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MODIFIED NASH TRIVIALITY OF A FAMILY
OF ZERO-SETS OF REAL POLYNOMIAL MAPPINGS

by T. FUKUI, S. KOIKE and M. SHIOTA

0. Introduction.

Studying classification or stability problems on real singularities, it
becomes important to show triviality theorems. In this paper, we consider
triviality of a family of zero-sets of real polynomial mappings. Let f; :
(R™,0) — (RP,0) (t € J) be a polynomial mapping. Then we define
F: (R™x J,{0} x J) — (RP,0) by F(z;t) = fi(z). The notion of C”
triviality, 7 = 0,1,2,.. ., 00,w, is natural for trivializing (R™ x J, F~1(0)).
We recall two typical results on C" triviality.

Example (0.1) (H. Whitney [36]). — Let J = (1,00), and let
f: : (R%,0) — (R,0) (¢t € J) be the homogeneous polynomial function
defined by fi(z,y) = zy(z — y)(z — ty). Then f;'(0) consists of 4 lines
for any ¢t € J, and (R? x J,F~1(0)) is C° trivial. But (R2, f;'(0))
and (R?, f;-*(0)) are not locally C! equivalent for ¢; # t2. So of course,
(R? x J, F~1(0)) is not locally C* trivial along {0} x J.

Let Py(n,p) denote the set of real polynomial mappings: (R",0) —
(R?,0) of degree not exceeding 7, and let {(R™, w™'(0)) : wePy; (n,p)}/cr'\(;

denote the quotient set of {(R",w™*(0)) : we€Py(n,p)} by C° equivalence.

THEOREM (0.2) (T. Fukuda [11], A.N. VarCenko [35]). — The
cardinal number of {(R™,w™*(0)) : w € Py (n,p)}/gg is finite.
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The Whitney example shows that C* triviality is too strong even when
we consider the local triviality of algebraic curves with isolated singularities.
On the other hand, the Fukuda-Varéenko theorem tells of the existence of
a finite stratification of Py(n,p) such that over each stratum the family of
zero-sets is CO trivial. But C? triviality preserves only topology. Then we
have the following natural question:

QUESTION (0.3). — Does a natural and strong triviality which
clarifies the structure of C° triviality hold under some generic condition?

In this paper, we introduce the notion of modified Nash triviality (in
the local sense) as such a triviality, and give some fundamental results to
construct a local theory for it. This kind of direction was first tackled by T.-
C. Kuo ([24], [25], [26]). He introduced the notion of blow-analytic triviality
(or modified analytic triviality) for a family of real analytic functions. But
it is not natural in the polynomial case. Furthermore analytic equivalence is
definitely weaker than Nash equivalence even in the nonsingular algebraic
case (see Theorem (1.4) in §1). This is the reason why we introduce the
notion of modified Nash triviality for a family of zero-sets of real polynomial
mappings. Actually, the second author has shown the following result from
this viewpoint.

THEOREM (0.4) ([22]). — Let J be an open interval, and let
ft : (R™,0) — (RP,0) be a weighted homogeneous polynomial mapping.
If f71(0) has an isolated singularity at the origin for any t € J, then
(R™x J, F~1(0)) admits a (finite) modified Nash trivialization in the global
sense.

Remark (0.5). — Applying this result to the Whitney example
above, we see that (R? x J, F~1(0)) admits a 8-modified Nash trivialization
along {0} x J, where 3: M — R? denotes the blow-up at the origin.

Two main parts of the proof of Theorem (0.4) consist of

(i) constructing a Nash modification so that F'~1(0) is modified C*
trivial, and

(ii) showing the Nash triviality theorem for a family of pairs of
compact Nash manifolds and compact Nash submanifolds.

In general, the latter type of Nash triviality theorem plays a very
important role in the proof of modified Nash triviality theorems. This kind
of tool was first developed by the third author ([33], [34]), and M. Coste
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and the third author have made progress in this direction ([4], [5]). In
this paper, it becomes necessary to show the Nash triviality theorem for
a family of pairs of compact Nash manifolds with boundary and compact
Nash submanifolds with boundary (Theorem I), in order to prove local
modified Nash triviality theorems. Once this is done, we apply this tool to
the following cases:

(i) Each f; satisfies some conditions on the Newton polyhedron.

(ii) The zero-set of the weighted initial form of each f; admits an
isolated singularity.

In fact, it is well-known that (R x J, F~1(0)) (or (C™ x J, F~1(0)))
is (locally) C° trivial under one of these conditions (e.g. M. Buchner-
W. Kucharz [3], J. Damon [6], [7], T. Fukuda [12], H. King [20], A.G. Kouch-
nirenko [23], M. Oka [29]). In particular, the first author has shown that
(R™ x J, F~1(0)) admits a modified analytic trivialization under condition
(i) ([13]). In the function case, F admits a modified analytic trivialization
(the first author and E. Yoshinaga [15]). By using our tool, however, we
can show that (R™ x J, F~1(0)) admits a modified Nash trivialization un-
der these conditions (Theorems II, IV). We further give the classification
theorem for modified Nash triviality (Theorem V) corresponding to the
aforementioned Fukuda-Var¢enko theorem.

We shall describe the main results in §2, and give their proofs in §§3-6.
In §7, we present how our method applies to polynomial families which are
explicitly given. The authors would like to thank the referee for reading the
previous version of the paper carefully.

1. Preliminaries.

1.1. Some properties of Nash manifolds.

We first recall some important results about Nash manifolds. A
semialgebraic set of R™ is a finite union of the form

{zeR™: fi(@) = = fu(@) = 0,1(&) > 0, ..., gm(z) > 0}

where fi,...,fk,91,--.,9m are polynomial functions on R". Let r =
1,2,...,00,w. A semialgebraic set of R™ is called a C" (affine) Nash
manifold if it is a C” submanifold of R™. Let M ¢ R™ and N C R"
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be C" Nash manifolds. A C*® mapping f: M — N (s < r) is called a C*®
Nash mapping if the graph of f is semialgebraic in R™ x R".

THEOREM (1.1) (B. Malgrange [28]).
(1) A C* Nash manifold is a C* Nash manifold.

(2) A C* Nash mapping between C* Nash manifolds is a C* Nash
mapping.

After this, a Nash manifold and a Nash mapping mean a C* Nash
manifold and a C* Nash mapping, respectively.

THEOREM (1.2) ([33]). — Let My D Ni, M2 D Ny be compact
Nash manifolds and compact Nash submanifolds. If the pairs (M;, N1) and
(M3, N3) are C diffeomorphic, then they are Nash diffeomorphic.

Remark (1.3). — In Theorem (1.2), we can replace the assumption
of “C® diffeomorphic” by “C* diffeomorphic” ([34]).

THEOREM (1.4) ([34]). — There exist two affine nonsingular alge-
braic varieties which are C*¥ diffeomorphic but not Nash diffeomorphic.

Therefore Nash diffeomorphism is essentially stronger than C* diffeo-
morphism in the non-compact case. The next theorem allows one to reduce
arguments in the Nash category to those in the algebraic one.

THEOREM (1.5) (Artin-Mazur Theorem [1], [34]). — Let M be a
Nash manifold, and let f : M — RP be a Nash mapping. Then there exist
a union M’ of connected components of some nonsingular algebraic variety
and a Nash diffeomorphism ¢ : M’ — M such that f o ¢ is a polynomial
mapping.

Remark (1.6) ([34]). — Let M be a Nash manifold. Then there exists
a nonsingular algebraic variety M’ which is Nash diffeomorphic to M.

Concerning the above fact, we have a
QUESTION (1.7). —  Can we replace “a union M’ of connected

components of some nonsingular algebraic variety” by “a nonsingular
algebraic variety M'” in Theorem (1.5)?
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1.2. Modified Nash triviality.

Secondly we define the notion of modified Nash triviality.

DEFINITION (1.8). — Let M be a Nash manifold of dimension n,
and let m : M — R™ be a proper onto Nash mapping. We call m a Nash
modification if there is a semialgebraic set N in R™ of dimension less thann
such that w|(M — n~}(N)) : M—n~1(N) — R"—N is a Nash isomorphism.

Remark (1.9).

(1) We can define the notion of C™ modification in the C" category
similarly as above. Then we replace a semialgebraic set of dimension less
than n by a thin set.

(2) We can generally define the notion of a Nash modification for a
proper Nash mapping between Nash manifolds.

Let J be a Nash manifold, tp € J, and let f; : (R",0) — (RP,0)
(t € J) be a polynomial mapping (or a Nash mapping). We define
F: (R™ x J,{0} x J) — (RP,0) by F(z;t) = fi(z). Assume that F is
a Nash mapping.

DEFINITION (1.10).

(1) Let # : M — R™ be a Nash modification. We say that (R™ x
J,F~1(0)) admits a m-modified Nash trivialization along J, if there is a
t-level preserving Nash diffeomorphism

®: (W, 1(0) x J) — (Wa,n71(0) x J)
which induces a t-level preserving homeomorphism
¢ : (U, {0} x J) = (V x J,{0} x J)

such that ¢(U,F~1(0) N U)) = (V, f.'(0) N V) x J, where Wy, Wy are
some semialgebraic neighborhoods of m=1(0) x J in M x J, and U is some
neighborhood of {0} x J in R™ x J, and V is some neighborhood of 0 in R™.

(2) Let I1: M — R™ x J be a Nash modification such that for each
teJ, m =1II|M; : My — R} is also a Nash modification where M; =
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II-Y(R™ x {t}) and R} = R" x {t}. We say that (R" x J, F~(0)) admits
a II-modified Nash trivialization along J, if there is a Nash diffeomorphism

@ (Wi, I ({0} x J)) — (W2, T ({0} x J))
which induces a t-level preserving homeomorphism
61 (U, {0} x J) = (V x J,{0} x J)

such that ¢((U, F~1(0) N U)) = (V, f;,'(0) N V) x J, where Wy, Wy are
some semialgebraic neighborhoods of II=1({0} x J) in M, and U is some
neighborhood of {0} x J in R™ x J, and V is some neighborhood of 0 in R™.

1.3. Resolution.

Lastly in this section, we explain the notion of resolution for embed-
ded varieties which we use in this paper. Throughout the paper, we denote
by S(f) the set of singular points of f, and by D(f) the set of singular
values of f for a smooth mapping f.

Let U be a real-analytic manifold, and let V be a real-analytic
subvariety of U. We say that V has normal crossings, if for each z € V
there exists a local coordinate system (z1,...,2,) at = such that V is a
union of some coordinate spaces near x.

Let U be a real-analytic manifold, and let V' be a real-analytic
subspace of U. Let m : M — U be a proper real-analytic modification.
We say that w gives a resolution of V in U, if the following conditions are
satisfied:

(i) M is nonsingular.

(ii) The critical set of 7 is a union of smooth divisors Dy, ..., Dy,
which have normal crossings.

(iii) #=1(V) is a union of real-analytic submanifolds V1,. ..,V of M,
which intersect transversely with each other and with D; N...N D;,, for
1 Sjlv-"ajq Sd

(iv) There is a thin set T in V so that n|x='(V = T) : #=}(V - T) —
V — T is an isomorphism.

Let U, I be real-analytic manifolds, and let p : i/ — I be a submersion.
We set Uy = p~1(t), for t € I. For a real-analytic subspace V of U, we set
Vi = VN U,. For a proper real-analytic modification IT : M — U, we set
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M, = (poII)~1(t). We say that II gives a simultaneous resolution of V in
U over I (or V; in Uy for t € I), if the following conditions are satisfied:

(i) M is nonsingular.

(ii) The critical set of II is a union of smooth divisors D1,..., Dy,
which have normal crossings, and p o II|D;;, N ... N D;,_ is a submersion, for
each 1 <iy,...,14 < d.

(iii) TI=1(V) is a union of real-analytic submanifolds Vi, ..., Vi of M,
which intersect transversely with each other and with D; N...ND;,, for
1 <71,...,Jq £ d. Moreover poII|V;, N...NYV;, are submersions for each
1<i,...,is <k.

(iv) There exists a thin set 7 in V so that 7 NV is a thin set in V,,

for each t € I, and so that II~Y(V - 7) : O} (V-T7) - V—7T is an
isomorphism.

Then, 7, := II|M; : M; — U, gives a resolution of V; in Uy, for ¢ € I.

Let f; : (R™,0) — (RP,0) (¢t € I) be a family of real analytic
mappings. Let 7 : M — R"™ be a proper real-analytic modification. We
say that 7 induces a simultaneous resolution of (R™, f;*(0)) near 0, if

7 % id gives a simultaneous resolution of |J £, *(0).
tel

2. Statements of theorems.

In this section, we describe the main results of this paper.

2.1. Nash triviality theorem.

Let M C R™ be a Nash manifold possibly with boundary of
dimension m, and let Ny, ..., N, be Nash submanifolds of M possibly with
boundary, which together with Ny = OM have normal crossings. Assume
that ON; C Ny, i = 1,...,q. Then we have

THEOREM I. — Let w : M — RF, k > 0, be a proper onto Nash
submersion such that for every 0 < i3 < --- < iy < q, w|N;; N--- NN, :
N;, N---NN;, — R* is a proper onto submersion. Then there exists a Nash
diffeomorphism

o= (¢, w): (M;Ny,...,Ng) = (M*;Ny,...,Ny) x R
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such that ¢|M* = id, where Z* denotes Z Nw~1(0) for a subset Z of M.

Furthermore, if previously given are Nash diffeomorphisms ¢;,
N;; — N; x R¥, 0 < i, < --- < i, < q, such that wocpl._jl is the
natural projection, and ¢;, = ¢;, on N;, N N;,, then we can choose a
Nash diffeomorphism ¢ which satisfies p|N;; = ¢;;, j =1,...,a.

Remark (2.1). — In Theorem I, we can replace R* by one of the
followings:

k
(i) an open cuboid [] (as, b;),
i=1

k
(i) a closed cuboid H [a;, bi],

=1

(i) a Nash manifold which is Nash diffeomorphic to an open simplex.
Remark that the integration of a Nash vector field is not necessarily of

Nash class. For instance, that of x% + ba—x is not of Nash class. Moreover,

the diffeomorphism from {z = 0} to {z = 1} given by the flows of the

0
vector field (z —y + 1)—8; +(z—-y-— 1)% is not of Nash class. Therefore,

we cannot use the integration method to show Nash triviality theorems.
Because of this, Theorem I is a very effective tool to show Nash triviality
theorems, and consequently modified Nash triviality theorems.

2.2. Theorem on modified Nash triviality.

Let f; : (R™,0) — (RP,0) (¢t € I) be a polynomial family of
polynomial maps. We assume that there is a modification 7 : M — R”
which induces a simultaneous resolution of (R™, f;*(0)) for t € I. Let
F : R"xI — RP? be the map defined by F(z,t) = fi(z), and set IT := wxid :
(M x I,771(0) x I) —» (R" x I,{0} x I). Put V = (F~1(0), {0} x I). Then
II-}(V) U S(TI) is a union of Nash submanifold-germs, which have normal
crossings. These Nash submanifolds define a stratification of I (V)US(IT)
denoted by S.

We say that f; (¢t € I) satisfies condition (C), if there exist a Nash
diffeomorphism germ

¢ (S, I ({0} x I)) — (S(m),7~(0)) x I
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and a homeomorphism germ
¢' - (D(I), {0} x I) — (D(m),0) x I
such that ¢ preserves the stratification S|S(IT) and ¢’ o Il = I o ¢.

The notion of Nash diffeomorphism will be defined in the first
paragraph of §3.

THEOREM II. —  Assuming that the modification m : M — R"
induces a simultaneous resolution of (R", f;(0)) for t € I, and satisfies
condition (C), then (R™ x I, F~*(0)) admits a m-modified Nash trivializa-
tion along I.

Remark that Condition (C) is automatically satisfied if D(m)={0},
because of Theorem I. But this condition (C) does not always follow in
the general case. Let Zx denote the connected component of the Zariski
closure of X so that Zx D X, for a stratum X of S. Remark that Zx is
nonsingular for each stratum X € S.

PROPOSITION (2.2). —  The following three conditions imply Con-
dition (C):
(i) For each P € D(II), there exists a Nash coordinate system

centered at P so that for any stratum X € S|S(II) with II(Zx) > P,
II(Zx) is a coordinate space near P with respect to the coordinate system.

(ii) The restriction of Il to Zx is a submersion of Zx to II(Zx), for
each stratum X € S|S(II) .

(i) The restriction of the natural projection ¢ : R* xI — I toII(Zx)
is a submersion of I1(Zx) to I, for each stratum X € S|S(II) .

Here, we consider any sets as germs at II7*({0} x I) or {0} x I in

(i) (i)

2.3. Modified Nash triviality via toric modifications.

We next consider which families admit a modified Nash trivialization
by a projective toric modification in the case when the family of polynomials
is explicitly given. To do this, we review several definitions and facts
of the theory of toric varieties. See V.I. Danilov [8], [9], V.I. Danilov -
A.G. Khovanskii[10], and M. Oka [31] for details.
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Let A be a convex polyhedron in R™, which means the intersection
of finitely many affine half-spaces defined over Q. For each face F' of A, we
set

or = Cone(A; F) = U r-(A—m)
>0

where m is a point lying inside the face F. Let Rr be the R-algebra
generated by the semi-group op NZ". Let Ur denote the set of real points
of Spec(RF), that is, the set of R-algebra morphisms of Rr to R. If F} is
a face of F5, then Up, is identified with an open subset of Up,, using the
canonical inclusion Rr, C Rp,, since Rp, and Rp, have a same quotient
field. These identifications allow us to glue U ’s together. Gluing them we
obtain a real algebraic variety denoted by Pa. Let F' be a k-dimensional
face of A and m a point inside the face F. Setting F = F — m, we can
understand F a convex polyhedron in some k-dimensional vector subspace
of R™. By the construction on the polyhedron F similar to the above, we
have a k-dimensional toric variety denoted by Ppr. This Pr is canonically
embedded in Pa and we have Pg, N Pr, = Pp,nF, for two faces F1, F» of A.

A polyhedron A is regular at a vertex P if op N Z"™ is generated by
a basis of Z™. A polyhedron is regular if it is regular at all vertices. If A is
regular, then Pa is a nonsingular real algebraic variety.

We say a polyhedron A; majorizes another polyhedron A, if there
exists a map [ from the set of faces of A; to that of Ay which satisfies the
following two conditions:

(i) B(F}) is a face of B(F3) if Fy is a face of F; for each faces F, Fy
of Al,

(ii) Cone(Agz; B(F)) C Cone(Ay; F) for each face F of A;.

The inclusion in (ii) induces a map of Pa, to Pa, which is also denoted
by 8. If A is a convex polyhedron majorizing the positive orthant RZ, then
there exists a map PA — Prz = R" which is an algebraic modification. We
often denote it by ma instead of 3. Here R> denote the set of non-negative
real numbers. This PA — Prz = R" is proper, if B71(0) is the set of
compact faces of A. If A is regular, then S(8) is a union of submanifolds
of Pa which have normal crossings. We fix such A, that is, A is a regular
polyhedron majorizing R%, which induces a proper algebraic modification
B =ma: PA — R", called a projective toric modification.

Let f : (R™,0) — (RP,0) be a polynomial map. We say that f is
A-regular, if the following conditions are satisfied:
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(i) The strict transform of (f~1(0),0) by the projective toric modifi-
cation Po — R" is nonsingular.

(ii) The projective toric modification PA — R™ gives a resolution of

(R", f~1(0),0)

This A-regularity is a weaker condition than non-degeneracy, which
was treated by several authors (e.g. A.G. Khovanskii [18], [19], M. Oka
[31]). In fact, non-degeneracy is equivalent to transversality of the strict
transform of f~1(0) by 3 to the toric stratification of P for a toric mod-
ification B : PA — R™ which majorizes the Newton polyhedron of f. This
treatment of non-degeneracy was found in §2 in [18]. It is possible to de-
rive topological triviality of a family of (R™, f;1(0),0) for simultaneously
non-degenerate systems f; : (R",0) — (RP,0) with a constant Newton
polyhedron I'y (f:) = I'y(fo). But the constancy of Newton polyhedra is
strong as a sufficient condition for topological triviality. For example, the
Briangon-Speder family (Example 7.5) is topologically trivial, but their
Newton polyhedra are not constant. We will see that a weighted homoge-
neous polynomial in three variables which defines an isolated singularity at
the origin is A-regular, and a family of such polynomials with same weights
admits a simultaneous resolution using some toric modification (Proposi-
tion (7.3)). Using our method, we can analyse many examples, not only
weighted homogeneous ones but also polynomials with generic coefficients
in the given Newton polyhedra. We discuss more about A-regularity in §7.

Let f; : (R™,0) — (RP?,0) be a polynomial mapping for ¢t € I =

ﬁ [ai, b;], and define F': (R™ x I,{0} x I) — (RP?,0) by F(z;t) = fi(x).

=1

Assume that F' is a polynomial mapping. Let A be a regular polyhedron
majorizing R'Z‘, and let m denote the proper modification ma : P — R™.
Then, by Theorem II, we have

THEOREM II'. — If f; is A-regular for t € I and satisfies Condition
(C), then (R™ x I, F~1(0)) admits a m-modified Nash trivialization along I.

As a corollary of Theorem II', we have

COROLLARY III.

(1) Let f: (t € I) be a polynomial family of non-degenerate systems
of polynomial mappings. If f; is convenient, i.e. each I'y (f;) meets all coor-
dinate axes, then (R™ x I, F~1(0)) admits a m-modified Nash trivialization.

(2) Let f; (t € I) be a polynomial family of non-degenerate systems
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of polynomial mappings. If (f;)® is independent of t for each vector a(# e*)
supporting a non-compact face of 'y (f;), then (R™ x I, F~1(0)) admits a
m-modified Nash trivialization. (See §3 for notations not defined yet.)

(3) Let f: (t € I) be a polynomial family of polynomial mappings,
let A be a regular polyhedron which is equal to RY outside some compact
set, and let = denote the modification Pn — R™. If each f+ is A-regular
for t € I, then (R™ x I, F~1(0)) admits a m-modified Nash trivialization
along I.

(4) Let fi(z) (t € 1) be a polynomial family of polynomial mappings,
7 the blow-up of R™ centered at 0. We write f;(z) = F(x;t) = Hg(x;t) +
Hgy1(z;t) + - - -, where H;(z;t) is a homogeneous polynomial mappings of
degree j in . If the zero locus of Hy(—;t) (t € I) has an isolated singularity,
then (R™ x I, F~1(0)) admits a w-modified Nash trivialization along I.

2.4. Modified Nash triviality theorem in the weighted case.

Let @ = (a1,...,0,) be an n-tuple of positive integers, and let
k

ft + (R™,0) — (RP,0) be a polynomial mapping for t € I = [][as,bs].
i=1

Assume that F' is a polynomial mapping. For each t € I, we write

fi(z) = Qi(x)+Gi(z), where Q; ;(x) is the weighted initial form of f; ; with
respect to a (1 <4 < p). Then we define a mapping 7 : S"~! x R — R"
by

(X1, .y Tpsu) = (U Ty, ..., u*Ty,).

We set E = S""! xR and Ey = 77 1(0) = S"~! x {0}. By definition, E
is a Nash manifold and Ey is a Nash submanifold of E. The restriction
mapping 7|(E — Ey) : E— Ey — R™—{0} is a 2 to 1 mapping. We call this
proper Nash mapping 7 a weighted double oriented blowing-up of R™ with
center 0 € R"™. This is a weighted version of double oriented blowing-up.
(See Example (a) in page 221 in H. Hironaka [17], for its definition.) For
this 7, we define the notion of m-modified Nash triviality in a way similar to
Definition (1.10.1). Concerning this weighted double oriented blowing-up,
we have

THEOREM IV. — If Q;}(0) N S(Q:) = {0} for any t € I, then
(R™ x I, F~1(0)) admits a m-modified Nash trivialization along I.
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Remark (2.4). — In [3], M. Buchner and W. Kucharz showed that
(R™ x I, F~1(0)) admits a m-modified C? trivialization along I under the
same assumption as above. They treated a more general case than the
polynomial case.

2.5. Classification theorems on modified Nash triviality.

We first prepare notation. Let F': (R™ x J,{0} x J) — (RP,0) be a
mapping, and let Q C J. Then we denote by Fg the restriction mapping
of F to R™ x Q.

We express f = (f1,..., fp) € Py(n,p) as follows:
fi(z) = Zafj)xa, (1<i<p).
Then the coefficient space {(-- - ,ag),_---)} is naturally identified with an
Euclidean space RY. Fora = (---,as’,---) € RV, we write

fa(@) = (3 a2, .., 3" alP2*) € Pyy(n,p).
After this, we shall not distinguish Pj,j(n, p) from R Let
F:(R" x P[T](n,p), {0} X P[r](n,p)) — (RP,O)
be the polynomial mapping defined by F(z;a) = fq(z). We put
T = {f € Pyy(n,p) : F71(0) N S(f) 2 {0} as germs at 0 € R”}.
Then we have a classification of elements of Pj,j(n,p) by modified Nash.
THEOREM V. — There exists a partition of the space of polynomial
mappings Pj(n,p) = X*U Q1 U---UQq such that for 1 <i < d,
(i) @ is a connected Nash manifold,

and

(il) (R™x Q, Féil(O)) admits a I1;-modified Nash trivialization along
Q;, for some I1;. Here, I1; is a Nash modification which gives a simultaneous
resolution of F&il (0) in R™ x Q; over Q; around {0} x Q;.

By using the same argument as Theorem V, we have

THEOREM VI. — Let J be a semialgebraic set in some Fuclidean
space, and let f; : (R™,0) — (RP,0) (t € J) be a polynomial mapping. We
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define F : (R™ x J,{0} x J) — (RP,0) by F(z;t) = fi(x). Assume that
F is a polynomial mapping. If each f;*(0) admits 0 € R™ as an isolated
singularity, then there exists a finite filtration of J by semialgebraic sets J(*)

J=JO 5 gM 5.5 gm 5 gmtd) — ¢
with the following properties:
(i) dim J® > dim JG+Y and J@ — JG+1) are Nash manifolds.

(ii) For each connected component Q of J® —J+1) (R"xQ, F;'(0))
admits a II-modified Nash trivialization along Q, for some II. Here, II is

a Nash modification which gives a simultaneous resolution of Fg 1(0) in
R"™ x Q over @ around {0} x Q.

Remark (2.5). — In the case of functions, T.-C.Kuo gave a filtration
similar to Theorem VI such that for ¢, ¢ in a connected component of
JO — JG+1) £ £, are blow-analytically equivalent (see [26]). But he has
not given the filtration for blow-analytic triviality.

As a corollary of Theorem VI and a Generalized Artin-Mazur Theo-
rem (Theorem (6.6) in §6), we have

COROLLARY VII. — The statement of Theorem VI remains true if
we only assume that f; and F are Nash mappings.

3. Proof of Theorem 1.

Before starting the proof of Theorem I, we prepare some terminology.

Let M (resp. M’) be a Nash manifold possibly with boundary, and let

No, N1, ..., Ny (resp. Ng, Ny, ..., Ng) be Nash submanifolds of M (resp. M')
q q

possibly with boundary. We say that a mapping f : U N, — U N/
i=1 i=0

is a Nash diffeomorphism if the restriction f|N; : N; — N/ is a Nash

diffeomorphism for 0 < i < ¢. A Nash function on N;; U---UN;, is a
function whose restriction to each N; is of Nash class. We also define a
Nash map from N;; U---UN,, to a Nash set (i.e. the zero set of a Nash
function) similarly. Note that each N; is a Nash set in M (Corollary I1.5.4
in [34]).

Let M be a Nash manifold possibly with boundary, and let Ng, Ny, ...,
N, be Nash submanifolds of M possibly with boundary which have normal
crossings. Then we have the following:
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q
LEMMA (3.1). — We can extend a Nash function on |J N; to M.
=0

Proof. — Let 0 <14 < q. Assume that the following statement holds:

i
STATEMENT (i). — Let f; be a Nash function on |J N; which
j=0

i-1
vanishes on |J N;. Then there exists a Nash function g; on M such that

j=0

7
gi = fion U Nj.
j=0

Then we can derive Lemma (3.1) from this statement as follows. Let f
q
be a Nash function on |J N;. By statement (0), we have a Nash function go
=0

on M such that go = f on Ny. Next apply statement (1) to (f —go)|NoUN;
which vanishes on Ny. Then there is a Nash function g; on M such that
go + g1 = f on Ny U N;. Repeating these arguments, we obtain a Nash
extension of f to M.

It remains to show statement (i). By Proposition I1.5.6 in [34], for each
0 < j < i, there exist Nash functions @ji,...,¢j, on M whose common
zero set is IN; and whose gradients span the normal vector space of N; in
M at each point of N;. Let (¢;1,...,¢;,) denote the ideal of the ring of
Nash functions on M generated by ¢;1,...,pjb,. Set
i—1
E—l = ﬂ(w]h ce »(ijj)'
=0
In general, a ring of Nash functions is Noetherian (e.g. [34]). Let 91,...,%q4
be the generators of F;_;. Then, by the hypothesis that Ny, ..., N, have
normal crossings, for each point z € N; we can describe the germ (f;|N;)z
d

as ». p;j(¢;|Ni)z, for Nash function germs p; at = in N;. Hence, by [34]

Jj=1
1.6.5, we have globally

fil N = Z p;(¥;|Ni)
finite
for some Nash functions p; on N;. By Corollary I1.5.5 in [34], we can extend

p;j to M. Let p; denote the extension. Then g; = ) p;e; is an extension
of fi- O

Now let us start the proof of Theorem I. We first show the case where
all N;’s, 0 < i < g, are of codimension 1 in M to make the idea of the proof
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clear. In this case, we describe only the proof of the first part of Theorem
I, because the second part follows immediately from our proof. Let M be
a Nash manifold, and let No(= OM), Ny,..., Ny be Nash submanifolds of
M which satisfy the hypotheses of Theorem I. Set

X; ={N;,N---NN;, of dimension j:0 <iy,...,% <gq}, j=1,...,m—1

Then, in the case where X; # ), each element N of X; is a Nash manifold
possibly with boundary, and (N,{N’ € X;_; : N’ C N}) has the same
properties as (M; Ny, ..., Ng). If m = k, then Ny = --- = Ny = () and the
theorem is clear. Set

YJ‘ZU{NGXJ'}’ j=k....m—-1, Y, =M.

Let us consider the following statement for k < j < m: There exists a Nash
diffeomorphism ¢; = (¢}, @) : ¥; — Y x RF such that

QY =id, ¢;(N)=N*, i=0,...,q, for Ne X3 U---UXj.
Then the statement for j = k clearly holds, since w|Y% is a finite covering
over R* and that for j = m coincides with our theorem. Therefore, in
order to prove the theorem, it suffices to construct ¢; on each N € X;.

Since ¢;_1 is defined on N NYj_y, it is necessary to extend ¢;_;|NNY;_;
to N. Hence we can reduce the theorem to the following assertion:

ASSERTION (3.2). — Let

q q
o= (¢, m): UN"_’ UNi* x R¥
i=0 i=0

be a Nash diffeomorphism with ¢'|N} = id, ¢/(N;) = N}, 1 = 0,...,q.
Then we can extend ¢ to a Nash diffeomorphism

¢ = (¢, @) : (M;Ny,..,Ng) = (M*;N{,..,N;) x R*
such that @'|M* = id.

We further reduce Assertion (3.2) to the following easier assertion:

ASSERTION (3.3). —  For ¢ in Assertion (3.2), there exist an open
q

semialgebraic neighborhood U of |J N; in M and a C" Nash imbedding
i=0

®=(9,w): U —U* xRF,

which is an extension of p, such that ®'|U* = id, where r is a sufficiently
large integer.
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Proof that Assertion (3.2) follows from Assertion (3.3). — Assume
that Assertion (3.3) holds. First we modify ® to be of Nash class. There
exists a Nash manifold M*(> M *) in R™ without boundary of dimension
m —k. Let v: V — M* be a Nash tubular neighborhood in R™', and let
@ : M — R™ be a Nash extension of ¢’ (cf. Lemma(3.1)). Then & — &'
is a C" Nash map from M to Rm/, which vanishes on LqJ N;. Moreover,
by generalizing Lemma (3.1) a little, we can choose @’1 sg that @ = id
on M*. It follows that ® — @’ vanishes on M*. Let F be the family of
Nash functions on M given in the proof of Lemma (3.1). Let F, be a finite
family of Nash functions on M whose common zero set is M* and whose
gradients span the normal vector space of M* in M at each point of M*
(e.g. {w1,...,wn} where w = (wy,...,w,)), and set

F= {.flf2 : fl € Fq7f2 S F*}
Let 7 be sufficiently large. Then we have a finite number of n; € F and C*!
Nash maps&; : M — R™ such that &' —§' = > mjé;-Let & : M — R™ be
a strong Nash approximation of each &; in the C! topology (Theorem I1.4.1
in [34]). See [34] for the definition of the C' topology. Then &' + 3~ n;£§ is
a strong Nash approximation of ®' in the C! topology, which equals &' on
q

M*U | N;. Hence vo(p'+3_n;€7) is a Nash map and keeps the properties

=0
of ®. Thus we can assume that ® is of Nash class.

Next we modify U and ® so that U is a Nash manifold with boundary,
w|U and w|OU are proper submersions onto R* and ® is a C™ Nash
diffeomorphism onto U* x R¥ (here U is no longer open in M, but closed).

q
Let p be a nonnegative Nash function on U* with zero set |J N/, e.g.
=0
the restriction to U* of the square sum of the elements of Fy. Note that

M* and p~!(0) are compact, and for some neighborhood W of p=1(0), p is
C! regular on W — p~1(0) because the critical value set of p is finite. Hence
shrinking U we can assume that p(U*) = [0, 2), and

A" = p71(0) - U" — p74(0) — (0,2)
is a proper Nash submersion. Then by the Triviality Theorem in [5], there
is a Nash diffeomorphism

¥ =, p): U* = p~(0) = p~'(1) x (0,2).
Let 0 < f < 1 be a C° semialgebraic function (i.e. with semialgebraic
graph) on R¥ such that f(0) = 1, and
p ([0, f(W)]) C @' (UNw(y), foreachyeR"



1412 T. FUKUI, S. KOIKE & M. SHIOTA

There exists such f. In fact, we can construct it by using the semialgebraic
function g : R* — R defined by

o(y) = {infp(U* - (Unwl(y))) Iif exists,
1 otherwise.
This function is locally larger than a positive number. Now, by Theorem
I1.4.1 in [34], we can assume that f is of Nash class. Replace U with the
set

U (="' ne (o7 (0.50))),

yERF

and denote it by the same notation U. Then U is a Nash manifold with
boundary, @w|U and w|0U are proper submersions onto R*, & : U —
U* x R¥ is a Nash imbedding, and we have

' (UNw (y) =p([0,f(y)]) foryeR"
It remains to modify ® to be a C” Nash diffeomorphism. Set
A={(s,t)€(0,1] x [0,1] : 0 <t < s},
A'={(s,t) e A:0<t<s/2}.

Let @ : A — (0,1] x [0,1] be a C" Nash diffeomorphism of the form
a(s,t) = (s,a/(s,t)) such that o = id on A’. Replace ®’ with the map

q
Y Y o ®(z),d (fow(x),po®(z)) forzeU—- J N,
Uszw . i=0
®'(z) forx e U N;.
=0
Then ® becomes a C™ Nash diffeomorphism onto U* x RF.

Thirdly we extend ® to a C” diffeomorphism from M to M* x RF,
which is possible by Theorem 3 and Proposition 7 in [5]. Lastly we
approximate the extension by a Nash diffeomorphism as in the above first
step, which proves Assertion (3.2). a

Now we prepare the following assertion for the proof of Assertion
(3.3).

ASSERTION (3.4). — Let 0 < i < q. For ¢ in Assertion (3.2),
there exist an open semialgebraic neighborhood U; of N; in M and a Nash
imbedding

®; = (®),w):U; - U x R,

q
which is an extension of p|U; N |J Nj, such that ®}|U = id.
Jj=0
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Proof that Assertion (3.3) follows from Assertion (3.4). — Assume
that Assertion (3.4) holds, that is, U; and ®;,7 = 0,...,q, in Assertion
(3.4) exist. By combining ®; and ®; and shrinking the neighborhoods Uy
and U; if necessary, we can define a C" Nash imbedding

‘I’()’l = (@671,’07) : UO U U1 — (Ug U Ul)* X Rk

with the same properties as ®; as follows. Let 3 be a C™ Nash function on
M such that 0 < 8 < 1, 8 = 0 on a neighborhood of M — Uy in M, and
B =1 on a neighborhood of Ng. Replace Uy with Int 371(1), and denote it
by the same notation Uy. Define a C™ Nash map <I>6’1 :UpUU; — M* by

@y (x) for z € Uy,
®p1(z) = v(B(x)®H(z) + (1 — B(x))@)(x)) for x € Uy with B(zx) > 0,
P (x) for z € Uy with g(z) =0,

where v is the Nash tubular neighborhood in the above proof. Then for
sufficiently small Uy and U;, the map

®o1 = (P, @) : UgUUL = (UpUUL)* x RF

q
is a C" Nash imbedding, which is an extension of ¢|(UpUU1)N |J N, such
3=0

that ®f ,|(Up UU,)* = id. Repeating these arguments, we obtain U and ®
as required. O

Proof of Assertion (3.4). — We show the case ¢ = 0. The other
cases follow similarly. We shall construct a Nash tubular neighborhood
w: W — Ny in M and a nonnegative Nash function v on W such that

@) ¢'(Wa U N W,

(ii) woy' =’ ocwon WN ‘LqJONi,
i=
(iii) wow =w on W,
(iv) w H(N;) C N, i=1,...,q,
(v) 771(0) = No,
(vi) 7 is C! regular outside Ny and, locally at each point of Ny, the
square of a C! regular function, and

q
(vii) yop' =yon WnN |J N,.
=0
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Assume the existence of such w and v, and shrink W so that v < ¢

and
WW?* = Ng): W* = Ng — (0,¢)

is proper for some € > 0. Then for each point z of W there exist two points
zj, j = 1,2, of W* such that ¢’ o w(z) = w(z;) and y(z) = vy(z;). Now
we map each point x of W to one of the above points z; of W* so that
the mapping is continuous and the identity on W*. Then the mapping is
unique and of Nash class. Denote it by ®f. This ®; fulfills the requirements
in this assertion.

We first construct w on M*. Let w* : W* — NJ be a Nash tubular
neighborhood in M*. The problem is only that w* has to satisfy condition
(iv). To solve this, we define w* on each | J{NNW™* : N € X} by induction

on j, which is done by Lemma (3.1) as in the above arguments. Next, for
q

small W, we extend w* to W N |J N; by
i=0

w(z) = o Hw(z)) N go’—l(w* oy'(z)) forzeWn 'L:quNi’

which is a Nash map, and satisfies conditions (i), (iii) and (iv). Thirdly,
by Lemma (3.1) we extend w to W so that w: W — N is a Nash tubular
neighborhood. Then we need to modify w so that condition (iii) is satisfied.
(If we choose W small enough, then (i) is satisfied.) This is easy to see.

Indeed the correspondence
the image of z under the

W xW > W25 (z,y) — x(z,y) = | orthogonal projection onto | € N
NoNw Yw(y)) in M

is of Nash class (where W is a small semialgebraic neighborhood of the
diagonal of W x W), and x(w(z), z) satisfies all the conditions.

Finally we construct <. In the same way as above, we can construct
a Nash function v’ on W such that

(v)) v =0on Ny,
q
(vii) Yo' =y on Wn Y N, and
i=0
(vi)" ¥'|W N M* is C! regular outside Ng and, locally at each point of
N§, the square of a C! regular function.

q
By (vii) and (vi)’, 7/ is C! regular at any point of W N (J N; — Ny
=1

1=

q
and, locally at each point of W N ( U Ni) N Ny, the square of a C! regular
i=0
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q

function. Here we apply Lemma (3.1) when we extend v’ from W N |J N;
=0

to W. Hence, by the proof of Lemma (3.1), we can choose v so that its

first partial derivatives vanish on Ny. Let " denote the square sum of the

elements of Fy in the proof of Lemma (3.1), and shrink W. Then v = ' ++"

satisfies conditions (v), (vi) and (vii), which completes the proof. O

We next show the general case. By the same reason as in the above
proof of the codimension 1 case it suffices to prove the later half of the
theorem for ig = 0,...,i, = g. We proceed by induction on q. Define a C*
Nash diffeomorphism

o= (¢,m): UNi - (UNi) x RF
i i
to be (¢}, @) on each N;. We can assume that ¢’ =id on (| N;)*. Let Ny

7
be such that N; ¢ |J N;. By induction we have a C! Nash diffeomorphism
i#1
¢=(¢,w): M - M* xRF
which is an extension of ¢| |J N;. Let p : U — Nj be a small closed C*

i#1
Nash tubular neighborhood in M such that U and Ny, Na,..., N, have

normal crossings and @'(p~!(z)) = p~1(¢/(z)) for each z € N1 N ( U N)
1#1
Existence of such p follows from a C! Nash partition of unity. Set N{ =

N ( U N,-) and N? = p~ (V).
i£1

By Theorem 8 in [4] we have a C* Nash diffeomorphism
=@, w):U—-U* xRF,

where U* = U N w~1(0), such that ¢’ op = pot’ and ¢’ = id on U*.
Recalling the proof of codimension 1 case, we need only to modify ¢’ so
that

' =¢ on N and 9’ =¢ on N;.

Define a C! Nash map & : (N; U N{)* x RF — U* so that
Eop=1"onN;, and Eop=1" on Ny.

Note that for each (z,t) € NJ* x R, ¢|p~!(x) x t is a C! Nash diffeomor-
phism onto p~!(z), and for each (z,t) € N} x RF, po &(z,t) = x. We will
show the following assertion:
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ASSERTION (3.5). — £ is extensible to a C' Nash map U* x RF —
U* so that for each (x,t) € Nf x RF, ¢lp~i(x) x t is a C!' Nash
diffeomorphism onto p~!(z).

If this assertion is true then for such an extension &, (£,id)"1 o9 is
a required modification of ¥ and hence the theorem is proved. We reduce
the problem to the case where £(z,t) = z for all (z,t) € N{/* x REF.

Let V be a small open semialgebraic neighborhood of Nj* x R¥ in
N; x RF. Tt is easy to extend £|N{ x R* to a C! Nash map

& : U pHz)xt - U*
(z,t)eV
so that for each (z,t) € V, &|p~!(x) x t is a C! Nash diffeomorphism
onto p~!(z). Since we cannot always extend &;, moreover, to U* x R¥, we
modify ¢&; as follows. Choose V so that for any € > 1 and (z,t) € Nj x RF,
if (z,et) € V then (x,t) € V. Then we have a C' Nash map k:V — V of
form (z,t) = (z,x'(z,t)) such that
k=1id on (VN N; x0)UN;" x R¥,

and

k(V — V') C N x 0 for a very small neighborhood V' of N{* x R¥ in V.

In place of &; consider
52 = fl(ﬂﬁ,,‘il(p(.’li),t)), (CL‘,t) € U p_l(y) X t,
(y,t)ev

which is also an extension of £|N{' x R¥ such that for each (z,t) € V,
&|p~(z) x t is a C* Nash diffeomorphism onto p~!(z). Now we can extend

& to U* x R* by setting &(z,t) = z outside | p~!(y) x t. We denote
(y,t)eV

the extension by &. Clearly &|p~!(x) x t is a C! Nash diffeomorphism onto
p~!(x) for any (z,t) € N; x RF.

Define a C! Nash map & : (N; U NJ')* x R*¥ — (N; UN{)* by
(&,id) = (&,id) ™ o (&,id) : (N1 UNY)* x RF — (N; U NY)* x R¥,

then
poés(x,t) =z for each (z,t) € Nf x R¥,

&3(x,t) =z for each (z,t) € N{'" x R*.

Moreover, if we can extend &3 to a C' Nash map

&:U* xRF - U*
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keeping the property that for each (z,t) € Nf x R¥, &lp~!(z) x t is a
C' Nash diffeomorphism onto p~!(z), then &o (53, id) is an extension of
€ required in (3.5). Hence it suffices to show the extensibility of £3 to such
a §~3, which is equivalent to show Assertion (3.5) under the assumption
&(x,t) = z for all (z,t) € NJ* x Rk.

We can state what we have to prove as follows:

(3.6). — Let Gp, n, be the Grassmannian of ny-dimensional sub-
spaces of R™, and let 7 : E — Gy, n, denote the universal vector bundle,
where

E={(\t) € Gpn, x R™ 1t € A}

Set E = {(At)e E:]t| <1} Let g: N1 — Int E be a C* Nash map. Let
(ro q) E denote the pullback of E by 7 o q, and regard it as a subset of
N % E by the equality
(mo0q)E = {(z,m0q(z),t) € Ny x E}.

Then there exists a C! Nash diffeomorphism r : (woq)*E — (woq)*E such
that for each (z,7 o g(z),t) € (w0 q).E,

r(z,moq(z),t) = (z,moq(x),t') for somet € R™,

r(z,moq(z),0) = (z,q(x)),
and if g(z) = (7 0 q(z),0) then r(z, o q(z),t) = (z, 7 o g(x), ).

Here we easily reduce to the case where N; = Int E and q = id. For
simplicity of notation we consider, moreover, ¢ only on Int £ N 7~ (No)
for one Ag € G, n,- The general case is proved in the same way by more
complicated notation. Then (3.6) is reduced to the following:

(3.7). — Set B = {x € R™ : |z| < 1}. There exists a C' Nash
map
n:cl(B) x B — cl(B)
such that for each y € B, n|cl(B) x y is a diffeomorphism onto cl(B),
n(0,y) =y, and n|cl(B) x 0 = id.

It is easy to find a C* Nash map 7; : cl(B) x B — cl(B) such that for
each y € B, n| cl(B) x y is a diffeomorphism onto cl(B), and 1 (y,y) = y/2.
Here let us assume the following:

(3.8). —  There exists a C' Nash map
n2 : cl(B) x cl(B) — cl(B)
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such that for each y € cl(B), n2| cl(B) x y is a diffeomorphism onto cl(B),
n2(0,9) = y/2, and ny = 71 on cl(B) x 0.

Then (3.7) follows and the theorem is proved. Indeed, if 7, in (3.8)
exists, 1 defined by

(n,id) = (n1,id) " o (12,id) : cl(B) x B — cl(B) x B

fulfills the requirements in (3.7). Therefore it remains to show (3.8). Clearly
there exists a C! map cl(B) xcl(B) — cl(B) with the properties in (3.8). Let
flz be its C' Nash approximation such that the properties except 7ls = m;
on cl(B) x 0 hold, which is possible because cl(B) is compact. On the other
hand, it is easy to construct a C' Nash map

72 : cl(B) x W — cl(B)

for a small semialgebraic neighborhood W of 0 in cl(B) such that all the
properties in (3.8) hold with 7, replaced by 7j,. Combine 7, and 7, by a C*
Nash partition of unity. Then we obtain the 75. This completes the proof
of Theorem 1.

4. Proofs of Theorem II, Proposition (2.2)
and Corollary III.

Let f; = (fta,---, fep) : (R™,0) — (RP,0) (t € I) be a polynomial
family of polynomial map-germs. We set F(z,t) = fi(z), and Fi(z,t) =
fti(z). Let ¢ : M x I — I be the natural projection, P € M, y =
(y1,---,Yn) a local coordinate system of M at P, and t = (¢1,...,t) a
local coordinate system of I. Let m : M — R™ be a proper modification so
that m=!(0) is a normal crossing divisor. We set V' the strict transform of
F~1(0) by m x id and V; = VN ¢~1(t). Assume that we can locally express
V as zero locus of some functions g;(y,t) (¢ =1,...,p).

LEMMA (4.1). — IfV; is nonsingular for each t € I and transverse
to each irreducible component of ©=1(0), then m induces a simultaneous
resolution of (R", f;71(0),0) fort € I.

Proof. — Since V; is a nonsingular for each ¢ € I, the matrix

(57)
Oy /1<i<pi<j<n
Since 7 gives a resolution of (R™, f;1(0),0), the critical locus of 7 is a

has the maximal rank p, and thus ¢|V is a submersion.
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union of divisors Dj, ..., Dg which have normal crossings. Then, we may
choose a local coordinate system at P so that D; is a coordinate hyperplane
if D; 5 P. Let D be the intersection of some of D;’s. Then, without loss of
generality, we may assume that D is the zero locus of y;’s for j = ¢+1,...,n.
Since V; is transverse to D, the matrix (@3)
Oy;/1<i<pii<j<e
agi)

0y;/ 1<i,i<p
R’ = R? x R*~P. By the implicit function theorem, VN (D x I is expressed
around (P, t) as the graph of some smooth mapping h : R*"? x I — RP.
Thus ¢|V N D x I is a submersion at (P, t). This completes the proof. O

has the maximal

rank p. For simplicity, we assume that rank ( =p,and D =

The following lemma assures the existence of Nash neighborhoods for
resolved varieties.

LEMMA (4.2). — Let f; = (fe,15---, ftp) 1 (R™,0) — (RP,0) (t €
I) be a polynomial family of polynomial map-germs, and let 7 : M — R™
be a proper Nash modification which supplies a simultaneous resolution of
the family of germs V; := f;*(0) at 0. Set Il = 7 xid, and M = M xI. Then
there is an open Nash neighborhood of 1=1({0} x I) in M, whose closure
is a Nash manifold with boundary. Moreover the boundary intersects the
strict transform of V transversely.

Proof. — Let p : R™ — R be a nonnegative Nash function with
p~1(0) = 0. We use the notation in the definition of simultaneous resolution.
Set Vj; = V; N M;. Define the number ¢; be the supremum of the set of
numbers £ which satisfies the following condition: § is not critical value of

pox| (| Vi and pon|Erp N () V. for each J C {1,...,k}, Er € £, and
jeJ jeJ

for 0 < 6§ < e. Locally, ¢; is larger than a positive constant. Thus, there is

a positive constant ¢ such that ¢ < &; for any ¢t € I. Then II"({p(z) < €})

O

is the desired neighborhood.

Proof of Theorem II. — By supposition, 7 : M — R"™ induces a
simultaneous resolution of (f;"*(0),0), for ¢ € I. By Theorem I and Lemma
(4.2) we have a Nash diffeomorphism germ

®: (M xI,II71 {0} x I)) = (M, n7*(0)) x I
satisfying p o ® = p, ®|S(7) = ¢, and trivializing the strict transforms of
(f71(0),0). By Condition (C) and properness of , ® induces a homeomor-
phism germ
&' : (R™ x I,{0} x I) - (R™,0) x I.
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This completes the proof. O

By the definition of A-regularity, we obtain the following, which shows
Theorem II'.

PROPOSITION (4.3). — Let I be a closed cuboid I'[ [a;, bi] in R¥,

and let f; = (fea,---, frp) : (R",0) — (RP,0) (t € I) be a polynomial
family of polynomial mappings. Let A be a regular polyhedron majorizing
RY. If f; is A-regular for each t € I, then m : Po — R"™ induces a
simultaneous resolution of the family of germs of f;1(0) at 0.

Proof of Corollary III.
(1), (3): Since D(w) = 0, Condition (C) is trivial.
(2): Let D be a component of 77*(0) with 7(D) 2 {0}. By supposition,
F|D x I does not depend on t, and Condition (C) is clear.
Therefore (1)—(3) are immediate consequences of Theorem II.
(4): Set A = {v € R} : 3°v; > 1}. Since P — R" is the blow-up at 0,

2
this is an immediate consequence of (3). O

Proof of Proposition (2.2). — Let to € I and let p: R® — R be a
non-negative Nash function with p~1(0) = {0}. By abuse of notation, we
denote by A ANp~1([0,€) x I) (resp. AN((goII)~1([0,€) x I)) for a subset A
in R™ x I (resp. Pa x I). For any X € S, there is a positive number €¢(X)
so that (p~1([0,€)) x I)Ng~!(to) NII(Zx) is Nash diffeomorphic to an open
simplex, because of (i), (iii), and Theorem I. Let £y be the minimum of
eo(X) for X € S. Let A; denote the union of strata in S whose dimension
is less than or equal to . Set

Z% =(goI)™Yto) N Zx, II(Zx)* =q '(to) NII(Zx),
= (go 1) ™ (to) N Aj,
and so on. We construct Nash diffeomorphism germs
@i : (A, T ({0} x 1)) — (A7, 771(0)) x I and
i+ (TN(A;), {0} x I) — (TI(A}),0) x I

with @} o Il = Il o ¢;, by induction on ¢. The first step of the induction is
trivial. Assume that such ¢; and ¢; exist. Let X be a stratum of S|S(II)
with dim X = 7 4+ 1. By Theorem I, there exists a Nash diffeomorphism
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¢x : I(Zx) — O(Zx)* x I, which extends ¢}|II(Zx) N A;, and satisfies
go @'y = q. Applying Theorem I again, there exists a Nash diffeomorphism
¢x : Zx — Zx x I which extends ¢;|Zx NA; and satisfies [Togx = ¢y oIl.
Repeating this, we obtain the desired ¢;41 and ¢; ;. O

5. Proof of Theorem IV.

Suppose that Q;'(0) N S(Q;) = {0} for any t € I. Then it follows
from the proof of the Buchner-Kucharz theorem (Remark (2.4)) that (R™ x
I,F~1(0)) admits a m-modified C* trivialization along I. Namely, there is
a t-level preserving C! diffeomorphism ® : (Wy, Eg x I) — (W2, Eg x I)
which induces a t-level preserving homeomorphism ¢ : (U,{0} x I) —
(V x I,{0} x I) such that

¢: (U, FH0)NU)) = (V, f1(0)NV) x I, tg € I,

where Wy, W5 are some neighborhoods of Ey x I in E x I, U is some
neighborhood of {0} x I in R™ x I, and V is some neighborhood of 0
in R™. For t € I, we define a mapping ®; : (Wi, Eo) — (Way, Ep) by
®;((z;u)) = ®((z;u),t), where W, = II71(R™ x {t}) N W,, j = 1, 2. Here
we remark that for any t € I,
(5.1)

To®i((z1,...,Zn;u)) = mo Pt (((—1)* 21, ..., (=1)*"zp; —u)), u#0.

Now we can make the Buchner-Kucharz result slightly clear as follows:

LEMMA (5.2). —  There exist g > 0 and a t-level preserving C*
diffeomorphism

W : (8" x [—eq,e0) x I, Eg x I) — (8™ ! x [—€q,€0] X I, Eg x I)
such that ¥ induces a m-modified C* triviality of (R™ x I, F~1(0)) along I.

Proof. — For each t € I, let T; (resp. K:) denote the strict
transform of f;1(0) (resp. Q;*(0)) in S~ ! x R. Then T; and K; are
Nash submanifolds of S~ ! x R.. For € # 0, put

o= {(@mn) e R (25) 4+ (22) =1}

Then there is £y > 0 such that f;*(0) is transverse to I'. for t € I and
0 < le] < eo. Therefore T; is transverse to S"~! x {¢} for t € I and
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0 < |e| < &o. On the other hand, each K; is perpendicular to the exceptional
variety S"~! x {0}. It follows from Remark (2.4) that each T} is transverse
to S"~1 x {0}. Therefore T} is transverse to S~ ! x {¢} for t € I and
le| < €o. Let T denote the strict transform of F~1(0) in S*~! x R x I.
Then T is a Nash submanifold of S"~! x R x I, and

(5.3) T is transverse to S"~1 x {e} x I for |e| < €.

Let v be a C!' vector field whose flow gives a t-level preserving C!
diffeomorphism inducing a m-modified C! triviality of (R™ x I, F~1(0))
along I. We can assume that S"~1 x [—&q,&0] x I C U. Then, by transverse
condition (5.3) and a partition of unity, we can modify v so that v is tangent
to S"~! x {e} x I (Je| < o) and T. By construction we can require that
the flow of this vector field gives a t-level preserving C! diffeomorphism

U (8" x [~eq,0] X I, Eg x I) — (8™ x [~€0,€0] X I, Eg x I)
such that W(T N S"~! x [—eq,e0] x I) = (Ty, N S™! x [—€0,0]) X I and

each W, satisfies condition (5.1). This ¥ induces a m-modified C? triviality
of (R"™ x I, F~1(0)) along I. ]

Theorem IV follows from this lemma and the proof of Theorem I. O

Remark (5.4). — In Lemma (5.2), we have explicitly constructed a
uniform Nash neighborhood and a t-level preserving C! diffeomorphism on
it inducing a m-modified C! triviality, in order to make the structure of
m-modified Nash triviality comprehensible. But the proof can be shortened
for the reader who is interested only in the existence of a uniform Nash
neighborhood satisfying the hypotheses of Theorem 1.

6. Proofs of Theorem V and Corollary VII.

We first recall two important properties on semialgebraic sets.

THEOREM (6.1) (Tarski-Seidenberg Theorem [32]). — Let A be a
semialgebraic set in R¥, and let f : R¥ — R™ be a polynomial mapping.
Then f(A) is semialgebraic in R™.

THEOREM (6.2) (Semialgebraic Triangulation Theorem [27]). —
Given a finite system of bounded semialgebraic sets { X} in R™, there exist

a simplicial decomposition R™ = | Jo, and a semialgebraic automorphism
7 of R™ such that @
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(i) each X, is a finite union of some of the 7(a,),

(ii) 7(oq) is a Nash manifold in R™ and 7 induces a Nash diffeomor-
phism o, — 7(0,), for every a.

Remark (6.3). — In Theorem (6.2), the boundedness is not essential.
In fact, there is a Nash imbedding of R™ into R"*! via R® C S™. Then
every semialgeraic set in R" can be considered as a bounded semialgebraic
set in R™+1,

We next show the following:

LEMMA (6.4). — The set * is semialgebraic in Py(n,p).

Proof. — We define a polynomial function G : Py(n,p) x R® — R

by
wr,...,wp) >
3 wi(z)? + (9((%—10-1]) if n > p,
i=1 1<iy <..<ip<n | N Zip, - - axlp)
G(w,z) = ) 5 )
> wiz)? + —éwjl"”’wj" if n <p.
i=1 1<51<...<jn<p (931, cee ,itn)

We denote by R the set of positive real numbers. Let II; : Pyy(n,p) x
R"™ x Ry — Pyy(n,p) x Ry, and Il : Pyy(n,p) x Ry — Pyy(n,p) be the
natural projections. Here we set

A= {(w,z,a) € Py(n,p) x R" x Ry : G(w,z) > 0}

B = {(w,z,a) € Pyy(n,p) x R" xRy : 0 < [z] < a}

C = {(w,a) € Py)(n,p) xRy : (w,z,0) € B= (w,z,a) € A}.
Then A and B are semialgebraic in Pyj(n,p) x R® x Ry, and C =
Pyj(n,p) x Ry — II1(B — A). Therefore it follows from Theorem (6.1)
that C is semialgebraic in Pj(n,p) x R4. Furthermore we easily see that

Pyj(n,p) — * = I2(C). Therefore it follows from Theorem (6.1) that
Pyry(n,p) — £* is semialgebraic in Pj(n,p), and so is X*. 0

Proof of Theorem V. — Set
¥** = {w € Ppy(n,p) : 0 € R™ is not in the singular locus
of the zero locus of w}.

Then ©** = {w € Pyy(n,p) : G(w,0) > 0}, where G is the polynomial
function defined in the proof of Lemma (6.4). Therefore ¥** is semialgebraic
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in P,j(n,p). It follows from Theorem (6.2) that there is a finite partition
¥** = Q1 U---UQ, such that each @; is a connected Nash manifold
which is Nash diffeomorphic to an open simplex of some dimension.
Now we shall show that (R™ x Qi,F@_l (0)) is Nash trivial along Q; for
each i. We first consider the case n > p. For z = (z1,...z,) € R", put
lz|l = /z2+---+22. Set S. = {x € R" : ||z||> = €} for ¢ > 0. Then

there is a positive C° semialgebraic function g; : Q; — R such that
Féil(O) N{(z,a) € R" x Q; : ||z||* < gi(a)} is a C* manifold

and f;1(0) is transverse to S; for 0 < ¢ < g;(a) and a € Q;. By Theorem
11.4.1 in [34], we can approximate a positive C° semialgebraic function
gi/2 by a positive Nash function h; so that f;1(0) is transverse to S, for
0 < e < hi(a) and a € Q;. Here we set

M; = {(z,a) € R" x Q; : ||z||*> < hi(a)}.
Then M; is a Nash manifold with boundary OM; which is transverse to
Féil (0). Applying Theorem I, we can easily see the Nash triviality of
(R"xQ;, Féil(O)) along Q; for each 4. In the case n < p, Féil(O) ={0} xQ;
in the interior of the above kind of Nash manifold with boundary. Therefore
Nash triviality holds in this case, too.

We next consider the space Pyj(n,p) —¥* —£** denoted by T', that is
the singular locus of the zero locus
I'=<{w € Pyy(n,p):

of w is {0} as germs at 0 € R™

By Lemma (6.4), the space I is semialgebraic in Pj;j(n,p). Put b= dimT".
For a subset A of R™ x T, cl(A) denotes the closure of A in R™ x I'. Let
B :R"™ x Pyy(n,p) — Pyj(n,p) be the natural projection.

In the case n < p, we consider the space
BIR™ x T'(cl ({(z,a) € R™ xT': Fr(z;a) =0} — {0} x ') N {0} x IT'),

denoted by A. For any a € T', f;71(0) = {0} as germs at 0 € R". Therefore
it follows from Theorem (6.1) that A is a semialgebraic set in Pj(n,p)
of dimension less than b, and I' — A is a semialgebraic set in Pjj(n,p) of
dimension b. By Theorem (6.2), there is a finite partition

I'-A=R,U---UR,

such that each R; is a connected Nash manifold which is Nash diffeomorphic
to an open simplex of some dimension. For each 4, there is a Nash manifold
M; in R™ x R; such that ngl(O) = {0} X R; in the interior of M;, as above.
Therefore (R™ x Ri,FEil(O)) is Nash trivial along R; for 1 < ¢ < q. Then
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we put Qsy; = R; for 1 < ¢ < q. Next we apply these arguments for the
semialgebraic set I' of dimension b to the semialgebraic set A of dimension
less than b. Repeating this procedure, we can get a finite partition of
Pjr)(n, p) which satisfies conditions (i),(ii) in Theorem V.

It remains to show the case n > p. Let p : R" x Pj(n,p) — R be
the polynomial function defined by p(z;a) = 2?2 + --- + z2. We define a
polynomial function ¥ : R™ x Pp(n,p) = R by

U(z;a) = ZFZ‘($§ DD

1< < <ipy1<n

A(Fy,...,Fp,p) 2

z;a
B(xil,...,xip,rl)( )

We consider the space
BIR™ x F(cl({(x,a) €R™ xT: ¥p(z;0) = 0} — {0} x F) N {0} x F),

denoted by Q. For a € T', we define ¢, : R® — R by ¥,(z) = ¥(z;a).
Since f;1(0) is an algebraic set with an isolated singularity for a € T,
$%71(0) = {0} as germs at 0 € R". Therefore it follows from Theorem (6.1)
that Q2 is a semialgebraic set in Pjj(n,p) of dimension less than b, and '~
is a semialgebraic set in Pp,j(n, p) of dimension b. By Theorem (6.2), there
is a finite partition

r-Q=ByU---UB,

such that each B; is a connected Nash manifold which is Nash diffeomorphic
to an open simplex of some dimension. For simplicity, assume that

dimB; =b if1<i<d

dimB; <b ifd+1<i<ec
For 1 < i < d, there is a positive C° semialgebraic function g; : B; — R
such that f;1(0) is transverse to Se for 0 < £ < g;(a) and a € B;. As above,
we can approximate a positive C° semialgebraic function g; /2 by a positive
Nash function h; so that f;1(0) is transverse to S for 0 < £ < h;(a) and
a € B;. Here we set

U; = {(z,a) € R" x B; : p(z;a) < g;(a)},

M; ={(z,a) € R" x B; : p(z;a) < h;(a)}
for 1 <7 < d. We can assume that M; C U;. For 1 <i <d,let X; C R"xB;
be an algebraic set defined by X; = F gil (0). Then each M; is a Nash
manifold with boundary dM; which is transverse to X;. We consider X; to
be defined in U;. Therefore X; is a family of algebraic sets whose singular

locus is in {0} x B;. Then, by Hironaka’s Main Theorem I in [16], there
exists a blow-up II; : M; — R™ x B; with center Z; in {0} x B; such that
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the strict transform X/ of X; by II; is nonsingular at X, N II71(Z;) and
I 1(Ei) has only normal crossings. Moreover, by applying Main Theorem
IT in [16] to X! NII; 1(Z;) and I"(Z;), we can require that IT~!(X;) has
only normal crossings. Let
0;(Zi) = B U+ -+ U Ejo
where E;; is nonsingular, and let X = E;q(;)41. We set W; = Hi‘l(Mi) for
1 <3< d. Then W; is a Nash manifold with boundary 0W; such that
Int(Wi) DFE 1U---U Eia(i)
and OW; is transverse to E;q(;)+1- We denote by C; the union of critical
value sets of
ﬂOHiIEi]’l ﬂ---ﬁEm, 1<n1<...<n < a(2)+1

By Sard’s Theorem and Theorem (6.1), C; is a semialgebraic set of
dimension less than b. Applying Theorem (6.2) again to B;, there is a
finite partition

Bi =T U---UTiy)

such that each T} is a connected Nash manifold which is Nash diffeomor-
phic to an open simplex of some dimension, and the T;;’s are compatible
with
ﬁoni(Eijl ﬂ"'ﬂEiju), 1< << g < Q(l) +1
and C;. As above, assume that
dimTi;, =b if 1<k <A(0)
dim Ty < b if A(@) +1 <k <~(i).
Remark that T, NC; =0, k=1,...,A(7). For 1 < k < \(7), set
My, = (8o IL) 1 (Ty) N Wi,
Ly = IL;| My : My — R™ x Ty, and
Bix = B o Ili| Mg : My — Ty
We further set
Eijk = Ei N (BoIL) N (Tik), 1=1,...,a(i) + 1.

Then M;; is a Nash manifold with boundary dM;, and (;; is a proper
onto Nash submersion. Let E;or = M. Then E;jk, j =0,1,...,a(i) + 1,
are Nash submanifolds of M;; possibly with boundary which have normal
crossings and

Bik|Eijyx N - -NEjj k + EijixN---NEijx — Tik, 0 < j1 < .o < Ju < a(i)+1,
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are proper onto submersions. Here we remark that ;i : M;z — R" x Ty is
a blow-up with center {0} x T; (or §). Therefore it follows from Theorem I
that (R™ x Ty, Fp, i (0)) admits a II;;-modified Nash trivialization along
Tir (in the empty case, (R™ X Tik,Fi_i (0)) is Nash trivial along Tj) for
1<k <A@E),i=1,...,d. Then we set

Qs+A(1)+-~~+A(z’)+k =Ty for 1<k<Ai+1and0<i<d-1.

Next we apply these arguments for the semialgebraic set I' of dimension b
to the following semialgebraic set of dimension less than b:

c d (%)
Qu ( U Bi> u U U Tik
i=d+1 i=1k=A(i)+1
Repeating this procedure, we can get a finite partition of Pj,j(n,p) which
satisfies conditions (i),(ii) in Theorem V in this case, too. O

Remark (6.5). — Subdividing the above partition of Py(n,p) — X*
if necessary, we can construct a partition in Theorem V whose elements
satisfy the frontier condition.

Proof of Corollary VII. — We can show the following theorem in a
similar way to the Artin-Mazur Theorem (Theorem (1.5)).

THEOREM (6.6) (Generalized Artin-Mazur Theorem). — Let M be
the product of two Nash manifolds M, and J. Let f : M — RP be a Nash
mapping, and let w : M — J be the natural projection. Then there exist a
union M’ of connected components of some nonsingular algebraic variety in
R¥*xR™, a union J’ of connected components of some nonsingular algebraic
variety in R¥, and Nash diffeomorphisms ¢ : M’ — M, v : J — J’ such
that f o ¢ is a polynomial mapping and ¢ o w o ¢ is the onto projection
BIM': M' — J', where 3 : R¥ x R™ — R* denotes the natural projection.

Remark (6.7). — In Theorem (6.6), it is difficult to choose M’ as
the product of J' and some Nash manifold.

Corollary VII is an obvious consequence of Theorem VI and this
generalized Artin-Mazur Theorem. a
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7. A-regularity and examples.

7.1. A-regularity.

The first purpose of this section is to give an explicit description
of A-regularity. Let * = (x1,...,z,) be the coordinate system of R™.
Let f = (f1,...,fp) : R — RP be a polynomial map defined by
fi(@) =Y ciz” where v = (v1,...,0p), ¢, € R, 2¥ = z}* -+ - z¥r. We set
Iy (f) = (T4 (f1), -, T4 (fp)) where 'y (f;) is the convex hull of the union
of the sets v+ RZ for v with ¢/ # 0 and call it the Newton polyhedron of
f. For an integral vector a = (a1, ..,as), #(a) denotes the minimum of
(a,v) with ¢J # 0, where (a,v) = i a;v;. Set

=1

f(z) = (fi(2), ..., f5(z)), where fi(z)= clz”,
(a,v)=t(a)
of® ofy
and let f (z) denote the jacobian matrix ( J; ) . We denote
ox Ox; /1<i<n;1<<p

by e’ the i-th unit column vector ‘(O,...,O,I,O,..,(_)), (1 <4 < n). Then
we set

Iy = {z : #(e') > 0 for some j}, and Sy = {w eR™: H T = O}.
i€lp

An integral vector a = (a1,...,a,) is said to be primitive if
ged(ay,...,a,) = 1. A face F of A is said to be supported by a if F is
defined by

F = {l/ € A:{a,v) =min{({a,pu) : p € A}}

Let P be a vertex of A. It is easy to see that A is regular at P if and only
if primitive vectors supporting (n — 1)-dimensional faces of A containing
P form a basis of Z". Let A be a regular polyhedron majorizing R2, A(!)
the set of primitive vectors which support faces of A of codimension 1, and
AS_I) the union of AM — {e!,... ,e"} and {e' : i € Iy}. Set

a can be written in the form a = a! + --- + a*
V(A)=q{a€Z": for some al € AS_I), (1 < j < k), and supports
a face of A of codimension k.
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Let F be a face of A. For a vertex P of F, we set I(P) = {i : (¢*, P) > 0}.
Then we define

S(F):ﬂ{xERn: H :vi::O}
P i€I(P)

where the intersection is taken over all vertices P of F. Let A be a regular
polyhedron majorizing RY . Without loss of generality, we may assume that
min{(e‘,v) : v € A} =0, for each i = 1,...,n.

PROPOSITION (7.1). — If a polynomial map-germ f = (fi,..., fp) :
(R™,0) — (RP,0) satisfies

a

ox
then f is A-regular. Here F, is the face of A supported by a.

{:z: : f*(z) =0, rank of (z) < p} C S(F,) U Sy, for every a € V(A),

For the proof of Proposition (7.1), we prepare several notations. Let
P be a vertex of A and Rj the coordinate patch of Pa corresponding
to the cone Cone(A; P). We denote by Yy = (Y1,---,Yn) the canonical

coordinate system of RJ. Let @/ = (aj,...,a), j = 1,...,n be a
basis of Cone(A;P) N Z™, and let (a]) be the inverse matrix of (al).
Then the intersection of faces F,; of A supported by a? = *(a},...,al)’s

(j =1,...,n) is the vertex P. And the map 7[R} is expressed by

1 2 n
a; a; a; .
Ti=Y,'Ys' o ynt, fori=1,... n

In particular, the critical locus of 7 is a normal crossing divisor. This divisor
generates the canonical stratification of the critical set of 7, indexed by
some faces of A. In fact, these strata are indexed by F, with a € E(A).
Here Fj, is the face of A supported by a, and

a can be written in the form a = b! + - - - + b*
E(A)=<{a€Z":forsomed € AV —{el ...e"} (j=1,...,k),
and codim F, = k.

We consider the stratification £ of the critical set of 7 generated by this
stratification and Sy, also indexed by some faces of A. Strata in £ are
indexed by F, with a € V(A).

Let F be a face of A with P € F so that F = F, for some
a € V(A), and denote by EF the corresponding stratum of £. By suitably
renumbering, we may assume that for all j € {1,...,n} there exists i € I
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with @ = €', if and only if, j = i € {1,..,t}. Here t is some non-negative
integer less than n. Then the map 7 is expressed by

aftt a? .
YilYyir - Yn', fori=1,...,1,

T = att?! n

Yeg1 ~ YUn' fori=t+1,...,n.

In particular, the stratification & [R;‘ is the stratification generated by the
divisors {y; = 0} for i = t+1,...,n. Let J be a subset of {t+1,...,n} such
that cl(EF) "Ry = {y; = 0:j € J}. Here cl(Er) denotes the closure of
Ep in Pa. We consider a subset Er in R which is defined by the following
condition:

y; =1 for j € J,

yZ(yl’--wyn)EEF‘:’{gj¢o for j & J with t < j < n.

For k =1,...,p, we define fi(y), fka(y) by

ok (al k(q™) 7

from(y) =yr @)yt @ fily),
and - . )

fromly) =yt )-SR (),

respectively. Remember that the vector a supports the face F of A. By
definition, the polynomial fka(y) does not depend on y; for j € J. We set

F@) = (A®),-.., fo¥), and fo(y) = (H°®),---, o' @)

LEMMA (7.2). — The following conditions are equivalent:

(i) There exists ycEp so that f(y) = 0 and rank (%(y):jéJ) <p.
J

- afe
(ii) There exists yeEr so that f%(y) = 0 and rank (%(y):j%f) <p.
J

(iii) There exists jeEp so that f*(§) = 0 and rank (%(ﬂ):jg]) <p.
J

(iv) There exists £ = (x1,...,%,) so that x; # 0 fort =t +1,...,n,
a

f*(Z) =0 and rank (%J; (5:)) <p.

Proof.
“(i) « (ii)”: This is an obvious consequence of the fact f|Er = fo|Ep.

“(ii) « (iii)”: Since f%(y) does not depend on y;, j € J, conditions
(ii) and (iii) are equivalent.
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“(iii) < (iv)’: We first see that fi (%) HJ @) fi (@) for

kE=1,. 25D Next we remark the following identity proved by using the
fa,(:ta:z—y1 yn,z—l

1 1 8f1 oft
oz ) : : - . .
afe afe
0 ) \ap .. a» e ogx) N0y
Since a* = €?, i =1,...,t, each component of the matrix
T 0 al ... al Y1 0\ "
0 Tn at ... ap 0 Yn
is regular on Ep, and “z; = 0 if and only if y; = 0” fori =1,... ,ton Er.
Because f(z) is a weighted homogeneous polynomial of weight (a, ..., a,)
a ~
By () =0,j€J,ifge Ern(f*om)~1(0). These
J
imply “(iii) & (iv)”. O
Proof of Proposition (7.1). — We continue the notation. Note that

I(P)ul,={t+1,...,n}. By assumption, Condition (iv) in Lemma (7.2)
does not hold. Thus, by Lemma (7.2), the negation of Condition (i) in
Lemma (7.2) holds, which implies that 7 gives a resolution of f~!(0) near
Er. This completes the proof. a

7.2. Weighted homogeneous polynomials.

Here we consider weighted homogeneous polynomials in 3 variables.

PROPOSITION (7.3). — Let f(x1,z2,z3) be a weighted homoge-
neous polynomial of type (ai,as2,as;d), that is, a linear combination of
monomials x7*z5?x45® with a1vy + agvs + asvs = d. Here, we assume that
a1,as2,a3,d are positive integers with ged(ay,az,a3) = 1. If f has an iso-
lated singularity at the origin, then there is a regular polyhedron A so that
D(w) =0 and that f is A-regular.

Proof. — We set I' ="y (f). For an integral vector ¢, we denote by
£(c) the minimum of (@, v) with v € T', and by -y(«) the face of I supported
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by a. Let g(z1,z2,z3) be the polynomial so that f = z‘il a:ézngg, £; >0,
and that g(x1,z2,x3) is not a multiple of z; (i = 1,2, 3). Since f defines an
isolated singularity at the origin, each ¢; = 0 or 1 and at most one ¢; is 1.
Set

Ao = {(v1,v2,v3) €RE : ayv1 + agry + asvs > d},

and my the map Pa, — R3. Let Z; be the intersection of mo~*(0) and the
strict transform of {z; = 0} via mp. Let ¥ denote the singular locus of
Pa, and let 4, j, k be integers with {i, j,k} = {1,2,3}. Then we have that
“Zy C ¥ if and only if ged(as,a;) > 1, and that “Z; N Z, C ¥ if and
only if a; > 1.” Since f defines an isolated singularity at 0, we have the
followings:

(0) {% - o} = {0}.
(i) If £ = 1, then {% =0} ={z;=x, = o}.

I,V such that a;v] + ajy; = d.

If £, = 0, then there are integers v;, v}
Moreover, if there are integers v;,v; with a;v; + ajv; +ax = d, a is a
multiple of ged(as, a;). Since ged(aq, az,a3) = 1, we have Z, ¢ X. Thus we

obtain the following:

(ii) If Z, C ¥ and ¢, = 0, then there are no integers v;,v; with
a;v; + ajv; + ar = d. Thus f contains no linear terms in xzj, and
o(fex 0 o(fe*
e _ (9f U)o ¢ (may =0}

o %)Ek. Therefore { Ep

Let K be the set of numbers k so that some power of x) appears in
f.-If k € K, there is a number j such that the term z;z% attains a vertex
of T for some integer b, because f defines an isolated singularity. Let K3
be the set of numbers & such that k ¢ K and that there exists exactly one
j satisfying the condition above. We denote this unique j by ji. Let K2 be
the set of numbers k such that k ¢ K and that there exist exactly two j’s
satisfying the condition above.

For k € K1, we set Ag(jkx) = Ao N {v;, = 0}. Let A;(ji) denote a
polyhedron in {v;, = 0} such that A;(jx) N {vx > 1} = Ao(jx) and A (jx)
is regular at each point in {vx < 1,v;, = 0}, and A(ji) meets z-axis.
We set A; the convex hull of U |J A;(jk), and set 7, the obvious map
Pp, — PAO- kEK,

1

(iii) Ifk € Ky and ¢;, = 0, then Pa, is regular near the strict transform
of {z;, = 0} in the exceptional set of ;.
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Proof of (iii). — Without loss of generality, we may assume that
(k,%,7x) = (1,2,3). We first assume that 1 € K. Let (a},a}) be a primitive
vector supporting an edge E of A;(3). Then there is a positive rational
number aj so that a’ = (a}, a5, a%y) supports the face generated by (b,0,1)
and the edge E. Since a)b+a} is an integer, a’ is a primitive integral vector.
Thus, the smoothness of P, (3) implies the smoothness of Pa, near Py, 3).
The proof for the case 1 ¢ K is similar, and we omit the details. This
completes the proof of (iii).

For k € K, we set a* = (a + ce; + ce;)/ax, where c is the minimal
positive integer such that a; + c is a multiple of a. It is easy to see that
this a* is an integral vector. Set

Ay = A n{veA:(a*v) >k e Ky}

We also set Fy, = y(a) Ny(a*) for k € K. Then Pa, may be singular along
Pr, for k € Ky. We consider a partial resolution my : Pa, — Pa, satisfying
the following conditions:

(1) each 2-face of As is supported by a vector that supports a 2-
dimensional face of A, or a linear combination of a and a* with positive
coefficients for k € K.

(2) Pa, is regular at each point of 75 !(Pp,) except codimension 3,
i.e. some finite points, for k € Ko.

(iv) If k € Ky, then Pa, is regular at each point in 5 * (P, ).

Proof of (iv). — Let P be a vertex of Ag such that P is in the
inverse image of Fy by Az — Ay. Let ¢! and ¢? be the primitive vectors
supporting the 2-dimensional faces containing P and assume that both
vectors are linear combinations of a and a* with non-negative coefficients.
Then the plane spanned by ¢! and ¢? is that spanned by a* and e;+e¢;. Since
det(e;, e; + e;,a*) = £1, the “height” of e; to this plane is 1. Since ¢!, ¢?
form a part of basis of Z3, we have det(c!, c?, ') = £1. This completes the
proof of (iv).

Let A be a regular polyhedron majorizing Az so that Pa — Pa, is an
isomorphism except over the singular locus of Pa,. It is possible to obtain
the classification table of the Newton polyhedra of weighted homogeneous
f with isolated singularity (see III. §6 in [31], for example). By elementary
computation in each case, (0)-(iv) shows that f is A-regular. O

The parameterized version of Proposition (7.3) is also true.
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PROPOSITION (7.4). — Let I be a closed cuboid. Let fi(x1,z3,x3)
(t € I) be a family of weighted homogeneous polynomials of type
(a1, az,a3;d). Here, we assume that a1, as,as,d are positive integers with
ged(ay,ag,a3) = 1. If f; has an isolated singularity at the origin for each
t € I, then there is a regular polyhedron A so that D(ma) = 0 and that
f: is A-regular. Thus, (R3® x I, F~1(0)) admits a ma-modified Nash trivi-
alization.

Proof. — If we set I' = I'y(f;) for general ¢, the exactly same
arguments as in the proof of Proposition (7.3), after obvious changing of
notation, shows that f; is A-regular for an appropriate A. We remark that
D(mp) = 0. By Theorem II, we obtain the last sentence. O

7.3. Examples.

We work some examples here.

Example (7.5). — Let fi(z1,%2,23) = 23 + talzs + 7125 + 215
(J. Briangon—J.-P. Speder [2]). This is a weighted homogeneous polynomial
of type (1,2,3;15), and defines an isolated singularity at the origin, if
7
t #ty = —151/7(5)4/5/3. Let I be a closed interval not containing to.
Let A be a polyhedron whose vertices are

(15,0,0),(1,70),(0,8,0),(0,6,1), (3,0,4), (1,1,4), (0, 3,3), (1,0,5), (0,0,6),

and that coincides with the positive orthant R% outside some compact set,
ie.
v1 +2v5+3v3 > 15, vy +vy+1v3 > 6,
A:{(l/l,ug,t/,g)ERe;: .
= 422 +2v32>11, vi+ve+2v3>8

It is not difficult to see that A is regular. We show that 7 = 7a : Po — R?
gives a simultaneous resolution for (R3, f;1(0)) (¢t € I). In fact, setting

y = (Y1, Y2,y3), for example, the coordinate system of a coordinate patch
of Pp defined by

T1 = Y1Y2¥3
T2 = y2y§
3= Y3y3,

we have
from(y) = y3ys° (W3 +t +y1 + y1°y3),
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and the strict transform is nonsingular and transverse to each irreducible
component of 7~1(0) in this coordinate patch. Similar computations in
the other coordinate patches show that m = 7a : Po — R? gives a
simultaneous resolution for (R3, f;*(0)) (t € I). (This fact is also followed
from Proposition (7.4), and the idea of proof of (7.4) can be explained in this
way.) We here remark that D(m) = 0. Thus, (R® x I, F~1(0)) admits a -
modified Nash trivialization, because of Theorem II. In this case, F' admits
a modified analytic trivialization as a family of functions (see T. Fukui [14]
for details). However, the induced topological triviality does not preserve
the tangency of analytic arcs contained in f;(0) (see S. Koike [21]).

We should remark that, in [30], M. Oka already observed that the
Briangon-Speder family admits a weak simultaneous resolution, which is a
notion of a family of varieties, using appropriate toric modification.

Example (7.6). — Let fi(z1,20,23) = 23 + tzdzs + x5 + 23
([2]), where « is an odd integer with @ > 3, and 28 + 1 = 3. This is
a weighted homogeneous polynomial of type (1,2, @;3a), and defines an
isolated singularity at the origin, if t # to = (—1/3a)'/3%(-382/a2)!/3.
Let I be a closed interval not containing ty. Then there exists a regular
polyhedron A so that m = ma : P — R3 gives a simultaneous resolution
for (R3, f;71(0)) (t € I), and so that D(m) = 0. Thus, by Theorem II,
(R3 x I, F~1(0)) admits a 7-modified Nash trivialization.

Let I = I, denote an interval [—¢, €] for a sufficiently small positive
number ¢.

Example (7.7). — Let f(x1,22,73) = 212+ (23 +23)?+z12223. This
is a weighted homogeneous polynomial of type (1,2,3;12), and defines an
isolated singularity at the origin. An elementary calculation shows that f
is not non-degenerate. By Proposition (7.4), there is a regular polyhedron
A so that f is A-regular and so that D(ma) = 0. If we define F :
(R3®x I,{0} x I) — (R,0) by F(x;t) = f(z) +tx3z%, then, by Proposition
(7.4), ma gives a simultaneous resolution for (R?, f;71(0)) (t € I) where
fi(x) = F(x;t). Therefore, because of Theorem II, (R x I, F~1(0)) admits
a ma-modified Nash trivialization.

Example (7.8). — Let f(z1,z2,73) = x$¢ + 2§(23 + 23) + (23 +
73)? + 117273, where « is an integer with o > 12. This is not a weighted
homogeneous polynomial, and defines an isolated singularity near the
origin. An elementary calculation shows that f is not non-degenerate. Using
a discussion similar to the proof of Proposition (7.3), we can construct a
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regular polyhedron A so that f is A-regular and so that D(wa) = 0. If we
define F by F(z;t) = f(z) + tz3z3, then, by Proposition (7.4), o gives
a simultaneous resolution for (R3, f;"1(0)) (t € I) where f,(z) = F(z;t).
Therefore, because of Theorem II, (R x I, F~1(0)) admits a ma-modified
Nash trivialization.

Example (7.9). — Let f(z1,22,73,74) = 212 + 2§ + (23 + 22)? +
z1z373. This is a weighted homogeneous polynomial of type (2, 3,4, 6;24)
and defines an isolated singularity at the origin. By elementary computa-
tion, we can show that there is a regular polyhedron A so that f is A-regular
and so that D(ma) = 0. If we define F : (R* x I,{0} x I) — (R,0) by
F(z;t) = f(x) + tz3x3, then, by the same way as the proof of Proposi-
tion (7.4), we are able to show that ma gives a simultaneous resolution for
(R%, f71(0)) (t € I) where f,(z) = F(z;t). Therefore, because of Theorem
II, (R* x I, F~1(0)) admits a ma-modified Nash trivialization.

This example seems to suggest that the analogy to Proposition (7.3)
holds in the case n > 4. Recently L. Paunescu and the first author have
given a positive answer for this in [37].

Example (7.10). — Let f. : R® — RP be the polynomial map
defined by f.;(x) = @1 -Tn + 3. ¢, where ¢ = (cj.), and k;’s are
positive integers. Let c(t) = (c;,:(t)) be polynomial functions defined over a
closed cuboid I so that f.) is non-degenerate. If we set F'(z;t) = fer)(x),
then (R™ x I, F~1(0)) admits a modified Nash trivialization. This is proved
by the same way as above and we omit the details.

Appendix.

We cannot expect a similar theory for homeomorphisms coming from
regular isomorphisms after some blow-up, because of the following:

PROPOSITION (A.1). — Let f; (t € I) be the family defined in
Example (0.1), I an arbitrary open subinterbal of J, and Il : M xI — R2x1T
a finite succession of blow-ups whose centres are mapped submersively to
I by the natural induced maps. Then, no regular automorphism of (M X
I,117%(0)) induces a t-level preserving homeomorphism of (R? x I, F~1(0)).

Proof. — Suppose that there is such a regular automorphism ® of
(M x I,TI7%(0)). Let m; be the restriction of Il to M x {t} for t € I. Let
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P'(R) denote the real projective line. We first remark that 7;*(0) is a
union of P(R)’s. Choose t1,ty € I, with t; # t5. Since ® induces a regular
automorphism of II71(0), ® must induce regular automorphisms between
corresponding components (= P!(R)) of 7;,"(0) to 7' (0). So, Proposition
(A.1) is an obvious consequence of the following fact. O

PROPOSITION (A.2). — A regular automorphism of P'(R) is
linear.

Proof. — Let ¢ be a regular automorphism of P!(R). Then ¢ is
expressed by
, o [Ai(z,y) | Ax(z,y)
by some real homogeneous polynomials A1, A2, By, Bo. Here we assume
that Bj, By have no zeros in P}(R). Since ¢([z : y]) = [A1Bs : A2By], we
may assume that ¢([z : y]) = [P(z,y) : @(z,y)] by some real homogeneous
polynomials P and @. Dividing the greatest common divisor of P and @,
we may assume that P and @ have no common factor. Without loss of
generality, we may also assume that

(A1) ¢([L:0])=[1:0], and ¢([0:1])=[0:1],
so we can write P(z,y) = zPi(z,y) and Q(z,y) = yQi(z,y) where P; and

Q1 are real homogeneous polynomials. Assuming that ¢ is not linear, we
have that P, and ); are not constant.

Since ¢! is also a regular automorphism, we may also write
¢~ (X :Y]) = [P(X,Y) : Q(X,Y)]

using some real homogeneous polynomials P and Q. By (A1), there are
polynomials P; and @, such that

P(X,Y)=XP(X,Y), and Q(X,Y)=YQ,(X,Y).

Since we may assume P and @ have no common factor, we may assume
that

(AZ) Fl(lv 0) ¢ 07 and 61(07 1) 5—6 0.
By elementary computation, we have

[z:y]=¢"og(fz:y))

= [P(zP(z,y),yQ(z,9)) : Q(zP(z,y),yQ(z,y))]
= [zPi(z,y)P1(zPi(z,y), yQ1(z,y)) :

le('Ta y)—Q_l (xPl (CL‘, y)7 le(CL', y))]
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So we obtain

Py(z,y)P1(zPi(z,y),yQ1(z,y)) = Q1(z,y)Q, (zPi(z, 1), yQ1(z, y)).

Since P; and @, have no common factor, P; must divides Q,(zP;,yQ;).
If we write Q1(X,Y) = Y.b;X'Y%"% then we have by = 0, but this
contradicts the fact by # 0 that is coming from (A2). 0

The following problem seems to be open.

PROBLEM. — Is aregular automorphism of the real projective space
P™(R) (n > 2) linear? (Are there regular automorphisms of P"(R)) which
are not linear?)
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