ esssupp^i,, C Oi. Set Bi,i = 6p(6i^). Then

^B^-J^Gie^'^M).
i

Let c\ denote a representative of the symbol of C\ in ^.^(^T^M).
Setting 62,1 == — \c\b\^ and ^2^ = Op(62,z), we have

(̂Bi,, + B2,.)2 - I = €2 € ̂ '(M).
i

Now let C2 represent the symbol of (72, set 63^ = —^C2&i , z and
B^,i = Op(&3^), and continue in this manner, defining Bj^ inductively.
Then use asymptotic summation to obtain

^-s^^
j

with WF^A, C d and I = ̂  A? + ̂  with R e ^q^'°°(M).
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By our construction of Oj, for all i = 1,..., k we have

WF'^A, H WF^^UWA^O) = 0

for t € [T - c, T + e], hence by microlocality,

WF^^AiU^A^Q) = 0

for any ^(0) € C-°°(M), z.e. A,[/(^)A, € C([T - e,r + e]; ̂ -^(M)).
Smoothness in t follows similarly, as

D^AiU(t)Ai == A^-^UWA^

and since 7< € ^qsc(Af),

^^"''^'(-^^MA^W C lVF^c~e'T+e]^(^)A^(0). D

5. The trace.

We begin the study of TrU(t) by showing that it exists as a
distribution:

PROPOSITION 5.1. — For (f) e «S(R),

y>^)^)d^^w'oo(M)

and

(I)^TT f (l)(t)U(t)dt

is a tempered distribution on R.

Proof. — The structure of the argument is standard — see, for
example, part II of [2]. We reproduce it only owing to the slight novelty
of the Sobolev spaces involved.

Choose K, € R below the spectrum of ?i. Then by ellipticity of 1-t,

(K + -Hr" •• H^(M) -. H^(M).
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Since

U(t) = (^ + W)^ + 7<)-^) = (/. - D^^ + ̂ )-^),

we can write

(5.1) y <^)^) d^ = /'(/, - A)^)(^ + H^U^) dt.

U(t) is unitary on ̂ W. so

(K + Hr'UW: H^(M) -. H^(M)

is bounded uniformly in t. Smce^H^(M) = ̂ (M), (5.1) shows that

[(f>(t)U(t)dt:C-°°(M) ——C°°(M),

z.e.

yl^)^)d^e^^oo(M).

Furthermore, if we take k large enough so that (/^ + H^U^t} is trace-
cla^s, we see that 0 ̂  Tr J (t>(t}U(t) dt is a tempered distribution of order
at most k. r-i

We are now in a position to prove our main theorem:

THEOREM 5.2. — If there are no trapped geodesies in M then

singsuppTr(7(^) c S^.

Proof. — Let 0 € C°°(R) be 0 for x > 2 and 1 for x < 1. Set

Wn = Op[(l - 0(m-))(l - cf>(na))] e ̂ (M);

then Wn -> I strongly on L^M). We regularize TrU(t) by examining
instead Tr U(t}Wn\ this is a smooth function on M since D^ Tr U(t)W =
Tr(-n)PU(t)Wn.

Given T ^ S^, we choose A,, z = 1,.. . , k as in Corollary 4.7, and
write

TrU(t)Wn = TrIU(t)Wn = ̂ Tr A^U\t)Wn + TrRU(t)Wn.
i=l
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AiU(t)Wn is trace-class, so we may now rewrite
k

TrU(t)Wn =^TrAiU(t)WnAi-^TrRU(t)Wn.
i==l

As n -^ oo, D^RU(t)Wn converges to D^RU(t) in the norm topology on
operators H^(M) -^ H^/(M) for any m.^m',^', and any p e Z+;
thus TrRU(t)Wn approaches a smooth function as n —> oo. Thus, if we
can also show that

1) ^TrU(t)Wn = TrU(t), and

2) ^TrAiU(t)WnAi = TrAiU(t)Ai for all i = 1,... , k,

in the sense of distributions, we will have Tr U(t) e C°°([T - e, T + d) for
some e > 0, and we will be done.

Both 1) and 2) follow from the following identity, which holds, in
the distributional sense, for any A e ̂ s^-^) (^d any p, q):

lim TrA<7(t)H^A=TrAL^)A.

To prove this, let (j) C <?(R) be a test function, let K lie below the spectrum
of 'K, and write

lim [ (t>(t)TrAU{t)WnAdt
n—>oo J

= lim Tr f</)(t)U(t)WnA2 dt
n-nx J

= ̂  Ti f (/>(t)(K - D^^ + -H^U^WnA2 dt

= ̂ /[(K - A)"W] ̂ ^[(K+^)-m[7(t)^„A2] dt

= Jim^ J'[{K - A)"1^^)] Ti [A(K + U^U^WnA} dt

= [[(K - Dt^^t)] Tr[A(K + 'H^U^A} dt

= t (f>(t)TiAU(t)Adt;

here we take m large enough that (/t + 'M)-7";/^) is trace-class; the
penultimate equality follows from the norm convergence

A(K + H^U^WnA — A(K + H^U^A

as operators H^(M) -^ H^-^-^i-^M) for all p, q and all e > 0. D
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Appendix: the propagation theorems.

As noted above, the only obstacle to proving Theorems 3.6-3.9 in
exactly the same manner as Theorems 12.1-12.5 of [13] is the fact that
(Kfcoo)*^ ^ 0 in the harmonic oscillator case; we merely have

(Y^X = 0(a).

This makes no difference in proving Theorems 3.6 or 3.8, but we must
modify the constructions of the symbols a± and a± used to prove the
other three theorems.

We modify the symbols a^ and a^ defined in §13 of [13] by
replacing the factor z^-oo = 0W^-oo(p)? 2/o)) (^ is a cutoff function) by

^-oo = <W-oo(p)^o)2 - 6(7).

Since Xa = -A+O^^+O^) = -l+O^^+O^+Od^]2) and since
(r-oo).X = 0(a),

-^-oo)

= -<m^-oo(p),2/o)2 - ea) [0(a) + e + 0(<72) + O(^) + 0(|/2|2)] .

The quantity in square brackets is strictly positive for x^ a, fi sufficiently
small, and the constructions of a+ and a+ in [13] go through as before,
with '0-co replacing ^-ooj and 6+ constructed so as to ensure that a is
small on supp a+.

Similarly, in the construction of a- and a-, we replace ^+00 (o) =
(j)(d{Y^{q)),yo) with

^+oo(<?) = 0(d(y+oo(g),2/o)2 + ecr).
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