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ON PAIRS OF CLOSED GEODESICS
ON HYPERBOLIC SURFACES

by Nigel J.E. PITT (*)

1. Introduction.

Let r\f) be a compact, unramified hyperbolic surface; that is, a
quotient of the upper half plane f) by a Fuchsian group F < PSL»2(M) with
no parabolic or elliptic elements. Such a group is called totally hyperbolic.
It is well known that the geometry of F\^ is intimately linked with the
spectral properties of the hyperbolic Laplacian

2 / 5 2 92 \

^-^(w^Qy-2^

as is apparent in the Selberg trace formula, which links the spectrum of A
with the lengths of closed geodesies on F\^ in a Poisson-like summation
formula. Here we consider interactions between closed geodesies on F\^,
that is, the angles of intersection and lengths of common perpendiculars.
The main result is another summation formula linking this information
with spectral data for A, and we use it to study these interactions both on
average and individually.

We begin by outlining the trace formula, since this includes both
notation and results we will need in the following. Let p(^, w) denote the
hyperbolic distance between z, w C -Q, and let

u(z,w)= e^'^ + e-^'^-2.

(*) Research supported by CNPq-Brasil.
Keywords: Hyperbolic surfaces - Closed geodesies - Eigenfunctions of the Laplacian -
Trace formula.
Math. classification: 11F72 - 53C22.
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Let k be a compactly supported C°° test function on [0, oo) and let K(z, w)
denote the automorphic kernel

(1.1) K{z,w)=^k(u(z,w)).
7er

(In fact weaker conditions on k suffice in the following discussion, see [3],
[10], but are not needed here). Let {^} denote a complete set of
eigenfunctions of the Laplacian in ^(F^), orthonormal with respect
to the Petersson inner product

(f.g}- I f{zW^z
Jr\f)

for d^z the invariant measure y~2 dxdy^ with

A<^- = Xj^pj for \j = ^ 4- r'j > 0.

The spectral theorem gives a decomposition of K as

(1.2) K(z^w) =^h(r,)^(z)^(w)
j

where k(u) and h(r) are linked by the Selberg/Harish-Chandra transform,
denned by

(1.3a) h(r) = /'00 C?($) e^ d ,̂ G($) = 1 />00 h(r) e-^ dr,
J-oo 27r 7_oo

(1.3b) Q(e^+e-^-2)=G(0,

(1.3c) W=r^d. , ^)=-l^d^M,
Jw Vu-w TV J^ ^/w - u

where h is holomorphic in |Imr| < ^ + e, is even in r, and decays as
h(r) < (|r| +1)~6 for ^ > 2 (see [3], [10]). Note that there are finitely many
complex Tj, corresponding to eigenvalues below - these include Ao = 0
and possibly Ai. Selberg's trace formula is now proved by evaluating the
trace

(1.4) T^i(r,A:)= / K ( z ^ z ) d ^ z
Jr\^

in two ways; the first using (1.2). The other uses a decomposition of F into
conjugacy classes and an unfolding of the integral into regions where it can
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be calculated. The conjugacy classes are naturally in 1-1 correspondence
with the closed geodesies on r\^, and the Jordan canonical form of the
conjugacy class is a dilation z •-> pz where log? is the length of the geodesic.
We write

dm(p)=\prn/2-p-m/2\ and d(p)=d^p).

A geodesic is called primitive when it closes at the first opportunity, that is,
the corresponding conjugacy class is not a power of another.

Evaluating using these ideas the Selberg trace formula in our case of
totally hyperbolic groups can be written

d.5) E logp E m^1 = E ̂ -) - Woi(r^)^_^--or- ̂  d ('n\ /

p ^o am[p^ jP m^n am^ •

where P ranges over primitive closed geodesies. This has been used both to
give a Weyl law for the spectrum of A,

(1-6) #{r.\r^R}^°^R^
47T

and to count primitive closed geodesies of restricted length:

(i.n E10^- E ^+o(^).
P<X 0<ir,<^ 2 "^J

(Due to Selberg. Such a result is known as a prime geodesic theorem;
see [2], [3], [5] and [8] for details, stronger versions, and connections with
quadratic forms).

To introduce pairs of closed geodesies we use two variable versions
of (1.2) and (1.3), providing a double sum over the group, and calculate a
trace analogous to (1.4) to see the interactions between these pairs. The
principal result of the paper is the following theorem:

THEOREM 1. — Let r be a totally hyperbolic co-compact Fuchsian
group, let {(pj} denote a complete set of eigenfunctions of A in ̂ (r^)
with eigenvalues Xj == ^ + rj, and let P denote the primitive closed
geodesies on F\^. Then the spectral expression

Z^(^n0(h,|2, |^|2) - A;(o)Voi(r\^)
J.k
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is equal to the geometric expression

\-io.p V-Q(€(P)+^(P))
^> (^)(^^)+^h))^

^(0,0)

+ y Y Y F Q^+e^+^^dn
PiAC^ m^O^ ^^3+^2(^(pl)+^(p2))+^(pl)^(p2)sin2^

+2 y W />00 Q(^+€(PiK^(p2))dn
PiAeP p m^o^ ^3+^2(d2,(pl)+^(p2))-^(pl)^(p2)smh2p

where ^ ranges over the non-zero intersection angles between Pi and ?2, p
ranges over the geodesic common perpendiculars between Pi and ?2, and A
denotes the largest root of the cubic expression. The test function Q is
assumed to be C°° and of compact support^\ and the various transforms
are given by

00 00 00

W=-/9^, LW=fQ(^, Q^-l/^W-,
7T J VW - U J y/U-W 7T J ^W -U

u w u

^-l^^ LW=[Q^, Q^^^fW^
7T J VW - U J y/U-W 7T J ^W -U

u w u

£(4sinh2 ̂ i +4sinh2 j^) = G^i,^),

/oo /»oo

fa(n,^)= / G(el,^)e^rlsl+^2d$ld$2,
-00 J —00

G^i^2) = —— I I ^(ri^e-^-^drid^.
4^ 7-00 7-00

On the geometric side the new information here is encoded in the
structure of the integrals appearing. These are of elliptic type, becoming
unbounded a s ' ^ — » 0 or ? — ) • ( ) in typical choices of Q. On average, then,
the theorem restricts the degree to which very small intersection angles or
very short common perpendiculars can occur, since the spectral side can
be evaluated asymptotically for "nice" choices of Q. The complication is
that the integrals depend not only on ^ or p, but on a function of the
lengths of the closed geodesies and the interaction. This is to be expected,
as can be seen by considering the intersection angles of closed geodesies in
the analogous case of the torus Z^R2. Closed geodesies on Z^IR2 occur

(2) The restriction to compact support can surely be weakened to some polynomial
decay of Q and its first derivatives, but this is not necessary for our applications here.
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in parallel families, coming from straight lines in the plane with rational
slope. If this slope in reduced form is p / q , say, then the primitive closed
geodesic associated to it has length (p2 + q2)^ and as can be seen from
the geometry of the situation, two such geodesies corresponding to slopes
°f Pi/Qi o^d P2/Q2 will intersect \piq2 — qip2\ times, always at the same
angle ^, given by

sin^ big2-^2l
(^^(Pl-^

Thus a small angle of intersection requires that at least one of the
geodesies is long. The negative curvature, non-abelian case of F\f) is more
complex; the lengths of individual primitive closed geodesies are not simply
calculated, and two primitive closed geodesies will probably not repeat
an intersection angle, nonetheless Theorem 1 controls the interactions on
average.

In the case of intersection points the moduli of the elliptic integrals has
a geometric interpretation. Geodesic polar coordinates (p, (/?) are defined
for f) (see [3]) by considering any z € f) as lying on a unique geodesic
passing through i at an angle y? e [0, 27r) from the vertical, at a distance
p G [0, oo) from %. Linking p with u as above we can construct a tangent
plane to ^ at i as the euclidean plane with polar coordinates (^/u,</?). By
translation this clearly also defines a tangent plane at an arbitrary w € ^),
which descends naturally to a tangent plane to F\f) under the covering
map. If two closed geodesies Pi and P^ cross at z at an angle ^, then they
are the images under the covering map -Q —> F\,Q of two geodesic segments
in ^ of lengths log pi and logp2 respectively, crossing at their midpoints
at the same angle ^. The corresponding trajectories in the tangent space
are euclidean line segments of lengths d{p^)^d{p'z) respectively, crossing
at their midpoints at an angle of '0. There is a unique euclidean ellipse
(see Fig. 1) passing all four endpoints parallel to the other line segment,
and the modulus of the integral appearing in Theorem 1 is precisely the
eccentricity of this ellipse.

DEFINITION. — For each intersection point of closed geodesies of
lengths log? and log q we define the eccentricity K € [0,1) of the intersection
as being the eccentricity of the corresponding ellipse in the tangent space.
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Figure 1

This is given by

2^^4(pl) + 2d2(pi)d2(p2) cos W + d4(p2)
^=

d^Pi) + cP(p2) + ̂ (Pi) + 2d2(pi)d2(p2) cos 2^ 4- d4^)

where i9 is the angle of intersection. Let JC^(P^,P^) denote the set of such
eccentricities. For each common perpendicular of length p we define the
eccentricity K C [1/\/2,1) by analogy:

^ ^ d^p,) 4- ^(p2) + ̂ (Pi) + 2d2(pl)d2(p2) cosh2p + d4^)
K =

2^/d4(pi) + 2d2(pi)d2(p2) cosh2p + d4^)

and let ^€2(^15-^2) denote the set of such eccentricities.

With these definitions we have our first corollary, which is essentially
an extraction of an asymptotic form of Theorem 1.

COROLLARY 1. — Let F denote the elliptic integral of the first kind

da
F(^K)= I

Jo

and let pi be | n | i f A i = ^ + r ^ < ^ , 0 otherwise.
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Then for X > 1 we have

^ ^ 2^(2 -K2)^

^^)^)<x.e^,P.) ̂ 2^) +^(^____________

XF(tan"lV^(^)^^(^)-^-)

^ y- v- 4(2^-1)^
^(p^^)^x.eA,P.) (^iK^))^________

-/ _i /2/c2 -1 / X ^ \
^(-"VT^L^)^2^)-1)^)

27rXt o î+i ̂  ̂ jj+^
VoiTO) ' v • ;

where the summations are over all closed geodesies satisfying the restriction,
and the integral in the second sum is understood to vanish if^ is such that
sec"1 is not denned.

Note that as remarked above, if i9 or p tends to 0 then the integrals
tend to the complete elliptic integral of modulus 1, which is divergent.
Corollary 1 can thus be seen as restricting the average behaviour of the
interactions. It is interesting to speculate, however, that the arguments of
the integrals should have some geometric and/or physical interpretation
related to the global structure of the sum, although we make no progress in
this direction here.

To consider an individual pair of geodesies it is more efficient to return
to Theorem 1 using a different choice of test function Q, noting that an
interaction of a general pair of closed geodesies must also be an interaction
of a pair of primitive such. We prove the following corollary:

COROLLARY 2. — Let Pi and P^ be two primitive closed geodesies.
If a denotes any constant greater than ^, and c is any positive constant
greater than 2\/27r/Vol(r\^), then for sufficiently large cP(p-^) + d2(p^} we
have

^^-î Id2^!^^^ +y-eosh-1 (^M±^P^\2
^ Wp^d^sm2^} •^ WP1WP2) smh2?}

^(d^+c^))"
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where ^ and p vary over all angles of intersection and common
perpendiculars, which individually can be bounded below by

sin^ > (^(Pi)+^(P2))i
~ d(pi)d(p^) sinh(c(cP(pi) + d2^))")'

sinhp > ^(Pi)+^(P2))t
- ^(Pi)d(p2) cosh(c(d2(pi) + (P(p^)

Note that this result says nothing about short closed geodesies, and
indeed is in some sense weaker than Corollary 1, since statements about
individual cases have been deduced from an average. In fact if one wishes
to consider only individual ^ or p then the lower bounds here are not as
strong as can be proved by other methods (see [1]).

The approach to these results, loosely speaking, is the following. Given
a function ^1(^1,^2) of compact support in [0, oo) x [0, oo), a two-variable
version of the Selberg/Harish-Chandra transform can be defined by

Oi(wi,W2)= F r k^,u,)du,du,
Jw2 Jwi V^l — '"'iK1^ — ^2)

G'i($i,6) = Q^e^ + e-^ - 2, e^2 + e-^2 - 2)

/OO /»00

M^2)= / Gl($l,$2)e^'•l$l+^r2s2d$ld$2
-00 */—00

and the expression

Tr2(r,A;i)= / V k-i(u(z,g-tz),u(z,g^z))dfiz
^9^

can be expanded both spectrally and geometrically. This initially produces
a more general but less convenient theorem, a special case of which was
discussed in [6].

THEOREM 2. — Let r,{^},P,^,p be as above, and let h^(r^r^),
^1(^1,^2) be a two-variable Selberg/Harish-Chandra pair, k^ of compact
support. Then the spectral expression

^^(^^fcXi^l'J^O-^i^.o^oHr^)
3.k



PAIRS OF CLOSED GEODESICS 9

is equal to the geometric expression

^ \ogp ^ F M€(P)(^2 + 1)^(P)(^2 + 1)) dx
PGP (m,n) '/~00

^(0,0)

+ y y y r rkl(d2m(pl)(t21 +1)^2)^+1))^1 d^
PiAeP ^ m,n^o 7-00 7-00 \/^ + ̂  + 2 cos ̂ 2 + sin2 ̂

+2 y y y /l00 F k1^^+ ̂ ^^fe)^ + i))d^id^
Pi,P2€P p m,n9'o7-00 7B(<2) ./^ + ̂  + 2cosh^it2 - sinh2 p

where B(t'z) denotes the larger root of the radical.

While Theorem 2 is more general than Theorem 1 in terms of
the test functions allowed, it is harder to produce quantitative results
through choices of k\ due to the double integrals appearing. Theorem 1
is proved from Theorem 2 by using k\(u\,u^} = k(u\ +^2), so that
Qi(wi,W2) = L{w^ +W2), where

d.8) w=rQ^, w^-ir^w^
Jw Vu-w TT J^ yw - u

and h(r\^ r^)^ L(w) are related by the Fourier pair as in Theorem 1.

It is worth noting that an apparent approach to these theorems would
be to expand one of the automorphic kernels into spectral data and to
use the more usual conjugation of F to expand the second. In fact this
method does not seem to work well since the spectral sum remaining must
be treated geometrically also, and it is not as simple to do this a second
time. While this can surely be done in principle the route appears more
complicated. Note however the work ofZelditch [II], where the trace is of an
automorphic kernel against a single eigenfunction, and produces integrals
of this eigenfunction along closed geodesies.

2. The spectral trace.

Using (1.2) for both sums over the group we have an expansion

^ k^ [u{z^ ^iwi), u{z^ ^2^2))
91^92^

==^^l(^,rfc)^(2;i)^(wi)^(^2)^(^2)
J,A;
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which is absolutely and uniformly convergent. Term-by-term integration
gives

(2.1) TY2(r,fci)= [ Y^ k^u(z^^z)^u(z^g^z))d^z
^^er

=Z^/ll(7•^r'fe)<l^•12J^12)
3,k

giving the main expression on the spectral side of Theorem 2.

3. Decomposition into conjugacy classes.

Each of the two sums over group elements includes the identity;
considering this separately in each sum by inclusion and exclusion and
noting that u(z^ z) = 0 we obtain

TY2(r,fci)= / ^ fci(n(^^iz),n(^^)d^-A;i(0,0)Vol(r\^)
r\^ 91,92^1

(3.1) + / * ][>i(0,n(^))d/^+/1 ^A;i(u(^),0)d^.
r\f) 9 r\^ 9

The first integral, which we denote Tr^(r, k^) has all the new information
since the last two terms can (and will) be considered using the Selberg trace
formula (1.5).

Consider conjugation of F x F — {(J, I)} by F:

^~l(9l,92)r == (r^g^r^g^r), r.g^g^ e F.

This decomposes T x T - {(J, I)} into conjugacy classes {(pi, g^ )}, for which
n^2 ^ F give the same conjugate of (^i, ̂ 2) ii and only if

o'r^i^^r^Ti) = c^"1^^^"1^^).
This is equivalent with r-^r^1 commuting with both g^ and p2? m other
words r\r^ is an element of the joint centraliser Y{g^,g^). Thus from the
point-pair invariance of u we obtain

Tr^(r,A;i)= ^ ^ / M^^'^i^^^'^T^d/^
{(^i^2)}Ter(^,^)\r 7r^

= ^ / k^(u{z,g^z),u(z,g'2z))d^z
{{91,92)} </^(^^)\^

where * indicates that neither <yi nor g^ is the identity.



PAIRS OF CLOSED GEODESICS 11

There are now distinct situations to be considered. If g\ and g^
have the same fixed points then r( (71,^2) is simply the centraliser F(^i)
corresponding to a primitive element with the same fixed set. If they do
not, then no non-trivial element commutes with both and the integration is
over all of f). We analyse the integral accordingly in the following sections.

4. The case of equal fixed points.

This case is very similar to that in the proof of the trace formula,
since if g\ and g^ have the same fixed points then they are both powers of
the same primitive element. Representatives of all such conjugacy classes
can now be chosen as (P771,?72) where P varies over primitive conjugacy
classes as above and m, n ~^- 0. If P has fixed points a and f3 then we can
choose T e PSL2(R) to map these to 0 and oo, by T: z ^-> (z - a ) / ( z - f3)
or a translation in the case one is already oo. In either case T~lPmT maps
z ^ p±mz, and using a variable change z ^—> Tz in the integral and the
point-pair invariance of u the total contribution from all such classes is

/p /»oo

(41) E E / M^^)^^))^.
P m,n^0 - J-(x>

Using
I l9y _ W

(4.2) n(z,w)=-————
Im^Imw

and dm(p) as above, a direct calculation now gives

(4.3) ^logp ̂  F h{d^(p)(x2 + l)^l(p)(x2 + 1)) dx.
P m^O'0 0

5. The case of differing fixed points.

Two hyperbolic elements of a Fuchsian group sharing a fixed point
must share both (see [4]), so if g\ and g^ do not have the same fixed pair
they must have fixed points ai, /?i and 02, /?2 respectively, all four mutually
distinct. Thus the contribution from all cases not handled in §3 is

(5.1) ^ j k^(u(z,giz),u(z,g^z))d^z
{{91,92)}^

where * indicates that g\ and g^ share no fixed point.
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LEMMA 5.1. — Representatives for the conjugacy classes {(^i, ̂ 2)} can
be chosen to be (Pi, r^P^r) where Pi, P^ e P and r ranges over elements
of the double coset r(P2)\r/r(Pi), where F(g) denotes the centraliser ofg
in r.

Proof. — First conjugate the pairs to give (PI, ̂ 2) in each case, for
some Pi e P, where g^ e F can be written uniquely as r^P^r for some
?2 € P and r € F(P2)\r. Thus two pairs (Pl.Tf1?^)^^-1?^) are
diagonally conjugate if and only if PI = PS, ?2 = ?4, and r^ == Tier for
some a € r(Pi).

Using this lemma (5.1) can be written as

(5-2) E E E* f h(u^P^z)^^r-lP?rz))dflz
Pi,P2 m,n^o rer(P2)\r/r(Pi) Jf)

where Pi and P2 are as above and * indicates that r~^P^r does not have
the same fixed points as Pi, which is equivalent to saying that r is not the
identity if Pi = ?2. Note that this expression is symmetric in Pi and ?2
by a variable change in the integral and the point-pair invariance of u. The
sums over Pf1,?^ can be viewed as being over closed geodesies on F\^,
with m = n = 1 being the case where both are primitive; however we still
require a geometric interpretation of the remaining sum over r.

6. Cross-ratio and pairs of geodesies.

Here the terms "image" and "preimage" refer to the covering map
-Q —^ r\^3. Let 7^ denote the geodesic in f) corresponding to g e F, and
let 7^ denote the associated closed geodesic on r\^. For each pair FI.PZ
we consider the sets

<Si = {r c r(Pi)\r/r(P2): r^ n 7?, ^ 0},
S2 = {r e r(Pi)\r/r(P2): r^ n 7?, = 0}

and will show that these correspond respectively to intersections and
common perpendiculars of 7^ and 7^. Note that any element of<?i defines
a unique point z in ̂ , and that any element of S^ defines a unique geodesic
segment in ̂  meeting 7?^ and r^p^ orthogonally.

Consider <?i. Any intersection ^* of 7^ and 7^ is the image of an
intersection of some translate of 7?^ and some translate of 7?^ by elements
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of r, as can be seen by lifting a neighbourhood of z* to f) and extending
the geodesic segments to complete geodesies in 5s): the resulting geodesies
descend to 7J^ and 7^ and are thus translates of 7?^ and 7?^ as claimed.
By a translation of ^ we may suppose the translate of 7?^ is 7?^ itself,
or in other words every intersection z* of 7^ and 7^ is the image of
an intersection of 7?^ and some translate of 7?^ • Observe now that two
geodesies Ti7^, r^g for Ti,T2 € F are the same set-wise if and only if TI
and T2 are equivalent under the action of F{g) on the right, so

Gg = {r^:re Y/r(g)} = {7r,r-i :T C r/T{g)}

is the set of all the set-wise distinct translates of 7^. Two intersections of
7p^ with elements of Gp^ clearly descend to the same intersection point
on r\^) if they differ only by an element of r(Pi) on the left, so we now
have a well-defined surjective map

Si^{z^z^,...}

where z^ are the intersections of 7^> and ^{p . This map can also be seen to
be injective, since intersections of r\^p^ and r^p^ with 7?^ are equivalent
under F if and only if they are equivalent under r(Pi). Thus we have the
following lemma:

LEMMA 6.1. — Let Pi and P^ be primitive hyperbolic elements oiT,
perhaps equal. The points of intersection of 7^ and 7^, counted with
multiplicity, are in one-one correspondence with the geodesies r^p^ for
r e r(Pi)\r/r(P2) which cut 7?,.

Consider now <$2. If ^* of length p is a common perpendicular of 7^
and 7^ then we may lift ^* and a neighbourhood of it in F\f) (including
the base points) to a geodesic segment i of length p and a neighbourhood of
it in ^3. The preimages of the segments of 7^ and 7^ may be continued to
give translates of 7?^ and 7?^, and as above we may translate f) to suppose
that the translate of 7?^ is 7?^ itself. By noting that if two translates
of 7?2 differ only by an element of F(Pi) on the left then the common
perpendiculars descend to the same common perpendicular on Y\^ we now
have a surjective map

S2——{^^...}.

The injectivity follows as above, thus the following lemma:
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LEMMA 6.2. — Let Pi and P^ be primitive hyperbolic elements ofT,
perhaps equal. The elements ofr(Pi)\r/T(P2) such that r^p^ does not
cut 7p^ are in 1-1 correspondence with the geodesic paths (not necessarily
closed) on r\^ which meet both 7^ and ^p orthogonally.

Let us return now to the integral in (5.2),

/ A;i (u(z, g^z),u(z, g^z)) dp,z
Jf)

where pi and g^ have distinct endpoints. The well-known cross-ratio of four
points on R U {00} is defined by

Z3 - Zl I Z4 - Z\\1[^1^2;^3^4] =
^2 - ̂ 3 / ^2 - ^4

and we will speak of the cross-ratio of 7^ and 7^3 as being

$= [ai,/3i;a2,/?2]

where a^ft are the four endpoints as above. The four points are distinct
so that the cross-ratio is neither zero nor infinite, but lacking a convention
as to which of the endpoints is larger this gives a valid definition only up to
the ambiguity between ^ and ̂ -1. However it will be positive or negative as
the geodesies do not, or do cross, respectively. As in §3 we may shift z^ and
hence conjugate g\ and g^ to assume without loss of generality that the
fixed points of g\ are 0 and oo. The fixed points of g^ are moved, but the
cross-ratio of the four points has not changed. Using a second conjugation
by a dilation z ^—> tz if necessary we may now assume that the fixed points
of p2 are 1 and ^, and in the case where the geodesies do not cross we may
further assume that $ < 1. Thus we have one of the two situations shown
(Fig. 2) below.

Fig-ure 2
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The geodesies have either a well-defined angle of intersection ^ or a
unique common perpendicular of length p, which are related to ^ by

—-(^). .-o.h-̂ )
respectively. The ambiguity between $ and ^-1 can now be seen to be
insignificant; the two geodesies appear once from the pair (91,92) and a
second time from the pair (92,91), so in the first case both D and TT - D
appear, corresponding to $ and $-1, furthermore the integrals that appear
are independent of this distinction. In the second case the length of the
common perpendicular is the same for (91,92) and (92,91).

The integral is now

/̂ (.(,,̂ ),.(,,(; f)(^.)(_\-^)^
where pi,p2 are the dilations associated to Pi and ?2 in (4.2), as can be
seen by considering the fixed points of the two matrices. Calculating the u
functions using (3.2) now gives

/ k, (d2 (v }k21 d2n(p2) l^-1!2^-^ .h ' ̂ dm{pl)^ O"^———^———)d/^
This integral can be given another form, which makes the behaviour of
d2n(Pl)^d2t(p2) and $ more transparent in a qualitative sense. In the first
case of crossing geodesies let

x Qr - l )Qr -Q+^
t/1 —— — 5 t/9 —— ~——————————————————•—————iy (i-O?/

the first being the slope of an euclidean line through 0, and the second
being the quotient of the real and imaginary parts of (z - l ) / ( z - ̂ ), the
analogous quantity for euclidean circles through 1 and $. Since x = yti we
have

y-2 9(^.y) ^ i9y_ ^ 1-g

^^2) at2 ^((l+^i+O-^)2^!^)
and the integral becomes

(i-O 1 wm(p^ + ̂ ^fe)^ +1)) ,^ ,^
7R2 \/(l-^2(^+*i)+2(l-^lt2-4$

_ ( M€bi)(^+i),<(p2)(^+i)) .. .
— I ———/ ———— Qtl dtz.

\/^ + ̂  + 2tlf2 cos i9 + sin2 -9
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The case of non-intersecting geodesies can be calculated in a similar manner,
but the variable change requires a division of the integral into two parts,
giving the expression (and factor of 2) in the theorem.

Collecting together (2.1), (3.1), (4.3), (5.2) and applying the results
of this section for the more complicated expressions we have a preliminary
version of Theorem 2. The final form is now proved by noting that the third
and fourth terms of (3.1) supply, by the Selberg trace formula (1.5), the
degenerate cases m = 0, n ̂  0 and m ̂  0, n = 0 of the expression in (4.3),
together with 2A;(0,0)Vol(r\^).

7. Proof of Theorem 1.

Theorem 1 will follow now from Theorem 2 by using the choice

^1(^1,^2) =k{u^ +^2),

where k(u) is C°° and compactly supported on [0, oo), so the double Selberg/
Harish transform ^(ri, r^) exists, and has the form given in the theorem, as
can be seen from (1.8).

The first integral appearing on the geometric side of Theorem 2 can
be reduced to that in Theorem 1 by a direct application of (1.3). The second
two are rather more complicated. Using

d-m(Pl)ti = V^COSy?, dn(p2)t2 = V^Sm^

we have

f fc(4»(Pi)(^ + 1) + ̂ (P2)(^J + 1)) dti dt2
JVL2 ^t1 +t^-2 cos i%it2 + sin2 -0

1 r2w _^ roo=^^^^^^ K(^+sm2^ ~2 /^+^(pi)+^(p2))d^
^Cim[Pl)Un[P2) JQ JQ

where

FW = ̂ (piK2^) (C(Pi) sin2 ̂

- 2dm(pi)dn(p2) sin (p cos (p cos ̂  + c^(p2) cos2 (p).
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Using (1.3c) and evaluating in u this is

-^wdM rF-5(y) rQl(t + d2m(pl) + d2n(p^
xcos-^81^-^)^

Vsin^+fF^)/ '
Isin'i?! I'00

= ̂ WW i Q^^+^t-.
/•27T

/ (sin^+^F^))"^^
Jo

using integration by parts in i\ the boundary terms vanish, due to the
compact support of Q. Dividing the inner integral in four parts and using
r = tan^? we now obtain the integral as stated in Theorem 1.

The same variable change simplifies the last integral:

r r i fe(€(pi)(^+i)+^(p2)(^+i))^ -
/ /sinhp^+l)? ——/ , _ d^ d^i
^-^^ -t^coshp ^ +1^ -\- 2^2 coshp - sinh2?

i r00= 2d^wM i ^^e(pi)+^(^)
rC{u) _^

x / (uF^) - sinh2?) 2 d^pdu
JB{u)

where

^O^) = dm2(Pl)^n2(p2)(^(pl)sin2^+2d^(pl)^(p2)sin^cos(/?coshp
+^(P2)COS2^),

A=K-(C(pi)+^(p2))
+ \/Wpi) + ̂ (p2))2 + 4^(pl)^(p2)sinh2p)

and J9(n), C'(zA) are the limits of the range where the radical in the integral
is defined and real. By using (1.3) once more this is

1 f°°-2 .̂)̂ ) y, w-^w-Kw)
rC{t) pt ,

/ /. (uF(y) - smh^-^—^dydf
7B(t) 7-^ (t-u)5

which can be calculated to give the form appearing in the Theorem 1.



18 NIGEL J. E. PITT

8. Proof of Corollary 1.

To extract the corollaries from Theorem 1 we need quantitative
expressions for the spectral side for two different choices of test function Q.
We begin by giving a different form to the double transform h(r\^r'z).
Recalling the transforms from Theorem 1 we can write h(r\^r^) directly as
an integral transform of Q by

/oo /»oo /»oo

(8.1) h(r^)= / /
-oo J-oo ./4sinh2 ^i+4sinh2 ^2

Q(t} = e"^1^7^2 dtd^i d$2
^t - 4sinh2 i$i - 4sinh2 ̂

since the double transform Q\ of k{u\ + u^) is L(w\ + wa) as in Theorem 1.
Using Xi = sinh - ̂  followed by a change to polar coordinates we obtain
the form

r ° ° r^ i
(8.2) 2 Q(t) -=-

Jo Jo Vt - 4n
f^ (sin ̂ ^u + \/n sin2 i94-l)2irl (cos ̂ ^u + Vucos2^-^!) 2ir2

f - — — — — — — — — — — / v ———————-——wdudt
Jo ^(usm2 ̂  + l)(ncos21? + 1)

which we will use to estimate /^(ri, r^) in various cases of ri and ra. In the
case where r\ = r^ = ro = ~\^ the innermost integral can be calculated
as 27T, hence

/»00

(8.3) /i(ro,ro)=27r / Q(t)t^ dt.
Jo

For other values let pi denote the real part oHr^, which here will be between
0 and ^, and consider the inner integral as

/.27T /.27T ^

/ « (u +1)^2 / ,
Jo Jo V^2 sin 1? cos2 ̂  + u + 1

«(^4-1)^2-^ [^ -==——==
JO /__JG-_^2 L 1V^^+i) ' +1

which is O^u+iy1^2-^-^) for u^ 1 and 0((^+1)P1+P2-5) forn < 1.
If we now break the outer integrals accordingly then

(8.4) h(r^) < 1 + F Q^^-^dt
Ji
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for any e > 0, since

[ t du _^

Ji \/u{u^-\){t-u)

To consider Corollary 1, let Q be C°° on [0,oo) taking the values 1
on [0, X] and 0 on [X+Y, oo), and with derivatives of all orders bounded by

Q^\t)^Y-^ ^ = 0 , 1 , 2 , . . . ,

for X ^ 1 and Y < X some fractional power of X to be optimised later.
With this choice of Q the transform

., . r°°Q(u)duL{w) == f v /

Jw YV—W

is zero outside [0, X + V], less than or equal to 2X^ and has derivatives of
all orders bounded by

L^(w)= [X+YQ^«X1^, .=0,1,2,.,
Jw YU-W ' ' ' '

for w € [0, X + V]. If we now use integration by parts many times in both
variables we find

/CO /«00

h(ri, ra) = / L(4 sinh2 j^i + 4 sinh2 j ̂ 2) e^1^1'2^2 d^i d^
-00 J —00

, r00 r00 g^i+^2= i L L wo^ ̂ sinh2 ̂ + 4sinh2 ̂
x e^^+^^ri-^r^^d^id^

for any z/i,^ since all boundary terms vanish. The derivatives have the
form

Q^l+^2

(8-6) g^g^^(4sinh2 ̂ i + 4 sinh2 j^)

= EE^ '̂̂ 48111112 ̂ i +4sinh2 j^)
1=1 j=i

P^,^ (sinh $1, cosh ̂ i )P^,^ (sinh ̂ , cosh ̂ 2)
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where P^ are homogeneous polynomials of degree z, so

QVl-\-V-2,

^^L(4smh2 i$i + 4sinh2 |̂ )

^X^f^Y-^-^l+smh2 ̂ (l+sinh2 ̂
»=! j=i

and

'•—)« ̂ (^n^r
for any ^1,^2 > 0. If both r\ and r^ are larger than Xl+eY~l for some
e > 0 we now have

(8.7) ^(ri^K^r^)-^-5

for any A, B > 0, and should just one of them, say 7*1, be large we similarly
obtain

(8.8) ^(n^^r^X-5

uniformly in r^, by taking 1/2 = 0.

Consider now the spectral side of Theorem 1, which is

^(r^rkWM^-m^T^

= E^'^KI^-I2' l^l2) + W)
J,k

by
1 /*00

A:(0) =-- Q'{u}u~^ du < X-^.
7r Jo

For the more complicated remaining expression we have the general bound
Halloo < rj (see [8]), so for T^T}, ̂  1

(I^-I'J^I2} <min(rJ,rl) < (r^)i.

The contribution from terms where either rj or r/c is greater than X l+€y~ l

can thus be seen to be extremely small, say 0(X~100)^ by taking A and/or B
sufficiently large in (8.7) and (8.8).
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All other terms have \TJ\ and \Tk\ smaller than XlJreY~l. For
rj = rk = — i i we have

0 /'OO Q y ̂

^..r.Xhol'.bol2} = v^/ <?(')'» <!' ' y^ +"(^).

which will supply the main term in Corollary 1. The remaining terms where
one or both of r^r^ are complex can be bounded using (1.6) and (8.4) by
0{XP1'}~1 +X2+6y-l) since the inner product is absolutely bounded. Again
using (1.6) we have

E -J«©^
r^x^Y-1

so the contribution from situations when both rj, r^ are real but small is
©(X^y-9/2) again by (8.4). Thus

(8.9) ^(r^Kl^l2^!2)
3^

= 27rx2 + o(X^Y + X^Y-1 + ̂ 1+1 + X^V-9/2)Voi(r\^) v /

which is optimised by choosing Y = X9/11, giving the right-hand side of
Corollary 1.

The first geometric expression from Theorem 1,

S logp ]C
PeP (m,n)^(0,0)

Q(€(P)+^(P))
Wp)+d^p)^

can be estimated as being well within the error terms already obtained;
discarding geodesies shorter than 1 as contributing no more than 0(log2 X),
for larger values of log? the sum in n and m is 0(log2 X/ log2?), and hence
the whole sum is 0(X1^) by (1.7)

It remains to demonstrate that the geometric terms remaining have
the structure shown. If we construct the geometric side of Theorem 1 for
the characteristic function of [0, X] in place of Q then by positivity this is
bounded above by the expression in Theorem 1 for Q as above, and bounded
below by the analogous expression for X — Y in place of X. Changing X
to X — V in the above analysis does not affect the estimates obtained, so
we may calculate the integrals using the characteristic function in place
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of Q, claiming the same asymptotic expression (8.9). Considering the first
integrals, corresponding to intersection points, we note that the integrals
vanish for c^(pi) + c^(p2) > X, and otherwise are

pX-a du
Jo \/u(u — b)(u — c)

for

^=<(Pl)+^(?2),

b = - \ (€(Pi) + ̂ (P2)) + \ v^(Pi) + 2^(piK(p2) cos 2^ + <(p2),

C = - \ (<4(Pl) + ̂ (P2)) - i V^(Pl) + 2d2,(pl)^(p2) COS 2^ + ̂ (?2).

We may calculate this as an elliptic integral by using the standard variable
change x = u^ (u — b)~^ to give

^f2-2'4 -r^-.^f—^—ll,/ -i 1 2 - K2 ( X 7 \r v1"-21^^^)-1)^)^(^(pi)+^(p2))^ v V1-K2V^(^)+^(^)
with K as defined in the introduction. Similarly the case of common
perpendiculars is

rX-a

Jb

du
Ib \/u{u — b){u — c)

for

a=<(pi)+^(p2),

b = - \ «(Pi)+^(p2)) + \ v/<(Pl)+2^(pl)^(p2)cosh2p+^(p2),

c=-^{d2n(pl)+d2,(p^)- \ V^(Pi)+2^(piK(p2) cosh2p+^(p2),

which vanishes for pi,p2 and K as described in Corollary 1, and in other
cases can be calculated using x = (u — b)^u~^ as

2(2^-l)i / _i /2 / ^ 2 - ! / X N \

(^(P1)+^(P2))^ r" V l-^2^^l)+^(P2) )^)'

2(2/.2 - 1)2 ^__, \fl^-\( X

^

This completes the proof of Corollary 1.
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9. Proof of Corollary 2.

Choose Q(u) now to be 1 on [X, X + V], zero outside [X - V, X + 2V]
and with derivatives of all orders bounded by

0^(u)«y-^ v =0,1,2,.. . .

Let Pi, ?2 be two primitive closed geodesies, ^ be an intersection angle, p
the length of a common perpendicular, and let Ji(Pi,P2,^), ^(Ph?^/?)
denote the corresponding integrals from Theorem 1. From the positivity of
the terms,

^Jl(Pl,P2,^)+^J2(Pl,P2,p)
i9 p

is bounded above by the geometric side of Theorem 1, and hence by

^^.^Xf^i^l^i^-fcWVoHr^)
j,fc

= ̂ ^,r,)(|^|2, |^|2) + 0(X-^).
J.k

Using analysis similar to the proof of Corollary 1, differing only in the size
of L^(w) which is now ©(X^Y1"1^), we find that this spectral sum is

r\ /*00

voi(rvj) j, Q(t)ti2 dt + o(xl+e + XP1Y + x'+eY~^•

Since the leading term is at least as large as YX^ and no larger than
2YX~2 (up to an error already present) it dominates over the error term
if Y = X0' for a > 7/9, and hence we may now claim that for any
constant c > 47r/Vol(r\^), for sufficiently large X,

^(Pi^.^+^^Pi^^cX^.i ;J- 2.1 u ) i / ^ -i-'zy-i- I ? J - 2 . 1 1
^ p

If we choose now X = ^(pi) + d2^) and suppose that X > 1 then

^2 < ̂ (Pi) 4- d2(p2)) + d\p^)d\p^} sin2 ̂
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in the region of integration, and

ii(pi,p2^)^ r , du
Jo ^/u3 + uWpi) + (P(p2)} + ucP(pi)(P(p^ sin21?

, 2-. r
Jo ^(^(pi) + d2(^)) + ucP^d2^) sin219

^/-"^^^^^^^
^(i ^tWpi) + d2^)) + ̂ (pi)^2^) sin21?

= r 2 ^dnh-1 f^^Pllj-^?))^
ld2(pl)+d2(p2)^ Vd2^!)^^)^2^^ •

We treat I^PiiP^ip) similarly, and find

J I P P n^r———^^———^pn.h-^I^lU^P2)).^W,P2,P)^(^^^) COSh (̂ (̂̂ )̂ >

so combining expressions we find

r.inh-1^2031^^2^1^ I Vcoch-Y^2^^^^^^1^
^ \ cP(p^d2(p2)sm2€ ^ z^ Vd2(pi)d2(p^sinh2p^E

^^(^(pO+d2^))"^

for sufficiently large d2(p\) + d2^). The first part of Corollary 2 follows
now by redefining a and c in the obvious way; the second part by dropping
the sums over i9 and p.
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