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MODIFIED NASH TRIVIALITY OF A FAMILY
OF ZERO-SETS OF REAL POLYNOMIAL MAPPINGS

by T. FUKUI, S. KOIKE and M. SHIOTA

0. Introduction.

Studying classification or stability problems on real singularities, it
becomes important to show triviality theorems. In this paper, we consider
triviality of a family of zero-sets of real polynomial mappings. Let ft :
(R^O) —> (R^.O) (t G J ) be a polynomial mapping. Then we define
F : (R71 x J,{0} x J) -^ (R^O) by F(x',t) = ft(x). The notion of C7'
triviality, r = 0,1, 2 , . . . , oo, c<;, is natural for trivializing (Rn x J, F'1^)).
We recall two typical results on C7' triviality.

Example (0.1) (H. Whitney [36]).— Let J = (l,oo), and let
ft : (R^O) —^ (R,0) {t € J ) be the homogeneous polynomial function
defined by ft{x,y) = xy(x — y)(x — ty). Then ./T'^O) consists of 4 lines
for any t € J, and (R2 x J.F-^O)) is C° trivial. But (R2,/^-1^))
and (P2,/^^)) are not locally C1 equivalent for t\ ^ ^2. So of course,
(R2 x J.F'^O)) is not locally C1 trivial along {0} x J .

Let P^](n,p) denote the set of real polynomial mappings: (R^O) —^
(R^O) of degree not exceeding r, and let {(R^w'^O)) : wGP[r](n,p)}/~

denote the quotient set of^R^w'^O)) : weP[^](n,j?)} by C° equivalence.

THEOREM (0.2) (T. Fukuda [II], A.N. Varcenko [35]). — The
cardinal number of^R^w""1^)) : w G P^i(?7-,p)}/~ is finite.

Key words'. Modified Nash triviality — Resolution — Isotopy lemma — Toric modification.
Math. classification: 14P20 - 57R45 - 58C27 - 14P10 - 14M25 - 58A07 - 58A35.
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The Whitney example shows that C1 triviality is too strong even when
we consider the local triviality of algebraic curves with isolated singularities.
On the other hand, the Fukuda-Varcenko theorem tells of the existence of
a finite stratification of P^](n,p) such that over each stratum the family of
zero-sets is C° trivial. But C° triviality preserves only topology. Then we
have the following natural question:

QUESTION (0.3). — Does a natural and strong triviality which
clarifies the structure of C° triviality hold under some generic condition?

In this paper, we introduce the notion of modified Nash triviality (in
the local sense) as such a triviality, and give some fundamental results to
construct a local theory for it. This kind of direction was first tackled by T.-
C. Kuo ([24], [25], [26]). He introduced the notion of blow-analytic triviality
(or modified analytic triviality) for a family of real analytic functions. But
it is not natural in the polynomial case. Furthermore analytic equivalence is
definitely weaker than Nash equivalence even in the nonsingular algebraic
case (see Theorem (1.4) in §1). This is the reason why we introduce the
notion of modified Nash triviality for a family of zero-sets of real polynomial
mappings. Actually, the second author has shown the following result from
this viewpoint.

THEOREM (0.4) ([22]). — Let J be an open interval, and let
ft : (IV1,0) —^ (R^O) be a weighted homogeneous polynomial mapping.
If ./T^O) has an isolated singularity at the origin for any t € J , then
(TU1 x J, F~l(0)) admits a (finite) modified Nash trivialization in the global
sense.

Remark (0.5). — Applying this result to the Whitney example
above, we see that (R2 x J, F'1^)) admits a /^-modified Nash trivialization
along {0} x J, where (3 : M —> R2 denotes the blow-up at the origin.

Two main parts of the proof of Theorem (0.4) consist of

(i) constructing a Nash modification so that F~l(0) is modified C°°
trivial, and

(ii) showing the Nash triviality theorem for a family of pairs of
compact Nash manifolds and compact Nash submanifolds.

In general, the latter type of Nash triviality theorem plays a very
important role in the proof of modified Nash triviality theorems. This kind
of tool was first developed by the third author ([33], [34]), and M. Coste
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and the third author have made progress in this direction ([4], [5]). In
this paper, it becomes necessary to show the Nash triviality theorem for
a family of pairs of compact Nash manifolds with boundary and compact
Nash submanifolds with boundary (Theorem I), in order to prove local
modified Nash triviality theorems. Once this is done, we apply this tool to
the following cases:

(i) Each ft satisfies some conditions on the Newton polyhedron.

(ii) The zero-set of the weighted initial form of each ft admits an
isolated singularity.

In fact, it is well-known that (R71 x J.F-^O)) (or (C71 x J.F-^O)))
is (locally) C° trivial under one of these conditions (e.g. M. Buchner-
W. Kucharz [3], J. Damon [6], [7], T. Fukuda [12], H. King [20], A.G. Kouch-
nirenko [23], M. Oka [29]). In particular, the first author has shown that
(TU1 x J, F~l(ft)) admits a modified analytic trivialization under condition
(i) ([13]). In the function case, F admits a modified analytic trivialization
(the first author and E. Yoshinaga [15]). By using our tool, however, we
can show that (R71 x J^F~1(0)) admits a modified Nash trivialization un-
der these conditions (Theorems II, IV). We further give the classification
theorem for modified Nash triviality (Theorem V) corresponding to the
aforementioned Fukuda-Varcenko theorem.

We shall describe the main results in §2, and give their proofs in §§3-6.
In §7, we present how our method applies to polynomial families which are
explicitly given. The authors would like to thank the referee for reading the
previous version of the paper carefully.

1. Preliminaries.

1.1. Some properties of Nash manifolds.

We first recall some important results about Nash manifolds. A
semialgebraic set of R71 is a finite union of the form

{x € R71 : fi(x) = • • • = fk{x) = O.^i (x) > 0, ...,gm{x) > 0}

where /i,... ̂ f k i 9 i , • • • ,9m are polynomial functions on R71. Let r =
1,2,.. . ,oo,c<;. A semialgebraic set of R71 is called a C^ (affine) Nash
manifold if it is a C7' submanifold of R71. Let M C R7" and N c R71
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be C7' Nash manifolds. A C8 mapping / : M —)• N (s < r) is called a C8

Nash mapping if the graph of / is semialgebraic in R771 x Rn.

THEOREM (1.1) (B. Malgrange [28]).

(1) AC00 Nash manifold is a C^ Nash manifold.

(2) A C°° Nash mapping between C^ Nash manifolds is a C^ Nash
mapping.

After this, a Nash manifold and a Nash mapping mean a C^ Nash
manifold and a C^ Nash mapping, respectively.

THEOREM (1.2) ([33]). — Let Mi :) TVi, M2 D A^> be compact
Nash manifolds and compact Nash submani folds. If the pairs (Mi, TVi) and
(M2,A^) are C°° diffeomorphic, then they are Nash diffeomorphic.

Remark (1.3). — In Theorem (1.2), we can replace the assumption
of "C700 diffeomorphic" by "G1 diffeomorphic" ([34]).

THEOREM (1.4) ([34]). — There exist two affine nonsingular alge-
braic varieties which are C^ diffeomorphic but not Nash diffeomorphic.

Therefore Nash diffeomorphism is essentially stronger than C^ diffeo-
morphism in the non-compact case. The next theorem allows one to reduce
arguments in the Nash category to those in the algebraic one.

THEOREM (1.5) (Artin-Mazur Theorem [I], [34]). — Let M be a
Nash manifold, and let f : M —> W be a Nash mapping. Then there exist
a union M' of connected components of some nonsingular algebraic variety
and a Nash diffeomorphism (f) : M' —> M such that f o (f) is a polynomial
mapping.

Remark (1.6) ([34]). — Let M be a Nash manifold. Then there exists
a nonsingular algebraic variety M' which is Nash diffeomorphic to M.

Concerning the above fact, we have a

QUESTION (1.7). — Can we replace "a union M' of connected
components of some nonsingular algebraic variety" by "a nonsingular
algebraic variety M'^ in Theorem (1.5)?
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1.2. Modified Nash triviality.

Secondly we define the notion of modified Nash triviality.

DEFINITION (1.8). — Let M be a Nash manifold of dimension n,
and let TT : M —>• R/1 be a proper onto Nash mapping. We call TT a Nash
modification if there is a semialgebraic set N in R72 of dimension less than n
such that TT\(M — TT'^TV)) : M—Tr'^TV) —)• IU^—N is a Nash isomorphism.

Remark (1.9).

(1) We can define the notion of C7' modification in the C^ category
similarly as above. Then we replace a semialgebraic set of dimension less
than n by a thin set.

(2) We can generally define the notion of a Nash modification for a
proper Nash mapping between Nash manifolds.

Let J be a Nash manifold, to <E J , and let ft : (R^O) -^ (R^O)
(t C J) be a polynomial mapping (or a Nash mapping). We define
F : (R" x J,{0} x J) -^ (R^O) by F{x\t) = ft(x). Assume that F is
a Nash mapping.

DEFINITION (1.10).

(1) Let TT : M —^ R71 be a Nash modification. We say that (R71 x
J^F'^O)) admits a TT-modified Nash trivialization along J , if there is a
t-level preserving Nash diffeomorphism

^ : (W^TT-^O) X J ) -^ (W^^W X J)

which induces a t-level preserving homeomorphism

( j ) : (U, {0} x J) -^ (V x J, {0} x J )

such that ^((^F-^O) H U)) = (^/^(O) H V) x J, where W^ W^ are
some semialgebraic neighborhoods ofTr"1^) x J in M x J , and U is some
neighborhood of{0} x J in R^ x J , and V is some neighborhood ofO in R71.

(2) Let II : M —> R71 x J be a Nash modification such that for each
t € J, TTt = II|M^ : Mt —> R^ is also a Nash modification where Mt =
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IT-^R71 x {t}) and R? =Rn x {t}. We say that (R71 x J.F-^O)) admits
a II-modified Nash trivialization along J , if there is a Nash diffeomorphism

^: (iVi.n-^o} x J)) -. (T^n-^o} x J))
which induces a t-level preserving homeomorphism

( / ) : (£/, {0} x J ) -^ {V x J, {0} x J)

such that ^(([/.F-^O) H £/)) = (^./^(O) H V) x J, where W^ W^ are
some semialgebraic neighborhoods of^-l({0} x J) in M, and U is some
neighborhood of{0} x J in Rn x J, and V is some neighborhood ofO in R71.

1.3. Resolution.

Lastly in this section, we explain the notion of resolution for embed-
ded varieties which we use in this paper. Throughout the paper, we denote
by S(f) the set of singular points of /, and by D(f) the set of singular
values of / for a smooth mapping /.

Let U be a real-analytic manifold, and let V be a real-analytic
subvariety of U. We say that V has normal crossings^ if for each x e V
there exists a local coordinate system (zi , . . . ^ Z n ) at x such that V is a
union of some coordinate spaces near x.

Let U be a real-analytic manifold, and let V be a real-analytic
subspace of U. Let TT : M —>• U be a proper real-analytic modification.
We say that TT gives a resolution of V in U\ if the following conditions are
satisfied:

(i) M is nonsingular.

(ii) The critical set of TT is a union of smooth divisors Di , . . . ,-Dc^
which have normal crossings.

(iii) Tr"1^) is a union of real-analytic submanifolds V i , . . . , Vk of M,
which intersect transversely with each other and with Dj^ D . . . D Dj^, for
1 < J i ^ - ' J q < d.

(iv) There is a thin set T in V so that ̂ ^(V - T) : TT'^V - T) -^
V — T is an isomorphism.

Let U, I be real-analytic manifolds, and let p : U —> I be a submersion.
We set Ut = p~l(t), for t C I . For a real-analytic subspace V ofU, we set
Vf = V D Uf. For a proper real-analytic modification II : M. —> U, we set
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Mf = (p o II)-1^). We say that II gives a simultaneous resolution of V in
U over J (or l̂  in Ut for ^ C J), if the following conditions are satisfied:

(i) M. is nonsingular.

(ii) The critical set of II is a union of smooth divisors 'Di,...,'?^,
which have normal crossings, and p o II|Z>^ D ... D P^ is a submersion, for
each 1 ;< z i , . . . ,iq ^ d.

(iii) Tl~l(y) is a union of real-analytic submanifolds V i , . . . , Vk of .M,
which intersect transversely with each other and with P^ H ... H Pj , for
1 < Jii • • • -> jq < d. Moreover p o II|V^ D . . . D V^ are submersions for each
1 ̂  % i , . . . , ^ ^ k.

(iv) There exists a thin set T in V so that T D Vt is a thin set in V^,
for each t <E J, and so that nin-^V - T) : II-1 (V - T) ^ V - T is an
isomorphism.

Then, TT^ := II |M^ : M^ -^ Ut gives a resolution of Vt in [7^, for t e J.

Let ft : (R^O) -^ (R^O) (^ 6 /) be a family of real analytic
mappings. Let TT : M —> R71 be a proper real-analytic modification. We
say that TT induces a simultaneous resolution of (R^/^^O)) near 0, if
TT x id gives a simultaneous resolution of |j /^(O).

t^i

2. Statements of theorems.

In this section, we describe the main results of this paper.

2.1. Nash triviality theorem.

Let M C R^ be a Nash manifold possibly with boundary of
dimension m, and let A / i , . . . , Nq be Nash submanifolds of M possibly with
boundary, which together with NQ = 9M have normal crossings. Assume
that 9Ni C M), z == 1,. . . , 9. Then we have

THEOREM I. — Let w : M —> R^, k > 0, be a proper onto Nash
submersion such that for every 0 < %i < • • • < is < q, ^\N^ D • • • H 7V^ :
Mi H • ' • n7V^ —r R^ is a proper onto submersion. Then there exists a Nash
diffeom orphism

y = (̂ ) : (M;7Vi,... ,7V,) -. (M*;7Vi*,... ,7V,*) x R^
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such that (^|M* = id, where Z* denotes Z D w'^O) for a subset Z of M.

Furthermore, if previously given are Nash diffeomorphisms (̂ . :
A .̂ -^ N^. x R^, 0 < zi < • • • < ia ^ 9, such that w o (p^~1 is the
natural projection, and <y^ = (^ on 7V^ D N^, then we can choose a
Nash diffeomorphism (p which satisfies ^|Mj = ^Pij ? J'' = 1^ • • • , o"

Remark (2.1). — In Theorem I, we can replace R^ by one of the
followings:

k
(i) an open cuboid Y[ (a^^)?

1=1
k

(ii) a closed cuboid ]~[ [a^,^],
1=1

(iii) a Nash manifold which is Nash diffeomorphic to an open simplex.

Remark that the integration of a Nash vector field is not necessarily of
r\ r\

Nash class. For instance, that of x— + — is not of Nash class. Moreover,
dy ox

the diffeomorphism from {x = 0} to {x = 1} given by the flows of the
r\ f\

vector field (x — y -}-1)— + (x — y — 1)— is not of Nash class. Therefore,
ox dy

we cannot use the integration method to show Nash triviality theorems.
Because of this, Theorem I is a very effective tool to show Nash triviality
theorems, and consequently modified Nash triviality theorems.

2.2. Theorem on modified Nash triviality.

Let ft : (R^O) -^ (R^O) (t C I ) be a polynomial family of
polynomial maps. We assume that there is a modification TT : M —> R71

which induces a simultaneous resolution of (R^/^^O)) for t G I . Let
F '.Wxl -^ R^ be the map defined by F{x,t) = ft (x), and set n := Trxid :
(MxJ .Tr-^xZ) -^ (R^JjC^xJ). PutV^GF-^ .WxJ) . Then
II"1^) U 5'(n) is a union of Nash submanifold-germs, which have normal
crossings. These Nash submanifolds define a stratification ofn'^^U^n)
denoted by S.

We say that ft (t € I ) satisfies condition (C), if there exist a Nash
diffeomorphism germ

^: (^(n),!!-1^} x J)) -. (S(Tr)^-\0)) x I
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and a homeomorphism germ

^ : { D m ^ O } x I ) - ^ ( D W ^ ) x I

such that (j) preserves the stratification <S|6'(n) and (f)' o n = n o (f).

The notion of Nash diffeomorphism will be defined in the first
paragraph of §3.

THEOREM II. — Assuming that the modification TT : M —> R71

induces a simultaneous resolution of (R^/^(O)) for t 6 I , and satisfies
condition (C), then (R/1 x I . F ' 1 ^ ) ) admits a Tr-modified Nash trivializa-
tion along I .

Remark that Condition (C) is automatically satisfied if D(7r)=={0},
because of Theorem I. But this condition (C) does not always follow in
the general case. Let Zx denote the connected component of the Zariski
closure of X so that Zx D X, for a stratum X of S. Remark that Zx is
nonsingular for each stratum X € S.

PROPOSITION (2.2). — The following three conditions imply Con-
dition (C):

(i) For each P G D(J1), there exists a Nash coordinate system
centered at P so that for any stratum X 6 5|5'(II) with H(Zx) 3 P,
H(Zx) is a coordinate space near P with respect to the coordinate system.

(ii) The restriction of II to Zx is a submersion of Zx to H(Zx), for
each stratum X e <S|6'(n) .

(iii) The restriction of the natural projection q : R71 x I —^ I to H(Zx)
is a submersion ofH(Zx) to I, for each stratum X C <?|6'(II) .

Here, we consider any sets as germs at Il~l({0} x J) or {0} x I in
(i)-(hi).

2.3. Modified Nash triviality via toric modifications.

We next consider which families admit a modified Nash trivialization
by a projective toric modification in the case when the family of polynomials
is explicitly given. To do this, we review several definitions and facts
of the theory of toric varieties. See V.I. Danilov [8], [9], V.I. Danilov -
A.G. Khovanskii[10], and M. Oka [31] for details.
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Let A be a convex polyhedron in R/\ which means the intersection
of finitely many affine half-spaces defined over Q. For each face F of A, we
set

OF = Cone(A; F) = [ \ r ' (A - m)
r>0

where m is a point lying inside the face F. Let Rp be the R-algebra
generated by the semi-group ap D Z71. Let Up denote the set of real points
of Spec(Rp), that is, the set of R-algebra morphisms of Rp to R. If Pi is
a face of ?2, then Up^ is identified with an open subset of Up^, using the
canonical inclusion Rp^ C Rp^, since Rp^ and Rp^ have a same quotient
field. These identifications allow us to glue Up 's together. Gluing them we
obtain a real algebraic variety denoted by PA. Let F be a /c-dimensional
face of A and m a point inside the face F. Setting F = F — m, we can
understand -F a convex polyhedron in some ^-dimensional vector subspace
of R71. By the construction on the polyhedron F similar to the above, we
have a ^-dimensional toric variety denoted by Pp. This Pp is canonically
embedded in PA and we have Pp^nPp^ = Pp^nF^ ^OT two faces Pi, ?2 of A.

A polyhedron A is regular at a vertex P if d p D Z71 is generated by
a basis of Z^ A polyhedron is regular if it is regular at all vertices. If A is
regular, then PA is a nonsingular real algebraic variety.

We say a polyhedron Ai majorizes another polyhedron A2, if there
exists a map f3 from the set of faces of Ai to that of As which satisfies the
following two conditions:

(i) /^(Pi) is a face of f3{F^) if Pi is a face of F^ for each faces Pi, ?2
ofAi .

(ii) Cone(A2; /3(P)) C Cone(Ai; P) for each face P of Ai.

The inclusion in (ii) induces a map of PA^ to PA 2 which is also denoted
by f3. If A is a convex polyhedron majorizing the positive orthant R^, then
there exists a map PA —> PR^ = R71 which is an algebraic modification. We
often denote it by TTA instead of (3. Here R> denote the set of non-negative
real numbers. This PA —> PR^ = R72 is proper, if /^(O) is the set of
compact faces of A. If A is regular, then S(f3) is a union of submanifolds
of PA which have normal crossings. We fix such A, that is, A is a regular
polyhedron majorizing R^, which induces a proper algebraic modification
f3 = TTA : PA —^ R71, called a protective toric modification.

Let / : (R^O) —> (R^.O) be a polynomial map. We say that / is
A-reguiar, if the following conditions are satisfied:
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(i) The strict transform of (/^(O^O) by the projective toric modifi-
cation PA —> R^ is nonsingular.

(ii) The projective toric modification PA —^ R92 gives a resolution of
(R-J-KO)^)

This A-regularity is a weaker condition than non-degeneracy, which
was treated by several authors (e.g. A.G. Khovanskii [18], [19], M. Oka
[31]). In fact, non-degeneracy is equivalent to transversality of the strict
transform of /^(D) by [3 to the toric stratification of PA for a toric mod-
ification f3 : PA —)> R71 which majorizes the Newton polyhedron of /. This
treatment of non-degeneracy was found in §2 in [18]. It is possible to de-
rive topological triviality of a family of (R71,/^"1 (()),()) for simultaneously
non-degenerate systems ft : (R^O) —» (R^O) with a constant Newton
polyhedron T-^(ft) = r-^(fo). But the constancy of Newton polyhedra is
strong as a sufficient condition for topological triviality. For example, the
Briancon-Speder family (Example 7.5) is topologically trivial, but their
Newton polyhedra are not constant. We will see that a weighted homoge-
neous polynomial in three variables which defines an isolated singularity at
the origin is A-regular, and a family of such polynomials with same weights
admits a simultaneous resolution using some toric modification (Proposi-
tion (7.3)). Using our method, we can analyse many examples, not only
weighted homogeneous ones but also polynomials with generic coefficients
in the given Newton polyhedra. We discuss more about A-regularity in §7.

Let ft : (R^O) —> (R^O) be a polynomial mapping for t e I =

n[^L and define F : (R71 x J, {0} x I ) -. (R^.O) by F(x^t) = ft(x).
i=l
Assume that F is a polynomial mapping. Let A be a regular polyhedron
majorizing R^, and let TT denote the proper modification TTA '• PA —> R72-
Then, by Theorem II, we have

THEOREM II'. — If ft is A-reg-uiar fort G I and satisfies Condition
(C), then CR^ x I , P'^O)) admits a ̂ -modified Nash trivialization along I .

As a corollary of Theorem II', we have

COROLLARY III.

(1) Let ft (t e I ) be a polynomial family of non-degenerate systems
of polynomial mappings. If ft is convenient, i.e. each F+(/t) meets all coor-
dinate axes, then (Rn x J, P'^O)) admits a ̂ -modified Nash trivialization.

(2) Let ft (t e I) be a polynomial family of non-degenerate systems
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of polynomial mappings. If (ft)01 is independent oft for each vector 0(7^ e'1)
supporting a non-compact face ofl+(/^), then (TU1 x T^F'^O)) admits a
TT-modified Nash trivialization. (See §3 for notations not denned yet.)

(3) Let ft (t C I ) be a polynomial family of polynomial mappings,
let A be a regular polyhedron which is equal to R^. outside some compact
set, and let TT denote the modification PA —> R^. If each ft is /^.-regular
for t e I , then (R71 x I ^ F ~ 1 ( 0 ) ) admits a ^-modified Nash trivialization
along I .

(4) Let ft(x) (t G I ) be a polynomial family of polynomial mappings,
TT the blow-up ofR/1 centered at 0. We write fi(x} = F{x\t) = Hd(x',t) +
Hd-\-i(x', t) + • • •, where Hj(x', t) is a homogeneous polynomial mappings of
degree j in x. If the zero locus of Hd{—\ t) (t G I ) has an isolated singularity,
then (R77^ x I ^ F ~ 1 ( 0 ) ) admits a Tr-modified Nash trivialization along I .

2.4. Modified Nash triviality theorem in the weighted case.

Let a = (ai , . . . ,0n) be an n-tuple of positive integers, and let
k

ft : (R^O) —> (R^O) be a polynomial mapping for t G I = ]""[[c^,^].

Assume that F is a polynomial mapping. For each t G J, we write
ft(x) = Qi(x)-\-Gt(x)^ where Qt^(x) is the weighted initial form of /^ with
respect to a (1 < i < p). Then we define a mapping TT : S^1 x R —> R"^
by

7v(x^,...,Xn;u) = {uoilX^,...,UoinXn).

We set E = S^ x R and EQ = TT-^O) = 5'71-1 x {0}. By definition, E
is a Nash manifold and EQ is a Nash submanifold of E. The restriction
mapping TT\(E — Eo) : E — EQ —> R71 — {0} is a 2 to 1 mapping. We call this
proper Nash mapping TT a weighted double oriented blowing-up of R71 with
center 0 e R71. This is a weighted version of double oriented blowing-up.
(See Example (a) in page 221 in H. Hironaka [17], for its definition.) For
this TT, we define the notion of Tr-modified Nash triviality in a way similar to
Definition (1.10.1). Concerning this weighted double oriented blowing-up,
we have

THEOREM IV. — If Q^O) H S{Qt) = {0} for any t G I , then
(R72 x jr,^'"1^)) admits a TT-modified Nash trivialization along I .
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Remark (2.4). - In [3], M. Buchner and W. Kucharz showed that
(K x 1, F (0)) admits a Tr-modified C1 trivialization along I under the
same assumption as above. They treated a more general case than the
polynomial case.

2.5. Classification theorems on modified Nash triviality.

We first prepare notation. Let F : (R" x J, {0} x J) ̂  (RP o) be a
mapping, and let Q c J . Then we denote by FQ the restriction mapping
01 -r LO -TV, X (a).

We express / = (/i,.. . , /p) e P^(n,p) as follows:

/,(a;)=^a^ (l^<p).

Then the coefficient space { ( - . . , a^ ...)} is naturally identified with an
Euclidean space RN. For a = ( . . . , a^\...) e RN, we write

/^)= (E^V-E^0) ePM(^).
After this, we shall not distinguish P[r](n,p) from R^. Let

F : (R" x P(,](n,p), {0} x P[,](n,p)) -^ (RP,O)

be the polynomial mapping defined by F(x; a) = f^(x). We put

S* = {/ e PM(U,P) : /-^O) n 5(/) D {0} as germs at 0 e R"}.

Then we have a classification of elements of P^(n,p) by modified Nash.

THEOREM V. — There exists a partition of the space of polynomial
mappings P^(n,p) = E* u Qi U • • • u Q^ such that for 1 < i ̂  d,

(i) Qi is a connected Nash manifold,
and

(ii) (R" x Q,, FQ^O)) admits a Tli-modiGed Nash trivialization along
Qi, for some 11^ Here, n, is a Nasb modification which gives a simultaneous
resolution ofF^(0) in R" x Q, over Q, around {0} x Q,.

By using the same argument as Theorem V, we have

THEOREM VI. — Let J be a semialgebraic set in some Euclidean
space, and let f, : (R", 0) - (RP, 0) (t e J ) be a polynomial mapping. We
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define F : (R/1 x J, {0} x J) ^ (RP.O) by F(a-;t) = /,(^). Assume that
F is a polynomial mapping. If each fi'1^) admits 0 € R71 as an isolated
singularity, then there exists a finite filtration ofJ by semialgebraic sets J^

J = J^ D J^ D . • • D J^ D J^^ = 0,

with the following properties:

(i) dimJ^) > dimJ^+1) and J^) - J^) are Nash manifolds.

(ii) For each connected component Q of J^-J^\ (R^O.F^O))
admits a Il-modified Nash trivialization along Q, for some II. Here, 11 is
a Nash modification which gives a simultaneous resolution of FQ^O) in
IU1 xQ over Q around {0} x Q.

Remark (2.5). — In the case of functions, T.-C.Kuo gave a filtration
similar to Theorem VI such that for t, t ' in a connected component of
j(») _ J^+i)^ y^ y^, are blow-analytically equivalent (see [26]). But he has
not given the filtration for blow-analytic triviality.

As a corollary of Theorem VI and a Generalized Artin-Mazur Theo-
rem (Theorem (6.6) in §6), we have

COROLLARY VII. — The statement of Theorem VI remains true if
we only assume that ft and F are Nash mappings.

3. Proof of Theorem I.

Before starting the proof of Theorem I, we prepare some terminology.
Let M (resp. M') be a Nash manifold possibly with boundary, and let
No, Ni,..., Nq (resp. No, N{,.... Nq) be Nash submanifolds of M (resp. M')

9 q
possibly with boundary. We say that a mapping / : |j N^ —> |j A^

i==l i=Q
is a Nash diffeomorphism if the restriction f\Ni : Ni —> N^ is a Nash
diffeomorphism for 0 <, i < q. A Nash function on N^ U • • • U N^ is a
function whose restriction to each Ni is of Nash class. We also define a
Nash map from N^ U • • • U N^ to a Nash set (i.e. the zero set of a Nash
function) similarly. Note that each N^ is a Nash set in M (Corollary 11.5.4
in [34]).

Let M be a Nash manifold possibly with boundary, and let No, Ni , . . . ,
Nq be Nash submanifolds of M possibly with boundary which have normal
crossings. Then we have the following:
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q
LEMMA (3.1). — We can extend a Nash function on (J A^ to M.

1=0

Proof. — Let 0 < i < q. Assume that the following statement holds:

i
STATEMENT (i). — Let fi be a Nash function on \J Nj which

j=0
i-1

vanishes on |j Nj. Then there exists a Nash function gi on M such that
3=0
i

9i = fi on |J N j .
j=o

Then we can derive Lemma (3.1) from this statement as follows. Let /
9

be a Nash function on |j Nj. By statement (0), we have a Nash function go
j=0

on M such that go = f on NQ. Next apply statement (1) to (/—^o)|M)UA^i
which vanishes on No. Then there is a Nash function g\ on M such that
g^ -)- g^ = f on NQ U TVi. Repeating these arguments, we obtain a Nash
extension of / to M.

It remains to show statement (i). By Proposition 11.5.6 in [34], for each
0 < j < z, there exist Nash functions ^i,...,^^. on M whose common
zero set is Nj and whose gradients span the normal vector space of Nj in
M at each point of Nj. Let (^-i,... , ^Pjbj) denote the ideal of the ring of
Nash functions on M generated by ( /^- i , . . . , ̂ ^.. Set

i-l

Fi-i = F|( î,...,^.).
j=0

In general, a ring of Nash functions is Noetherian (e.g. [34]). Let ^ i , . . . , ipd
be the generators of -Fz-i. Then, by the hypothesis that A/o,...«,A^ have
normal crossings, for each point x € Nj, we can describe the germ (fi\Ni)x

d
as ^ pj(i^j\Ni)x, for Nash function germs pj at x in A^. Hence, by [34]

j=i
1.6.5, we have globally

f,\N,= ̂ p,WN,)
finite

for some Nash functions pj on N^. By Corollary II.5.5 in [34], we can extend
pj to M. Let pj denote the extension. Then gi = Spj^j 1s a11 extension
of/,. D

Now let us start the proof of Theorem I. We first show the case where
all M's, 0 < i < 9, are of codimension 1 in M to make the idea of the proof
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clear. In this case, we describe only the proof of the first part of Theorem
I, because the second part follows immediately from our proof. Let M be
a Nash manifold, and let M)(= 9M), T V i , . . . , Nq be Nash submanifolds of
M which satisfy the hypotheses of Theorem I. Set

X j = {N^ H • • • H N^ of dimension j; : 0 < i\,...,%(, ̂  9}, j = 1 , . . . , m — 1.

Then, in the case where Xj ^ 0, each element N of Xj is a Nash manifold
possibly with boundary, and (TV, {TV' € Xj-\ : N ' C N}) has the same
properties as (M; NQ, ..., Nq). If m ==• k, then NQ = • ' • = Nq = 0 and the
theorem is clear. Set

^-U^6^ j=A;,...,m-l; V^=M.

Let us consider the following statement for k < j < m: There exists a Nash
diffeomorphism (pj = (y/, w) : Yj —> Y* x R^ such that

^.|y;=id, ^(N)=N\ z = 0 , . . . , ^ , f o r T V e ^ U - . - U X , .

Then the statement for j = k clearly holds, since w\Yk is a finite covering
over R^, and that for j = m coincides with our theorem. Therefore, in
order to prove the theorem, it suffices to construct (pj on each N € Xj.
Since ̂ -i is defined on TVnY^-i , it is necessary to extend ^_i |TVnYj_i
to N. Hence we can reduce the theorem to the following assertion:

ASSERTION (3.2). — Let

(^(^.^rljM-^U^1^
1=0 i=o

be a Nash diffeomorphism with ^\N^ = id, ^\Ni) = N^, i = 0 , . . . , ^ .
Then we can extend (p to a Nash diffeomorphism

^=(^,^):(M;M,..,^)^(M*;JVl*,..,7V;)xR;c

such that (p^M* = id.

We further reduce Assertion (3.2) to the following easier assertion:

ASSERTION (3.3). — For (p in Assertion (3.2), there exist an open
q

semialgebraic neighborhood U of \J Ni in M and a C7' Nash imbedding
i=0

$=($',ZZ7) :[/->[/* XR\

which is an extension of\p, such that ^\U* = id, where r is a sufficiently
large integer.
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Proof that Assertion (3.2) follows from Assertion (3.3). — Assume
that Assertion (3.3) holds. First we modify $ to be of Nash class. There
exists a Nash manifold M*(D M*) in R771' without boundary of dimension
m — k. Let v : V —> M* be a Nash tubular neighborhood in R771 , and let
( p ' : M -> R^ be a Nash extension of ^ (cf. Lemma(3.1)). Then ^' - $'

, q
is a C^ Nash map from M to R771 , which vanishes on |j A^. Moreover,

1=0
by generalizing Lemma (3.1) a little, we can choose ( p ' so that ( p ' = id
on M*. It follows that ^/ — ( p ' vanishes on M*. Let Fq be the family of
Nash functions on M given in the proof of Lemma (3.1). Let F^ be a finite
family of Nash functions on M whose common zero set is M* and whose
gradients span the normal vector space of M* in M at each point of M*
(e.g. { w i , . . . ̂ Wn} where w = (z^i, . . . ,Wn))? and set

F={hf2:fieF^f^F^}.
Let r be sufficiently large. Then we have a finite number of r]j G F and C1

Nash maps ̂  : M -^ R^ such that ^ ' - ( p ' = ̂  7^. Let ̂  : M -^ R^ be
a strong Nash approximation of each ̂  in the C1 topology (Theorem 11.4.1
in [34]). See [34] for the definition of the C1 topology. Then $' + E r]^°j is
a strong Nash approximation of ^>' in the (71 topology, which equals <!>' on

9 ^
M*U (J M. Hence v o { ( p ' -\-Y^r]j^) is a Nash map and keeps the properties

1=0
of ^/. Thus we can assume that <I> is of Nash class.

Next we modify U and ^ so that U is a Nash manifold with boundary,
w\U and w\9U are proper submersions onto R^, and <1> is a C^ Nash
diffeomorphism onto L^* x R^ (here [/ is no longer open in M, but closed).

q
Let p be a nonnegative Nash function on U* with zero set |j A^*, e.g.

1=0
the restriction to U* of the square sum of the elements of Fq. Note that
M* and /^(O) are compact, and for some neighborhood W of p'^O), p is
C1 regular on W — p~l(0) because the critical value set ofp is finite. Hence
shrinking U we can assume that p(U*) = [0,2), and

pK^-p-1^)):^*-?-1^)-^)
is a proper Nash submersion. Then by the Triviality Theorem in [5], there
is a Nash diffeomorphism

^ = (V/,p) : £/* - p-\0) -^ p-\l) x (0,2).

Let 0 < / <^ 1 be a C° semialgebraic function (i.e. with semialgebraic
graph) on R^ such that /(O) = 1, and

^([OJQ/)]) C ̂ (^H^-1^)), for each y e R\
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There exists such /. In fact, we can construct it by using the semialgebraic
function g : R^ —^ R denned by

^ ^ f infp(^* - ̂ {U H w-\y))) if exists,
t 1 otherwise.

This function is locally larger than a positive number. Now, by Theorem
11.4.1 in [34], we can assume that / is of Nash class. Replace U with the
set

U (w-\y^^-\p-\[^f{y)\)}\
ye-Rk

and denote it by the same notation U. Then U is a Nash manifold with
boundary, w\U and w\9U are proper submersions onto R^, <I> : U —^
[/* x R^ is a Nash imbedding, and we have

^'(U H w-^y)) = ̂ ([O, f(y)}) for y e R^.

It remains to modify ^ to be a G7' Nash diffeomorphism. Set
A = {(s, t) e (0,1] x [0,1] : 0 ^ t<, s},

A' ={(s,t) e A : 0 ^ t ^ 5 / 2 } .

Let a : A —^ (0,1] x [0,1] be a 07' Nash diffeomorphism of the form
a(s^t) = (s.a^s^t)) such that a = id on A ' . Replace <!>' with the map

) ^-1^)1 Q^\x},0/{f QW(X),PQ^\XY) fOTXCU- JM,

U 3 x ^ , ^
^(x) for x e U M.

1=0

Then <I> becomes a C^ Nash diffeomorphism onto U* x R^.

Thirdly we extend <I> to a ̂  diffeomorphism from M to M* x R^,
which is possible by Theorem 3 and Proposition 7 in [5]. Lastly we
approximate the extension by a Nash diffeomorphism as in the above first
step, which proves Assertion (3.2). D

Now we prepare the following assertion for the proof of Assertion
(3.3).

ASSERTION (3.4). — Let 0 < % < q. For ^ in Assertion (3.2),
there exist an open semialgebraic neighborhood Ui of N1 in M and a Nash
imbedding

^=(^w):Ui-.U^xR\
q

which is an extension of(^|L^D |j Nj, such that ^>[\U^ = id.
j=0
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Proof that Assertion (3.3) follows from Assertion (3.4). — Assume
that Assertion (3.4) holds, that is, U, and ^,z = 0 , . . . , 9 , in Assertion
(3.4) exist. By combining ^o and ^>i and shrinking the neighborhoods UQ
and £/i if necessary, we can define a G7' Nash imbedding

^0,1 -(^o,!^) :^oU£/i ^(£/oU£/i)* x R ^

with the same properties as <^ as follows. Let (3 be a C77' Na^h function on
M such that 0 ^ / 3 < l , / 3 = 0 o n a neighborhood of M - UQ in M, and
^ = 1 on a neighborhood ofTVo. Replace UQ with Int/^-^l), and denote it
by the same notation UQ. Define a C7' Nash map ^o i : ̂ o U £/i -^ M* by

{ ^o(^) for a; G UQ,
^iW = vW^(x} + (1 - 0(x))^[{x)) for ^ € ^i with f3(x) > 0,

^'i^) for x € £/i with /3(a;) = 0,
where ^ is the Nash tubular neighborhood in the above proof. Then for
sufficiently small UQ and U^, the map

^0,1 = (^0,1^) : UoUU^ (Uo U U^Y x R^

is a G7' Nash imbedding, which is an extension of (p\(Uo U U^} H U TV- such

that ^0,11(^0 U ?/i)* = id. Repeating these arguments, we obtain U and <^
as required, r-,

Proof of Assertion (3.4). — We show the case i = 0. The other
cases follow similarly. We shall construct a Nash tubular neighborhood
w : W —^ No in M and a nonnegative Nash function 7 on W such that

(i) ^(wn UM)ciy*,
1=0

9
(ii) w o ̂ ' = i p ' o w on W Ft |j TV,,

1=0
(iii) w o w = w on W,

(iv) W-^CM^I,...^

(v) ^(O^M),

(vi) 7 is C1 regular outside NQ and, locally at each point of NQ, the
square of a C1 regular function, and

q
(vii) 7 o y/ = 7 on W D |j TV,.

1=0
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Assume the existence of such w and 7, and shrink W so that 7 < e
and

7|(Ty*-A^):^*-7Vo*-^(0,^)

is proper for some e > 0. Then for each point xofW there exist two points
Xj, j = 1,2, of W* such that (?' o w(x) = w(xj) and ^y(x) = ̂ {xj). Now
we map each point x of W to one of the above points Xj of W* so that
the mapping is continuous and the identity on W*. Then the mapping is
unique and of Nash class. Denote it by <l>o. This <l>o fulfills the requirements
in this assertion.

We first construct w on M*. Let w* : W* —> N^ be a Nash tubular
neighborhood in M*. The problem is only that w* has to satisfy condition
(iv). To solve this, we define w* on each [j{Nr\W* : N € Xj} by induction
on j», which is done by Lemma (3.1) as in the above arguments. Next, for

q
small TV, we extend w* to W H |j N^ by

1=0
w{x) = w-^w^x)) H ̂ (w* o ̂ {x)) for x € W H \J TV,,

1=0
which is a Nash map, and satisfies conditions (ii), (iii) and (iv). Thirdly,
by Lemma (3.1) we extend w to W so that w :W —> NQ is a Nash tubular
neighborhood. Then we need to modify w so that condition (iii) is satisfied.
(If we choose W small enough, then (i) is satisfied.) This is easy to see.
Indeed the correspondence

/the image of x under the\
W x W D Wd 3 ( x ^ y ) ^-> x^^y) = ( orthogonal projection onto j e No

VVori^"1^^)) in M )

is of Nash class (where Wd is a small semialgebraic neighborhood of the
diagonal of W x TV), and \(w(x),x) satisfies all the conditions.

Finally we construct 7. In the same way as above, we can construct
a Nash function 7' on W such that

(v)' y = 0 on No,
q

(vii) 7' o ̂ ' = 7' on W H |j A^, and
1=0

(vi)' 7' \W D M* is C1 regular outside NQ and, locally at each point of
NQ^ the square of a C1 regular function.

q
By (vii) and (vi)', 7' is C regular at any point of W H |j N^ — NQ

i=l
/ q \

and, locally at each point of W D ( |j N1) H 7Vo, the square of a C1 regular
^=0 /
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q
function. Here we apply Lemma (3.1) when we extend 7' from W D |j Ni

i=0
to W. Hence, by the proof of Lemma (3.1), we can choose 7' so that its
first partial derivatives vanish on TVo. Let 7" denote the square sum of the
elements ofFq in the proof of Lemma (3.1), and shrink W. Then 7 = 7'4-7"
satisfies conditions (v), (vi) and (vii), which completes the proof. D

We next show the general case. By the same reason as in the above
proof of the codimension 1 case it suffices to prove the later half of the
theorem for ZQ = 0 , . . . , iq = q. We proceed by induction on q. Define a C1

Nash diffeomorphism

^=(^,ZZ7):J^-.f|j^ xRk

i ' i /

to be (^,w) on each Nz. We can assume that y?' = id on (IJM)*. Let TVi
i

be such that TVi (Zt IJ Ni. By induction we have a C1 Nash diffeomorphism
z/l

(p = (^/, w) : M -^ M* x R^

which is an extension of (p\ (J Nz. Let p : U —> JVi be a small closed C1

i^l
Nash tubular neighborhood in M such that QU and 7V"o, A^ , . . . , Nq have
normal crossings and <f>/(p~l(x)) == p"1^'^)) for each x G TVi H ( IJ ^)-

S^i /

Existence of such p follows from a C1 Nash partition of unity. Set N[ =
A î H ( (J M) and 7v{' = p-^^).

v^! 7

By Theorem 8 in [4] we have a C1 Nash diffeomorphism

^=(^,w) : U -^U" x R ^ ,

where L7'* = £/ D zz7~l(0), such that ^ o p = p o ̂ f and '0' = id on U*.
Recalling the proof of codimension 1 case, we need only to modify ^ ' so
that

^/ = (f)' on N^ and ^' = (^/ on TVi.

Define a C1 Nash map $ : (TVi U TVf)* x R^ ̂  (7* so that

^ o y = ̂ f on TVi, and ^ o y? = ^/ on A^{'.

Note that for each (a*, ^) 6 1V{* x R-^, $|p-l(al) x t is a C1 Nash diffeomor-
phism onto p"1^), and for each (.r, ^) € A î* x R^, p o ^(a;, ^) = x. We will
show the following assertion:
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ASSERTION (3.5). — $ is extensible to a C1 Nash map £/* x R^ -^
[/* so that for each (x,t) e N^ x R^ ^p"1^) x t is a C1 Nash
diffeomorphism onto p~1 {x).

If this assertion is true then for such an extension ^, (^,id)~1 o ̂  is
a required modification of ^ and hence the theorem is proved. We reduce
the problem to the case where ^(.r, t) = x for all (x, t) e 7V{'* x R^.

Let V be a small open semialgebraic neighborhood of 7V{* x R^ in
N^ x R^. It is easy to extend ^N^ x R^ to a C1 Nash map

^ U P~\x)xt^U-
{x,t)ev

so that for each (x,t) € V, ^l\p~l(x) x t is a C1 Nash diffeomorphism
onto p"1^). Since we cannot always extend ^i, moreover, to U* x R^, we
modify ^i as follows. Choose V so that for any e > 1 and (rr, t) e N^ x R^,
if (x, et) € V then (x, t) € V. Then we have a C1 Nash map K : V -^ V of
form ^(^) = {x,n\x,t]) such that

/^ = id on (V H TVi* x 0) U 7V{* x R^,

and

/^(V - V ' ) C N^ x 0 for a very small neighborhood V of 7V{* x R^ in V.

In place of ^i consider

^^(^(pO^)), (^^)e |j p~\y)xt,
{y,t)(EV

which is also an extension of ^N^ x R^ such that for each (x,t) C V,
^2|p-l(^) x Ms a C1 Nash diffeomorphism onto p"1^). Now we can extend
^2 to [/* x R^ by setting ^(x, t) = x outside |j p~l(y) x t. We denote

(^)ev
the extension by ^2- Clearly ^2\P~^{x) x t is a C1 Nash diffeomorphism onto
p-1^) for any {x,t) € A î* x R^.

Define a G1 Nash map ^3 : (M U A^')* x R^ -^ (A^i U 7V{')* by

(6, id) = (^2,id)-1 o (^id) : (M U 7v{')* x R^ ̂  (TVi U 7V{')* x R^

then
P ° ̂ {x^ t) = x for each (re, t) € 7V^ x R^,

$3(2:^) = a: for each (x,t) e TV^* x R^.

Moreover, if we can extend ^3 to a C1 Nash map

(3 : £/* x R^ -^ £/*
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keeping the property that for each (x,t) e N^ x R^ ^p-^x) x t is a
C1 Nash diffeomorphism onto p-\x), then ^ o (6, id) is an extension of
^ required in (3.5). Hence it suffices to show the extensibility of ^3 to such
a ^3, which is equivalent to show Assertion (3.5) under the assumption
^(^) = x for all (x,t) e TVf* x R^.

We can state what we have to prove as follows:

(3.6). — Let Gn^n2 be the Grassmannian of n^ -dimensional sub-
spaces ofR^, and let TT : E -^ Gn,^ denote the universal vector bundle,
where

E={(\t)^Gn,^ xR^ : ^ e A } .

Set E =^t) e E : \t\ ̂  1}. Letq : N, -^ IntE be a C1 Nash map. Let
(TT o q)^E denote the pullback of E by TT o q, and regard it as a subset of
N^ x E by the equality

(TT o q)^E = {(x, TT o q(x), t) e TVi x E}.

Then there exists a C1 Nash diffeomorphism r : (7roq)^E -^ (7roq)^E such
that for each (x, TT o q(x),t) € (TT o q)^E,

r(x,7roq(x),t) = ( x , 7 r o q ( x ) , t ' ) for some t ' C R^,
r(x^oq(x)^)=(x^q(x)),

and ifq(x) = (TT o q{x), 0) then r(x, TT o q(x), t) = (x, TT o q(x), t).

Here we easily reduce to the case where TVi = Int E and q = id. For
simplicity of notation we consider, moreover, q only on Int I? D 7^~l(\o)
for one Ao ^ Gn^n^' The general case is proved in the same way by more
complicated notation. Then (3.6) is reduced to the following:

(3.7). — Set B = {x e R^ : \x\ < 1}. There exists a C1 Nash
map

rj: d(B) x B -^ d(B)

such that for each y e B, rj\d(B) x y is a diffeomorphism onto d(B),
^(^ y) = V, and r]\ c\(B) x 0 = id.

It is easy to find a C1 Na^h map 771 : cl(5) x B -^ cl(B) such that for
each y e B, rj\ c\(B) x y is a difFeomorphism onto cl(B), and rj^y, y) = y / 2 .
Here let us assume the following:

(3.8). — There exists a C1 Nash map

rj2 : cl(B) x d(B) -^ d(B)
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such that for each y € c\(B), 772] cl(B) x y is a diffeomorphism onto cl(B),
7/2(0, y) = y / 2 , and 772 = T]\ on cl(B) x 0.

Then (3.7) follows and the theorem is proved. Indeed, if 772 in (3.8)
exists, 77 defined by

(77,id) = (771,id)-1 o (772,id) : cl(B) x B -^ cl(B) x B

fulfills the requirements in (3.7). Therefore it remains to show (3.8). Clearly
there exists a C1 map cl(B) xcl(B) —> cl(2?) with the properties in (3.8). Let
772 be its C1 Nash approximation such that the properties except 772 = 771
on cl(B) x 0 hold, which is possible because cl(-B) is compact. On the other
hand, it is easy to construct a C1 Nash map

772 : cl(B) x W -> cl(B)

for a small semialgebraic neighborhood TV of 0 in cl(.£?) such that all the
properties in (3.8) hold with 772 replaced by 772. Combine 772 and 772 by a C1

Nash partition of unity. Then we obtain the 772. This completes the proof
of Theorem I.

4. Proofs of Theorem II, Proposition (2.2)
and Corollary III.

Let ft = C / t , i , . . . ,A ,p) : (R^O) -^ (R^.O) (t C I ) be a polynomial
family of polynomial map-germs. We set F{x,t) = ft(x), and Fi(x^t) =
fn{x). Let q : M x I —>• I be the natural projection, P G M, y =
(2 /1 , . . . , yn) a local coordinate system of M at P, and t = ( ^ i , . . . , tk) a
local coordinate system of I . Let TT : M —>• R71 be a proper modification so
that Tr'^O) is a normal crossing divisor. We set V the strict transform of
F'^O) by TT x id and Vt =V^\q~l(t). Assume that we can locally express
V as zero locus of some functions Qi{y^ t) (i = 1,... ,p).

LEMMA (4.1). — IfVt is nonsingular for each t G I and transverse
to each irreducible component ofTr"'1^), then TT induces a simultaneous
resolution of (R71, ./^(O), 0) for t € I .

Proof. — Since 14 is a nonsingular for each t G J, the matrix
r\

(—— ) has the maximal rank p, and thus q\V is a submersion.
\ 0 y j / Ki<p;l^j<n

Since TT gives a resolution of (R^/^ (()),()), the critical locus of TT is a
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union of divisors Di , . . . , Dd which have normal crossings. Then, we may
choose a local coordinate system at P so that Di is a coordinate hyperplane
if Di 3 P. Let D be the intersection of some of D^s. Then, without loss of
generality, we may assume that D is the zero locus of yj 's for j = -^+1,.. . , n.

Since Vf is transverse to D, the matrix ( —— ) has the maximal
Vc^/j / i<:i<p;i<j^

rank p. For simplicity, we assume that rank f ^ ' ) = p, and D =\9yj^i^ij<p
R^ = R^ x R^. By the implicit function theorem, VD (D x I ) is expressed
around (P,t) as the graph of some smooth mapping h : R^ x I —^ W.
Thus q\V H D x I is a submersion at (P, t). This completes the proof. D

The following lemma assures the existence of Nash neighborhoods for
resolved varieties.

LEMMA (4.2). — Let/ ,=(/ , , i , . . . , /^): (R-, 0)^(1^,0) (t e
I ) be a polynomial family of polynomial map-germs, and let TT : M —> R72

be a proper Nash modification which supplies a simultaneous resolution of
the family of germs Vt := f^ (0) at 0. Set 11 = TT x id, and M = M x I . Then
there is an open Nash neighborhood ofIl~l({0} x I ) in M., whose closure
is a Nash manifold with boundary. Moreover the boundary intersects the
strict transform ofV transversely.

Proof. — Let p : IU1 — ^ R b e a nonnegative Nash function with
p'^O) = 0. We use the notation in the definition of simultaneous resolution.
Set Vj^t = Vj H Mf. Define the number ^ be the supremum of the set of
numbers e which satisfies the following condition: 6 is not critical value of
p o 7r| H Vj^t and p o TT\EF D F| V^t for each J C { 1 , . . . , A;}, Ep e <?, and

j^J jeJ
for 0 < 6 < e. Locally, Of is larger than a positive constant. Thus, there is
a positive constant e such that e < e^ for any t € I . Then '^.~l({p(x) < e})
is the desired neighborhood. D

Proof of Theorem II. — By supposition, TT : M —> J^ induces a
simultaneous resolution of (/^(O), 0), for t G I . By Theorem I and Lemma
(4.2) we have a Nash diffeomorphism germ

^ : (M x J.n-^O} x I ) ) -^ (M.TT^O)) x I
satisfying p o <I> = p, ^>\S(7r) = 0, and trivializing the strict transforms of
(/^(O^O). By Condition (C) and properness ofpr, ^ induces a homeomor-
phism germ

^' : (R71 x J, {0} x I ) -^ (R71,0) x I .
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This completes the proof. D

By the definition of A-regularity, we obtain the following, which shows
Theorem II'.

k
PROPOSITION (4.3). — Let I be a closed cuboid n [a^^] in R^

i=l
and let ft = (/t,i, • . . ,/t,p) : (R^O) -^ (R^O) (t e I ) be a polynomial
family of polynomial mappings. Let A be a regular polyhedron majorizing
R^. If ft is /^-regular for each t € I , then TT : PA —^ R71 induces a
simultaneous resolution of the family of germs of/^^O) at 0.

Proof of Corollary IIL

(1), (3): Since D(7r) = 0, Condition (C) is trivial.

(2): Let -D be a component of /^'~1(0) with 7r(D) -^ {0}. By supposition,
F\D x I does not depend on t, and Condition (C) is clear.

Therefore (1)-(3) are immediate consequences of Theorem II.

(4): Set A = {v € R^ : Y^VI ^ 1}. Since PA -^ R" is the blow-up at 0,
— i

this is an immediate consequence of (3). D

Proof of Proposition (2.2). — Let to € I and let p : R71 —> R be a
non-negative Nash function with p'^O) = {0}. By abuse of notation, we
denote by A Anp~l([0,e)xI) (resp. An((qoIl)-l([0,£)xI)) for a subset A
in R^^^ x I (resp. PA x J). For any X C <S, there is a positive number £o(X)
so that (p^QO, ̂ )) x I)^\q~l(to)^\T[(Zx) is Nash diffeomorphic to an open
simplex, because of (i), (iii), and Theorem I. Let CQ be the minimum of
£o(X) for X e <?. Let Ai denote the union of strata in S whose dimension
is less than or equal to i. Set

z^ = (q o n)-1^) n Zx, n(Zx)* = q~\to) n n(Zx),
A^^onr^nA,,

and so on. We construct Nash diffeomorphism germs

(t>z: (A,,!!-1^} x I ) ) -^ (A^.TT-^O)) x I and
^ : (n(A,), {0} x i) -^ (n(An,o) x i

with <^ o n = 11 o <^, by induction on z. The first step of the induction is
trivial. Assume that such <^ and 0^ exist. Let X be a stratum of <?[5'(II)
with dimX == i + 1. By Theorem I, there exists a Nash diffeomorphism
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^ : n(Zx) -^ n(Zx)* x I , which extends ^|II(Zx) H A^, and satisfies
9 o 0^ = g. Applying Theorem I again, there exists a Nash diffeomorphism
^x '• ^x -^ ^x x ^ which extends ^>i\Zx H^-i and satisfies II o(f)x = ^x °^'
Repeating this, we obtain the desired <^+i and ^+1. D

5. Proof of Theorem IV.

Suppose that Q^O) H 5'(Qt) = {0} for any t <E J. Then it follows
from the proof of the Buchner-Kucharz theorem (Remark (2.4)) that (R71 x
J.F"'1^)) admits a Tr-modified C1 trivialization along I . Namely, there is
a t-level preserving C1 diffeomorphism $ : [W\,EQ x I ) —^ (W^.Eo x I )
which induces a ^-level preserving homeomorphism cj) : (£/, {0} x I ) —>
(V x J, {0} x I ) such that

0: (([/, F-\o) n U)) = (V, f^W n V) x J, to e J,
where Wi, H^ are some neighborhoods of EQ x I in E x J, L^ is some
neighborhood of {0} x I in R71 x J, and V is some neighborhood of 0
in R71. For t G J, we define a mapping ^ : (W]_^,Eo) —^ [W^^^Eo) by
^((a;;n)) =<S>({x',u),t), where Wy^=^- l(Rn x {^}) n H^-, j == 1,2. Here
we remark that for any t € J,
(5.1)

7T 0 ̂ (Cn, . . . , Xn\ U)) = 7T 0 ̂ (((-l)^^, . . . . (-1)"-^; -n)), ^ ̂  0.

Now we can make the Buchner-Kucharz result slightly clear as follows:

LEMMA (5.2). — There exist eo > 0 and a t-level preserving C1

diffeomorphism

^ : (^n-1 x [-^o] x J.^o x I ) -^ G^"1 x [-^o] x I ^ E o X I )

such that ̂  induces a Tr-modified C1 triviality of^R71 x J, F~l(0)) along I .

Proof. — For each t € J, let 7^ (resp. ^) denote the strict
transform of f^W (resp. Q^^O)) in S"-1 x R. Then Tf and ^ are
Nash submanifolds of 5'n~l x R. For e -^ 0, put

r.. {(,„.. .^^..^\...^-.^.

Then there is £o > 0 such that ./^(O) ls transverse to I\ f o r t ^ I and
0 < H ^ ^o- Therefore r^ is transverse to ^S'71"1 x {e} f o r t e l and
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0 < \e\ < £Q. On the other hand, each Kt is perpendicular to the exceptional
variety S71-1 x {0}. It follows from Remark (2.4) that each Tt is transverse
to 6'71-1 x {0}. Therefore Tf is transverse to 5'n-l x {e} for t e I and
\e\ ^ £Q. Let T denote the strict transform of F'^O) in S71-1 x R x I .
Then T is a Nash submanifold of S71-1 x R x J, and

(5.3) T is transverse to ^S'71"1 x {s-} x J for |^ ^ CQ.

Let v be a C1 vector field whose flow gives a t-level preserving C1

diffeomorphism inducing a Tr-modified C1 triviality of (R71 x T'.F"1^))
along I . We can assume that ^S'71"1 x [-co, eo} x I c U, Then, by transverse
condition (5.3) and a partition of unity, we can modify v so that v is tangent
to S'71"1 x {e} x I {\e\ < eo) and T. By construction we can require that
the flow of this vector field gives a t-level preserving C1 diffeomorphism

^ : (5n-l x [-60,^0] x J,Eo x 7) -. (571-1 x [-^o] x I ^ E o x I )

such that ^(T H 5n-l x [-^o^o] x J) = (T^ H 6'n-l x [-£0^0]) x J and
each ^t satisfies condition (5.1). This ^ induces a TT-modified C1 triviality
of (R71 x J, F-^O)) along J. D

Theorem IV follows from this lemma and the proof of Theorem I. D

Remark (5.4). — In Lemma (5.2), we have explicitly constructed a
uniform Nash neighborhood and a ^-level preserving C1 diffeomorphism on
it inducing a Tr-modified C1 triviality, in order to make the structure of
Tr-modified Nash triviality comprehensible. But the proof can be shortened
for the reader who is interested only in the existence of a uniform Nash
neighborhood satisfying the hypotheses of Theorem I.

6. Proofs of Theorem V and Corollary VII.

We first recall two important properties on semialgebraic sets.

THEOREM (6.1) (Tarski-Seidenberg Theorem [32]). — Let A be a
semialgebraic set in R^, and let f : R^ —> R771 be a polynomial mapping.
Then /(A) is semialgebraic in R771.

THEOREM (6.2) (Semialgebraic Triangulation Theorem [27]). —
Given a finite system of bounded semialgebraic sets {X^} in R71, there exist
a simplicial decomposition R71 = |j a a and a semialgebraic automorphism
T ofR71 such that a
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(i) each Xa is a finite union of some of the r((Ta),

(ii) r(aa) is a Nash manifold in R71 and r induces a Nash diffeomor-
phism (T a -^ T (^a)? -fo1' every a.

Remark (6.3). — In Theorem (6.2), the boundedness is not essential.
In fact, there is a Nash imbedding of R/1 into R7^1 via R71 C 5'71. Then
every semialgeraic set in IU1 can be considered as a bounded semialgebraic
set in R^.

We next show the following:

LEMMA (6.4). — The set E* is semialgebraic in P[y,](n,p).

Proof. — We define a polynomial function G : Pr^ (n, p) x R71 —> R
by

G(w^x) =

9^__^)2 ^Ew^)^ E i., ^
i=l l<i^<...<ip^n \o\xin • • • ̂ ip)

f.,.^2, ^ 9(W^,...,W^
2^ ^l^J T- 2^ "^T——————\
i=l l<Ji<-..<Jn<P ^V3-'!? • • • ̂ n)

n>p,

if n <: p.

We denote by R+ the set of positive real numbers. Let IIi : P^](n,p) x
R71 x R+ —^ P^\(n,p) x R+, and Its : P[r](n,p) x R+ —^ P^(n,p) be the
natural projections. Here we set

A = {(w,a;,a) € P[r]{ri,p) x R71 x R+ : G(w,x) > 0}
B = {(w,x,o) € P[r}(n,p] x R" x R+ : 0 < \x\ < a}
C = {(w,a) 6 P[r](n,p) x R+ : (w,o:,a) C B => (w,x,a) G A}.

Then A and B are semialgebraic in Pr^](n,p) x R71 x R^-, and (7 =
P[y.](n,p) x R+ — IIi (B — A). Therefore it follows from Theorem (6.1)
that C is semialgebraic in P[y,](n,p) x R-(_. Furthermore we easily see that
P[r}(rz,p) - S* = Il2(C7). Therefore it follows from Theorem (6.1) that
P[y.](n,p) — S* is semialgebraic in P^](n,p), and so is S*. D

Proof of Theorem V. — Set

E** = {w € P[^](n,p) : 0 G R71 is not in the singular locus
of the zero locus of w}.

Then S** = {w 6 P[y.](n,p) : G(w,0) > 0}, where G is the polynomial
function defined in the proof of Lemma (6.4). Therefore S** is semialgebraic
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in P^(n,p). It follows from Theorem (6.2) that there is a finite partition
E** = Qi U • - U Qs such that each Qi is a connected Nash manifold
which is Nash diffeomorphic to an open simplex of some dimension.
Now we shall show that (R71 x Q^FQ^O)) is Nash trivial along Qi for
each %. We first consider the case n > p. For x = (x\,...Xn) G R^ put
||.r|| = ^2 + • • • + x2,. Set Se = {x C R7' : ||.r||2 = e} for e > 0. Then
there is a positive C° semialgebraic function g i : Qi —>• R such that

FQ^(O) n {{x,a) G R71 x Q, : ||a;||2 < ^(a)} is a C^ manifold

and fa1^) is transverse to 5g for 0 < e < gi{a) and a e Qz. By Theorem
11.4.1 in [34], we can approximate a positive C° semialgebraic function
g i / 2 by a positive Nash function hi so that fa1^) is transverse to 5e for
0 < e <^ hi(a) and a € Qi. Here we set

Mi = {(^a) e R" x Qi: \\x\\2 < hi(a)}.

Then Mi is a Nash manifold with boundary 9Mi which is transverse to
F^.^O). Applying Theorem I, we can easily see the Nash triviality of
(R" x Qi, ̂ (0)) along Qi for each i. In the case n < p, ̂ (0) = {0} x Qi
in the interior of the above kind of Nash manifold with boundary. Therefore
Nash triviality holds in this case, too.

We next consider the space P[y.](n,p) — S* — S** denoted by F, that is

f the singular locus of the zero locus 1
r = [w e ̂ (^ : of w is {0} as germs at 0 € R71 J •

By Lemma (6.4), the space T is semialgebraic in P^]{n,p). Put b = dimF.
For a subset A of TU1 x F, cl(A) denotes the closure of A in TU1 x F. Let
f3 : TU1 x P^](n,p) —>• P^](n,p) be the natural projection.

In the case n <: p, we consider the space

(3^ x r (cl ({(^, a) e R71 x r : Fr(x', a) = 0} - {0} x F) n {0} x F),

denoted by A. For any a e F, /^(O) = {0} as germs at 0 G R". Therefore
it follows from Theorem (6.1) that A is a semialgebraic set in P^](n,p)
of dimension less than b, and F — A is a semialgebraic set in P^(n,p) of
dimension b. By Theorem (6.2), there is a finite partition

F - A = R^ U • • • U Rq

such that each Ri is a connected Nash manifold which is Nash diffeomorphic
to an open simplex of some dimension. For each z, there is a Nash manifold
Mi in H^ x Ri such that F^.^O) = {0} x Ri in the interior of M^, as above.
Therefore (R71 x ^.F^O)) is Nash trivial along Ri for 1 <, i < q. Then
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we put Qs+i = Ri for 1 < i < q. Next we apply these arguments for the
semialgebraic set T of dimension b to the semialgebraic set A of dimension
less than b. Repeating this procedure, we can get a finite partition of
P[^](n,p) which satisfies conditions (i),(ii) in Theorem V.

It remains to show the case n > p. Let p : R71 x P^](n,p) — ^ R b e
the polynomial function defined by p(x\a) = x\ -\- ' • ' + x^. We define a
polynomial function ^ : R72 x P^] (n, p) —> R by

^;a)^M^ ^ ^...,^p)^^2^
z=l l^i<-<^+i^n ^i^'-^ip+i)

We consider the space

^|R71 x n c i ( { ( a - , a ) c R " x r : ^r{x^a) = 0} - {0} x r} n {0} x r ) ,
denoted by f^. For a G F, we define ^a : R"1 -^ R by ^a(x) = ^(x',a).
Since /(^(O) is an algebraic set with an isolated singularity for a 6 F,
^(O) = {0} as germs at 0 C R". Therefore it follows from Theorem (6.1)
that f2 is a semialgebraic set in Pr^] (n,p) of dimension less than b, and r—^2
is a semialgebraic set in P^(n,p) of dimension b. By Theorem (6.2), there
is a finite partition

F - ^2 = Bi U • • • U Be

such that each Bi is a connected Nash manifold which is Nash diffeomorphic
to an open simplex of some dimension. For simplicity, assume that

(dimBi=b i f l ^ z < d
\dimBi <b ifd-\-l<i<c.

For 1 < i <^ d, there is a positive (7° semialgebraic function gi : Bi —>• R
such that ./^(O) is transverse to Se for 0 < e < gz{a) and a G Bi. As above,
we can approximate a positive C° semialgebraic function g i / 2 by a positive
Nash function /i^ so that ./ar^O) is transverse to 5'g for 0 < e < hi{d) and
a ^ BI. Here we set

U, = {(:r, a) e R71 x B, : p ( x ' ^ a ) < ̂ (a)},
M, = {(x,a) C R71 x ̂  : p(a';a) < ^(a)}

for 1 ̂  z ^ d. We can assume that Mi C Ui. For 1 ̂  z ^ d, let Xi C R72 x B^
be an algebraic set defined by Xi = Fp1^). Then each Mi is a Nash
manifold with boundary QM{ which is transverse to Xi. We consider Xi to
be defined in Ui. Therefore Xi is a family of algebraic sets whose singular
locus is in {0} x Bi. Then, by Hironaka's Main Theorem I in [16], there
exists a blow-up 11̂  : Mi —> R71 x Bi with center 5^ in {0} x Bi such that
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the strict transform X[ of X, by II, is nonsingular at X[ H II-1 (2,) and
^^-1(;E:^) ha^ only normal crossings. Moreover, by applying Main Theorem
II in [16] to X[ H n^(S,) and II-^S,), we can require that II-1^) has
only normal crossings. Let

n,(5,)=^iU.. .U£^)

where E^ is nonsingular, and let X[ = £^(z)+i. We set TV, = II,-1 (M,) for
1 < % ^ d. Then W, is a Nash manifold with boundary QWi such that

Int(l^) D ̂ i U . • . U E,^

and QWi is transverse to £^(z)+i- We denote by Q the union of critical
value sets of

(3 o n,|̂  n • • • n E^, i ^ ji < ... < ̂  < a(z) +1.
By Sard's Theorem and Theorem (6.1), Q is a semialgebraic set of
dimension less than b. Applying Theorem (6.2) again to B,, there is a
finite partition

B, = Tn U • • . U T^(,)

such that each 7^ is a connected Nash manifold which is Nash diffeomor-
phic to an open simplex of some dimension, and the T^'s are compatible
with

(3 o Hi(E^ n • • • n ̂ J, i < ji < ... < ̂  < a(z) +1
and Ci. As above, assume that

(dimTik=b i f l ^ k < X(i)
[ dimTik < b if A(z) + 1 < k ^ -f(i).

Remark that T^ n d = 0, /c = 1,. . . , A(z). For 1 < k < A(z), set

M^^^on^-^r.^n^,
Hik = Hi\Mik : Mn, -> R71 x T^, and
Afc-^on.lM.^M^^r^.

We further set

Eijk = Ei, n (/3 o n,)-1^), j = 1 , . . . , a(i) + 1.

Then Mik is a Nash manifold with boundary QMu, and /^^ is a proper
onto Nash submersion. Let Eiok = 9M,k. Then ̂ , j = 0 ,1 , . . . , a(i) + 1,
are Nash submanifolds of M^ possibly with boundary which have normal
crossings and

Afel^fcH- • -n^fc : E^kC}- • •n^fc ̂  T^, 0 ^ ji < ... < ̂  ^ a(z)+l,
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are proper onto submersions. Here we remark that Hi k : M^ —>• R71 x T^ is
a blow-up with center {0} x T^ (or 0). Therefore it follows from Theorem I
that (R71 x Tik^Ff.1^)) admits a II^-modified Nash trivialization along
Tik (in the empty case, (R72 x T^,F/^(0)) is Nash trivial along T^) for
1 < k < A(i), i = 1,. . . , d. Then we set

Q^A(i)+-+A(z)+fc = Tik for 1 ̂  k < X(i + 1) and 0 ^ 2 < d - 1.

Next we apply these arguments for the semialgebraic set r of dimension b
to the following semialgebraic set of dimension less than b:

( c \ I d 700 ^

nu |j B, u m (J T^
i=d-^-l ) \i=l A;=A(i)+l ^

Repeating this procedure, we can get a finite partition of P^(n^p) which
satisfies conditions (i),(ii) in Theorem V in this case, too. D

Remark (6.5). — Subdividing the above partition of P^](n,p) — S*
if necessary, we can construct a partition in Theorem V whose elements
satisfy the frontier condition.

Proof of Corollary VII. — We can show the following theorem in a
similar way to the Artin-Mazur Theorem (Theorem (1.5)).

THEOREM (6.6) (Generalized Artin-Mazur Theorem). — Let M be
the product of two Nash manifolds Mi and J . Let f : M —> W be a Nash
mapping, and let w : M —> J be the natural projection. Then there exist a
union M' of connected components of some nonsingular algebraic variety in
R^ xR771, a union J ' of connected components of some nonsingular algebraic
variety in R^, and Nash diffeomorphisms (p : M' —> M, ^ : J —> J / such
that f o (f) is a polynomial mapping and ^ o w o (f) is the onto projection
f3\M' : M' —> J', where f3 : R^ x R771 —>• R^ denotes the natural projection.

Remark (6.7). — In Theorem (6.6), it is difficult to choose M' as
the product of J ' and some Nash manifold.

Corollary VII is an obvious consequence of Theorem VI and this
generalized Artin-Mazur Theorem. D
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7. A-regularity and examples.

7.1. A-regularity.

The first purpose of this section is to give an explicit description
of A-regularity. Let x = (a;i,... ^Xn) be the coordinate system of R71.
Let / = ( f i ^ ' - i f p ) : R11 —^ R23 be a polynomial map defined by
fj{x) = E<^ where v = (z/i , . . . ,^) , 4 6 R, ̂  ^^•••a^71. We set
F+(/) = (r+(/i),...,r+(/p)) where r+(^) is the convex hull of the union
of the sets v + R^ for v with c ,̂ -^ 0 and call it the Newton polyhedron of
/. For an integral" vector a == * (a i , . . . , a^), ^(a) denotes the minimum of

n
(a, ^) with c{, ̂  0, where (a, v) = ̂  ft^z. Set

1=1

r(.r) = (^(r.),..., /^)), where /;(^) = ^ c^,
<a,i.)=^-(a)

and let — — ( x ) denote the jacobian matrix (-—— } . We denote
OX \ OXi / Ki<n;l<j<p

by e1 the %-th unit column vector *(0, . . . ,0,1,0, ..,0), (1 < i ^ n). Then
we set

Jo = !i : ̂ (^) > 0 for some 4, and So = ( x e R" : ]^[ x, = ol.
ielo

An integral vector a = (a i , . . . , an) is said to be primitive if
gcd(ai,..., a^) = 1. A face F of A is said to be supported by a if F is
defined by

F = [v e A : {a,v) =min{(a,^) : ^ € A}1.

Let P be a vertex of A. It is easy to see that A is regular at P if and only
if primitive vectors supporting (n — 1)-dimensional faces of A containing
P form a basis of Z71. Let A be a regular polyhedron majorizing R^, A^
the set of primitive vectors which support faces of A of codimension 1, and
A^ the union of A^ - {e 1 , . . . , e"} and [e1 : i € /o}. Set

[ a can be written in the form a == a1 -I- • • • + a^
V(A) = < a € Z71 : for some a^ € A^, (1 < j < k), and supports

a face of A of codimension k.
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Let F be a face of A. For a vertex P of F, we set Z(P) = {i : (e\ P) > 0}.
Then we define

S(F)=^{xeRn: {J ^=0}
P i€J(P)

where the intersection is taken over all vertices P of F. Let A be a regular
polyhedron majorizing R^. Without loss of generality, we may assume that
mm{(e^,l/} : v e A} = O.lfor each i = 1,... ,n.

PROPOSITION (7.1). — If a polynomial map-germ f = (/i , . . . , fp) :
(R^-^RP.O) satisfies

( Qf0' 1
i x : ^(x) = 0, rank ——(x) < p ̂  C S(Fa) U So, for every a C V(A),

then f is /^-regular. Here Fa is the face of A supported by a.

For the proof of Proposition (7.1), we prepare several notations. Let
P be a vertex of A and R^ the coordinate patch of P^ corresponding
to the cone Cone(A;P). We denote by y = (^/ i , . . . ,^) the canonical
coordinate system of R^. Let a3 = t{a{,.. . ,<%), j = l , . . . , n be a
basis of Cone(A;P) H Z77', and let (a^) be the inverse matrix of (a^).
Then the intersection of faces F^j of A supported by a-7 = ^(a-^ . . . , a^)'s
(j = 1, . . . , n) is the vertex P. And the map 7r|R^ is expressed by

Xi = y^ y^ • • • y^ , for i = 1, . . . , n.

In particular, the critical locus ofpr isa normal crossing divisor. This divisor
generates the canonical stratification of the critical set of TT, indexed by
some faces of A. In fact, these strata are indexed by Fa with a € ^(A).
Here Fa is the face of A supported by a, and

{ a can be written in the form a = 61 + • • • + b1^
E{^) = a C Z71 : for some V 6 A^) - {e1,.... e71} (j = 1, . . . , k),

and codim Fa = k.

We consider the stratification 8 of the critical set of TT generated by this
stratification and So, also indexed by some faces of A. Strata in 8 are
indexed by Fa with a € V(A).

Let F be a face of A with P e F so that F = Fa for some
a C V(A), and denote by Ep the corresponding stratum of £. By suitably
renumbering, we may assume that for all j € {1 , . . . . n} there exists i ̂  Io
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with a3 = e\ if and only if, j = i e {1, ...t}. Here t is some non-negative
integer less than n. Then the map TT is expressed by

( t+l n

ViVi^-i "'y^\ foTi=i,...,t,xi ~ t+i
y^i ' " y ^ ^ for z = t +1, . . . , n.

In particular, the stratification 8\Wy is the stratification generated by the
divisors [yi = 0} for i = t+1, . . . , n. Let J be a subset of { t+1 , . . . , n} such
that d(Ep) n R^ = [y^ = 0 : j C J}. Here d(Ep) denotes the closure of
Ep in PA- We consider a subset Ep in R^ which is defined by the following
condition:

y=^...,yn)€E^^^ ^-^with^^n.

For k = 1,... ,p, we define fk(y), fka(y) by

/^(^^•••^AO/),

and

f^^y)=yf(al)•••yenk(a")fkaW,
respectively. Remember that the vector a supports the face F of A. By
definition, the polynomial fka(y) does not depend on yj for j G </. We set
f(y) = (AQ/),..., f~p{y)). and f^y) = {^\y\.... //(,/)).

LEMMA (7.2). — The following conditions are equivalent:

(i) There exists yCE? so that f{y) = 0 and rank (——(y)'j^j}<p.
\9yj )

/Of0' \(ii) There exists yeEp so that y^) == 0 and rank ( — — { y ) : j ^ J ) <p.
\ dyj /

(iii) There exists yeEy so that /a(^) = 0 and rank (——(y):j^j} <p.
\ Qyj )

(iv) There exists x = (0:1,..., Xn) so that xi ^ 0 for i = t + 1 , . . . , n,

/"(.r) = 0 and rank (^(^)) < P.

Proof.

"(i) ̂  (ii)": This is an obvious consequence of the fact f\Ep = f^Ep.

"(ii) <^ (hi)": Since ^{y) does not depend on ^, j € J, conditions
(ii) and (iii) are equivalent.
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"(iii).^ (iv)": We first see that f\\x) = ̂ {a3} . f\\y) for

k = 1,... ,p. Next we remark the following identity proved by using the
fact Xi = y^ • • • y^ , i = 1,. . . , n:

Q r f ' 1 "V011 •" aln} (^ ' " ^V^ 0

9x
0 ^ / W ... <1 V-i. ... ^AO yn.9yi ' " 9y-.

Since a1 = e\ i = 1,. . . , t, each component of the matrix

^1 0 \ (a\ ... a\\ /y, 0 \ - 1

0 X n ) \a? ... a^/ \ 0 ^

is regular on Ep, and "a;, = 0 if and only if y, = 0" for i = 1,... ,t on Ej..
Because f^(x) is a weighted homogeneous polynomial of weight (a{,..., a^)

for j € J, we obtain -g—{y) = 0, j e J , if y e Ep n (/a o 7^)-1(0). These

imply "(iii) <^> (iv)". n

Proof of Proposition (7.1). — We continue the notation. Note that
J(P) U Jo = {^ + 1,.. • , n}. By assumption, Condition (iv) in Lemma (7.2)
does not hold. Thus, by Lemma (7.2), the negation of Condition (i) in
Lemma (7.2) holds, which implies that TT gives a resolution of /"^(D) near
Ep. This completes the proof. Q

7.2. Weighted homogeneous polynomials.

Here we consider weighted homogeneous polynomials in 3 variables.

PROPOSITION (7.3). — Let f(x^,x^,X3) be a weighted homoge-
neous polynomial of type (01,02, 03; d), that is, a linear combination of
monomials x^x^x^3 with 01^1 + 02^2 + 03^3 = d. Here, we assume that
^1,02,03,0 are positive integers with gcd(oi,02,03) = 1. If f has an iso-
lated singularity at the origin, then there is a regular polyhedron A so that
D(7r) = 0 and that f is ^-regular.

Proof. — We set r = F+(/). For an integral vector a, we denote by
t(a) the minimum of (a, v) with v e F, and by 7(0) the face of F supported
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by a. Let g^.x^.x^) be the polynomial so that / = x^x^x^g, ̂  ^ 0,
and that g{x^,x^ x^} is not a multiple of x, (z = 1, 2,3). Since / defines an
isolated singularity at the origin, each £, = 0 or 1 and at most one ^ is 1.
Set

AO = {(^1,^2^3) e R^ : Oi^/i +02^2 +03^3 ^ d},

and 71-0 the map P^ -^ R3. Let Z, be the intersection of TTO'^O) and the
strict transform of {x^ = 0} via 71-0. Let E denote the singular locus of
?Ao and let z, j, A; be integers with {ij, k} = {1,2,3}. Then we have that
"Zk C S if and only if gcd(a,,a^) > I," and that "Zj D Zk C S if and
only if a, > I." Since / defines an isolated singularity at 0, we have the
fallowings:

(0){^0}=W.

(i) If 4 = 1, then {^ = 0} = {^ = x, = o}.

If 4 = 0, then there are integers ?/,z^. such that aiv[ + a^' == d.
Moreover, if there are integers ^,^ with a,^ + a^^ + a/, = d, a/e is a
multiple of gcd(a,, o^). Since gcd(ai, 02, as) = 1, we have Zk <f- S. Thus we
obtain the following:

(n) If Zk C S and 4 = 0, then there are no integers Vi.Vj with
diVi + o^ + ak = d. Thus / contains no linear terms in x^, and
(9(f^) /9f\ek (Qtf^} i
-fc--^) • Therefore {^1=0}C{^,=0}.

Let K be the set of numbers k so that some power of Xk appears in
/. If k ^ ^C, there is a number j such that the term XjX^ attains a vertex
of r for some integer b, because / defines an isolated singularity. Let K^
be the set of numbers k such that k ^ K and that there exists exactly one
j satisfying the condition above. We denote this unique j by jk. Let K^ be
the set of numbers k such that k ^ K and that there exist exactly two j ' s
satisfying the condition above.

For k e ^i, we set AoQfc) = Ao H {^ = 0}. Let Ai(^) denote a
polyhedron in {v^ == 0} such that Ai(^) H {^ ^ 1} = ̂ o(jk) and ^i(jk)
is regular at each point in {^ < \,v^ = 0}, and Ai(jfc) meets ^/,-axis.
We set AI the convex hull of F U |j Ai(^), and set TTI the obvious map
PA.-PAO. ^xl

(iii) If k C Ki and ̂  = 0, then P^ is regular near the strict transform
of {xj^ = 0} in the exceptional set of 71-1.
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Proof of (m). — Without loss of generality, we may assume that
(k,i,jk) = (1,2,3). We first assume that 1 e K. Let (a[,a^) be a primitive
vector supporting an edge E of Ai(3). Then there is a positive rational
number 03 so that a' = (a[,a^ a'^) supports the face generated by (6,0,1)
and the edge E. Since a[b-\-a^ is an integer, a' is a primitive integral vector.
Thus, the smoothness of ?Ai(3) implies the smoothness of P^ near PA^S).
The proof for the case 1 ^ K is similar, and we omit the details. This
completes the proof of (iii).

For k € K^, we set (^ = (a + cej + ce,)/afc, where c is the minimal
positive integer such that aj + c is a multiple of a^. It is easy to see that
this ak is an integral vector. Set

A2 = Ai H {v e A : (a\ ̂  ^ ̂ ), k e K^}.

We also set F), = ̂ (a)n^{ak) for k C K^. Then P^ may be singular along
Ppk for k ^ K^. We consider a partial resolution TT^ : P^ —> PA 3 satisfying
the following conditions:

(1) each 2-face of As is supported by a vector that supports a 2-
dimensional face of As or a linear combination of a and a^ with positive
coefficients for k e K^.

(2) ?A2 is regular at each point of ^^(Ppk) except codimension 3,
i.e. some finite points, for k C K^.

(iv) If k € K^, then ?A3 is regular at each point in ^^(P^).

Proof of (iv). — Let P be a vertex of As such that P is in the
inverse image of Fj, by As -^ As. Let c1 and c2 be the primitive vectors
supporting the 2-dimensional faces containing P and assume that both
vectors are linear combinations of a and a^ with non-negative coefficients.
Then the plane spanned by c1 and c2 is that spanned by a^ and e,+e^. Since
det(e^,e, + e^a^) = ±1, the "height" of ei to this plane is 1. Since c^c2

form a part of basis of Z3, we have det(c1, c2, e1) = ±1. This completes the
proof of (iv).

Let A be a regular polyhedron majorizing As so that PA —> P^ is an
isomorphism except over the singular locus of P^. It is possible to obtain
the classification table of the Newton polyhedra of weighted homogeneous
/ with isolated singularity (see III. §6 in [31], for example). By elementary
computation in each case, (o)-(iv) shows that / is A-regular. D

The parameterized version of Proposition (7.3) is also true.
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PROPOSITION (7.4). — Let I be a closed cuboid. Let ft (x 1,^3, x-^)
(t € I ) be a family of weighted homogeneous polynomials of type
(01,02,^3; d). Here, we assume that 01,02,^3,^ are positive integers with
gcd( a 1,02,^3) = 1. If ft h^s an isolated singularity at the origin for each
t € I , then there is a regular polyhedron A so that D(TT^) = 0 and that
ft is /^-regular. Thus, (R3 x J.F"1^)) admits a TT/^-modified Nash trivi-
alization.

Proof. — If we set F = r+(/i) for general t, the exactly same
arguments as in the proof of Proposition (7.3), after obvious changing of
notation, shows that ft is A-regular for an appropriate A. We remark that
D{-K^) = 0. By Theorem II, we obtain the last sentence. D

7.3. Examples.

We work some examples here.

Example (7.5). — Let ft{x-^,x^,x^) = x^ + tx^x^ + x\x\ + x^5

(J. Briangon-J.-P. Speder [2]). This is a weighted homogeneous polynomial
of type (1,2,3; 15), and defines an isolated singularity at the origin, if

i-7

t -^ to = —151/7(-)4//5/3. Let J be a closed interval not containing to.
Let A be a polyhedron whose vertices are

(15,0,0), (1,7,0), (0,8,0), (0,6,1), (3,0,4), (1,1,4), (0,3,3), (1,0,5), (0,0,6),

and that coincides with the positive orthant R3, outside some compact set,
i.e.

f ^i + 2^2 + 3;/3 > 15, ^ 1 + ^ 2 + ^ 3 > 6 , 1
A = { (^1,^2,^3) € R> : }.

I - YI + 2^2 4- 2z/3 >. 11, ^ i + ^ 2 + 2 ^ 3 ^ 8 j
It is not difficult to see that A is regular. We show that TT == TI-A '• PA —> R3

gives a simultaneous resolution for (R3,/^"1^)) (t e I ) . In fact, setting
y = (2/1,^2^3)5 f01' example, the coordinate system of a coordinate patch
of PA defined by

( xi = yiy2y3
^ x2= y2yj
[x3= y j y j ,

we have
ft o 7r(y) = y^{yl + 1 + y^ + ̂ 15^),
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and the strict transform is nonsingular and transverse to each irreducible
component of Tr'"1^) in this coordinate patch. Similar computations in
the other coordinate patches show that TT == TI-A : PA -^ R3 gives a
simultaneous resolution for (R3,/^1^)) {t C I ) . (This fact is also followed
from Proposition (7.4), and the idea of proof of (7.4) can be explained in this
way.) We here remark that D(^) = 0. Thus, (R3 x I , ̂ (O)) admits a TT-
modified Nash trivialization, because of Theorem II. In this case, F admits
a modified analytic trivialization as a family of functions (see T. Fukui [14]
for details). However, the induced topological triviality does not preserve
the tangency of analytic arcs contained in /^(O) (see S. Koike [21]).

We should remark that, in [30], M. Oka already observed that the
Briangon-Speder family admits a weak simultaneous resolution, which is a
notion of a family of varieties, using appropriate toric modification.

Example (7.6). — Let f^.x^.x^) = rrj + tx^x^ + x^ + x^
([2]), where a is an odd integer with a > 3, and 2/3 + 1 = 3a. This is
a weighted homogeneous polynomial of type (l,2,a;3a), and defines an
isolated singularity at the origin, if t ^ to = (-l^a)1/3^-^2^2)1/3.
Let I be a closed interval not containing to. Then there exists a regular
polyhedron A so that TT = TTA : PA —^ R3 gives a simultaneous resolution
for (R^/^O)) (t C J), and so that D(7r) = 0. Thus, by Theorem II,
(R3 x J,^'"1^)) admits a Tr-modified Nash trivialization.

Let I = 1^ denote an interval [—£, e} for a sufficiently small positive
number e.

Example (7.7). — Let / (^1,^2,^3) = x{2-}-(x^xj)2+x^X2X^. This
is a weighted homogeneous polynomial of type (1,2,3; 12), and defines an
isolated singularity at the origin. An elementary calculation shows that /
is not non-degenerate. By Proposition (7.4), there is a regular polyhedron
A so that / is A-regular and so that D(^^) == 0. If we define F :
(R3 x J, {0} x I ) -^ (R, 0) by F{x; f} = f(x) + tx^xj, then, by Proposition
(7.4), TTA gives a simultaneous resolution for (R^/^^O)) (t C I ) where
ft(x) = F(x', t). Therefore, because of Theorem II, (R3 x 7, F'^O)) admits
a TTA-modified Nash trivialization.

Example (7.8). — Let /(a;i, x^x^} = x^ + x^{x^ + xj) + (.r3 +
•r|)2 + x^x^ where a is an integer with a > 12. This is not a weighted
homogeneous polynomial, and defines an isolated singularity near the
origin. An elementary calculation shows that / is not non-degenerate. Using
a discussion similar to the proof of Proposition (7.3), we can construct a



1436 T. FUKUI, S. KOIKE & M. SHIOTA

regular polyhedron A so that / is A-regular and so that D(TT^) = 0. If we
define F by F{x\t) = f(x) + tx^x^, then, by Proposition (7.4), TTA gives
a simultaneous resolution for (R^/^O)) (t € I ) where ft(x) = F(x;t).
Therefore, because of Theorem II, (R3 x Z.F-^O)) admits a TTA-modified
Nash trivialization.

Example (7.9). — Let f(x^x^x^x^) = x\2 + :d| + QKJ + x^ +
x^x^x\. This is a weighted homogeneous polynomial of type (2,3,4,6; 24)
and defines an isolated singularity at the origin. By elementary computa-
tion, we can show that there is a regular polyhedron A so that / is A-regular
and so that D(^^) = 0. If we define F : (R4 x J, {0} x I ) -^ (R,0) by
F(x;t) = f(x) + ix^x\, then, by the same way as the proof of Proposi-
tion (7.4), we are able to show that TTA gives a simultaneous resolution for
(R4,/,-1^)) [i e I ) where ft(x) = F{x;t). Therefore, because of Theorem
II, (R4 x I,F~1{0)) admits a TTA-modified Nash trivialization.

This example seems to suggest that the analogy to Proposition (7.3)
holds in the case n >: 4. Recently L. Paunescu and the first author have
given a positive answer for this in [37].

Example (7.10). — Let fc : R'1 -> W be the polynomial map
defined by fcj(x) = x^ • • ' Xn + E^,^. where c = (c^,), and A^s are
positive integers. Let c(t) = (cj^(t)) be polynomial functions defined over a
closed cuboid I so that /c(^) is non-degenerate. If we set F(x\ t) = fc{t)(x),
then (IU1 x J, F'^O)) admits a modified Nash trivialization. This is proved
by the same way as above and we omit the details.

Appendix.

We cannot expect a similar theory for homeomorphisms coming from
regular isomorphisms after some blow-up, because of the following:

PROPOSITION (A.I). — Let ft (t e I ) be the family defined in
Example (0.1), I an arbitrary open subinterbal ofJ, and r^MxJ-^R^J
a finite succession of blow-ups whose centres are mapped submersively to
I by the natural induced maps. Then, no regular automorphism of (M x
J, II"1 (0)) induces a t-level preserving homeomorphism of (R2 x J, F~1 (0)).

Proof. — Suppose that there is such a regular automorphism <I> of
(M x J.n-^O)). Let TTt be the restriction of n to M x {t} for t C I . Let
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P^R) denote the real projective line. We first remark that ^^(O) is a
union of P^R^s. Choose i\,i^ G J, with i\ 7^2- Since ^ induces a regular
automorphism of II'^O), <3> must induce regular automorphisms between
corresponding components (= P1(R)) ofTi-^^O) to ^^(O). So, Proposition
(A.I) is an obvious consequence of the following fact. D

PROPOSITION (A.2). — A regular automorphism of P^R) is
linear.

Proof. — Let (/) be a regular automorphism of P^R). Then ( / ) is
expressed by

i-'̂ -i)̂ ]̂
by some real homogeneous polynomials A\^A^^B\^B^. Here we assume
that B\,B^ have no zeros in P^R). Since (f)([x : y]) = \A\B^ : A^B^\, we
may assume that (f)(\x : y\) = [P{x^y} : Q(x^y}\ by some real homogeneous
polynomials P and Q. Dividing the greatest common divisor of P and Q,
we may assume that P and Q have no common factor. Without loss of
generality, we may also assume that
(Al) 0([1 :()])= [1:0], and <^([0 : 1]) = [0 : I],
so we can write P(x^y) = xP\(x^y) and Q(x^y) = yQ\(x^y) where Pi and
Qi are real homogeneous polynomials. Assuming that <j) is not linear, we
have that Pi and Qi are not constant.

Since <j)~1 is also a regular automorphism, we may also write
^([^yD^p^y^Q^y)]

using some real homogeneous polynomials P and Q. By (Al), there are
polynomials Pi and Q^ such that

P(X, V) = XPi(X, V), and Q(X, Y) = YQ,(X^ V).

Since we may assume P and Q have no common factor, we may assume
that
(A2) Pi(l ,0)^0, and Q, (0,1)^0.
By elementary computation, we have
[x : y] = (f)~1 o (f)([x : y})

= [P(xP{x^),yQ(x^)) :Q(xP(x^)^Q(x^y))]

= [xP^(x,y)P^(xPz(x,y),yQi(x,y)) :
yQ^x,y)Q^xP^(x,y),yQz(x,y))}.
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So we obtain

P^(x,y)~P-i(xP^x,y),yQ^x,y)) = Qi(x,y)Q^xP^{x,y),yQ^(x,y)).

Since Pi and Qi have no common factor, Pi must divides Q^{xP\,yQ\).
If we write Q]'(^^) = ^b^X^-^ then we have bo = 0, but this
contradicts the fact 60 7^ O that is coming from (A2). D

The following problem seems to be open.

PROBLEM. — Is a regular automorphism of the real projective space
P^R) (n ;> 2) linear? (Are there regular automorphisms ofP^R) which
are not linear?)
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