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DUALITY FOR THE DE RHAM COHOMOLOGY
OF AN ABELIAN SCHEME

by Robert F. COLEMAN

In this paper we will demonstrate the equality of three different
pairings between the first de Rham cohomology group of an abelian scheme
over a base flat over Z and that of its dual. Two of these pairings have been
discussed explicitly in the literature, for example in [BBM] and [D], the
third is implicit in [MM] and all three, as well as their equality, are used in
[C2]. That these pairings are equal is a fact undoubtedly well known to the
experts, but we feel that a proof of their equality should be made accessible
to non-experts like the author of this article.

In the last section we deduce a generalization to arbitrary character-
istic of Serre’s formula for the pairing on the first de Rham cohomology
group of a curve over a field of characteristic zero.

1. The definitions of the pairings.

Fix a scheme S either reduced or flat over Z. We will suppress S in
the notation. For example, if f : X — S is a smooth scheme over S, we
will set Q% = Q% 5 Hpr(X) = R} (2x/s) and R* = R} in general.
Let 7 : A — S be an abelian scheme over S. Let # : A — S be its dual.
Then it is well known that there is a canonical perfect pairing between
Hhg(A) and H%)R(g) onto Os. (See Théorie de Dieudonné Cristalline II,
§5 [BBM].) For an Os-module S, we set SV = Homey, (S, Og). We will now

define three pairings between HL,(A)Y and HL,(A)Y onto Os.

Key words: Abelian scheme — de Rham cohomology — Poincaré pairing.
Math. classification: 14K05 — 14K20.
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First, let P denote the Poincaré sheaf on A x A. Let ¢(P) denote
its Chern class in the global sections of H%R(E x A). Then identifying
H2p(A x A) with Hpp(A) ® (Hbr(A) ® Hhg(A)) ® Hip(A) using the
Kunneth formula, it is easy to see that ¢(P) is actually a global section of
'HIDR(E) ® Hbp(A). This yields our first pairing, ( , )chern-

Second, let G and G denote the universal vectorial extensions of A
and A over S. We will also let  and # denote the structural morphisms
from G and G to S. Let P# denote the pull-back of P to G x G. Then P#
has a canonical connection whose curvature form is an invariant two-form
w on G x G (see Deligne, Hodge IIII 10.2.7.2 [D], as well as the discussion
below). Identifying the Lie algebras, Lie(G) and Lie(G), of G and G over S,
with HbLg(A)Y and HL,(A)Y (see Theorem 2.2(i) below) and Lie(G x G)
with Lie(G) @ Lie(G), our second pairing ( , )cury is described by

('Uv w)Curv = w((v, O)v (Oa w))
for v a local section of Lie(G) and w a local section of Lie(G).

Third and finally, Lie(@) is canonically isomorphic to Hhyp(A) (see
§4 and Mazur-Messing §4) and, as we will show below (Theorem 2.2(i)),
the coherent sheaf on S of invariant one-forms of G over S, Inv(Qé), is

naturally isomorphic to H},R(A\). Thus we get a perfect pairing between
Hhgr(A) and HLz(A) and so a third pairing, (, )vec between Hpg(A)Y
and Hpp(A)V.

The main result of this paper will be

THEOREM 1.1. — (, )chern = (, )cury = (, )Vec-

Remarks. — Because of the non-degeneracy of (, )vec, once we show
these pairings are the same, we will have verified their non-degeneracy (the
non-degeneracy of (, )Chern iS also verified in [BBM] §5.1). We suspect this
is true for an arbitrary base (see the remarks at the end of §4).

Before we embark on the proof we will need to establish some facts
about vectorial extensions.

2. Universal vectorial extensions.

We first recall the definition of a vector group over S. If S is a quasi-
coherent sheaf on S, then we let V(S) = SpecS(S) where S(S) is the
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symmetric Os-algebra of S. Then V(S) is naturally a group scheme over
S, but it has more structure. Namely, V(Os) is a ring scheme over S and
V(S) is a V(Os)-module over S. Any S scheme V which is a V(Os) module
is called a vector group over S and every such V is of the form V(S) where
S = Homy (¢, (V,V(0Os)). Although G, usually just denotes the additive
group scheme, we will also use it to denote the vector group V(QOs), when
convenient, since the two are canonically isomorphic as group schemes.

Let A and G be as above. A vectorial extension of A is a group scheme
over S which is an extension of A by a group scheme with the structure of
a vector group. A morphism of vectorial extensions of A is called vectorial
if it is a morphism of extensions of group schemes and its restriction to
the vector groups is a V(Os)-module homomorphism. The group G is an
extension of A by the vector group W = V(R!(O4)V ). Being universal
means that if E is an extension of A by vector group V there exists a
unique vectorial morphism from G to E such that F is the pushout of
corresponding morphism from W to V.

Let Inv(Q%) denote the sheaf of invariant i-forms on G over S.

LEMMA 2.1. — The sections of Inv(Q2%,) are closed.

Proof. — First, we suppose 7 is a section of Inv(2};) and 9; and
8o are invariant derivations on G over S, then (n,8;) is a section of Og
(where, here, (, ) is the natural pairing between one-forms and derivations)
and so dn(0y,02) = 01(n, 02) — 02(n,01) = 0, where n( , ) denotes the
alternating form on derivations associated to 7. It follows that dn = 0 since
the invariant derivations of G over S span the sheaf of all derivations of G
over S over Og. The lemma follows from this as Inv(Q%) = A'Inv(Q}). O

In particular, there is a natural map from Inv(Q2%) into Hip(G). Let
g denote the natural morphism from G to A.

THEOREM 2.2.

(i) There exists a canonical isomorphism Hp(A) — Inv(Q) such
that the following diagram commutes: 4
br(4) —  Tov(QGg)
N
pr(G) -
(ii) If S is flat over Z, the map from Hip(A) into HoHp(G) is an
injection and an isomorphism if S is a Q-scheme.
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Proof. — To prove (i) we may suppose S is affine equal to Spec(R).
Let C be an ordered affine open covering of A. Suppose w = ({wy }, {fu,v})
is a hyper-one-cocycle for the complex €, with respect to C. Let H
denote the G,-torsor over A obtained by gluing together the affines U :=
U x Spec(R[zy]) with respect to the gluing data zy — zv = fuv above
UnNV.Tt follows that H is an extension of A by G, (see [MM] chap.1 §1).
Let h : H — A denote the projection. Then v = {U — h*wy —dzy} is
a global section of Q}; invariant under G,. The map from H into global
sections of 2}, which sends a point a on H to Tjv — v (here T, denotes
translation by a) factors through A and so must be constant and hence
zero (see Lemma 1.8 of [MM]). It follows that v is an element of Inv(2%;)
which pulls back to dr on G,. Now by the universal property of G there
exists a unique vectorial homomorphism w : W — G, such that H is the
pushout of G by w. Let w : G — H denote the induced homomorphism
and let v(w) = @*(v). Then by its construction v(w) lies in Inv(£2}) and,
considered as a hyper-chain for 2, differs from g*w by a hyper-coboundary.
We claim that the map w — v(w) induces an isomorphism from Hh,(A)
onto Inv(Q3,).

First we check that v is a homomorphism. Suppose w’ is another
hyper-one-cocycle. Let (H’,v") and (H"”,v") be the pairs of G,-torsors over
A and invariant differentials corresponding to w’ and w + w’. Then H” is
the Baer sum of H and H’ so is the quotient of G =: H x4 H' by the
action of G,. Let p1, p2 and t be the maps from G to H, H' and H”. The
additivity of v follows from the fact that

* I

tv" = plv +p3v’
which follows from the fact that, in an evident notation, t*z; = pjzy +
p3Ty-
Now, suppose w = ({dfv},{fuv — fv}), the hyper-coboundary of the

O-chain {fy} for @, with respect to C. Then {U — h* fy —xy} is a global
section of Oy which gives a splitting of

0-G,—H—A—0.

It follows that w = 0 and that w = (g,0). Since v = dz, v(w) = 0.
This implies that w + v(w) induces a homomorphism from Hh,(A) onto
Inv(Q};). Call this homomorphism v.

To show that v is an isomorphism we will describe its inverse. Let
n be a global section of Inv(Q2};). It follows that the pullback of n to W
is equal to dx for a unique vectorial homomorphism z : W — G,. Let
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C be be an ordered affine covering of A such that for each U € C, there
exists a section sy : U — G of g above U. It follows that for U,V € C,
Fyy = sy — sy is a morphism from U NV into W. Set wy = siyn and
fuyv = Fpyx. Using the fact that 7 is closed we see that ({wu}, {fuv})
is a hyper-onecocycle for €, with respect to C. Let w(n) denote the class
of this hyper-cocycle. It is easy to check that w is the inverse to v which
establishes our claim. Hence the natural map H}g(A) into Hhg(G) factors
through an isomorphism into Inv(QZ).

Now (i) follows from the compatibilities of the isomorphisms
or(A) = AHLR(A) and Inv(Q%) = A'Inv(Q}) with the appropriate
maps.

Finally, if S is flat over Z, then h'(A) injects into h'(Ag/Sg) so we
can assume S is a Q-scheme. Then R (Q,4) = O4 and Ré*(QC/A) =0,
¢ > 0 since for opens U of A over which g has a section, Gy = U xg A%.
Hence (ii) follows from the Leray spectral sequence for R; (€,) over A. O

In particular, Lie(G) is canonically isomorphic to ’H}DR(A\)V and we
will henceforth identify these two sheaves on S.

Remark. — Part (ii) of the statement of this theorem is false in
general. In fact, if S is the spectrum of a finite field, one can show that
the kernel of the map from Hp(A) into HR(G) is equal to the kernel of
Vershiebung and the cokernel is infinite dimensional.

LEMMA 2.3. — Suppose f : X — S is a scheme over S. Suppose
g:Y — X is a G,-torsor over X corresponding to a global section ¢ of
RY(Ox) and h = f o g. Let i be an integer and suppose that the sequence

R} H(Ox) — R} (Ox) — Ry (Ox),
where the arrows are x — ¢ U x, is exact, that the image of R}:l(ox) —
R} (Ox) is divisible and the image of R} (Ox) — R"'(Ox) is Z-torsion
free. Then the sequence
Ry (Ox) — R} (Ox) — R}, (Oy) — 0

is exact where the second arrow is the natural one and the first is
y € Ri1(Ox) — ¢ Uy,

Proof. — We may suppose S is affine. Let C be an affine open cover
of X and e = {ey v} be a one-cocycle with values in Ox representing ¢.
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Then Y is obtained by gluing the affine schemes U := U x Spec(Z[zy])
according to the data, zy — zv = ey,y above U N V. Let x denote the
0O-chain {zy} and 27 the cup product of = with itself j times.

Since Y is affine over X, th (Oy) is isomorphic to Rjr* (9+Oy) under
the natural map.

Suppose k is an m-chain on X with coefficients in g,Oy with respect
to C. Then we may write
n
k= Z k’j U SL‘j
j=0

where k; is an m-chain on X with coefficients in Ox (the products here
and following are cup products). We say k is of degree at most n. Then

(%) 6k = 6k, Uz™+(6kn_1+(—1)"neUk,)Uz™ 4 (terms of lower degree)

where we take 271 = 0. Let « be a class in R}* (9«Oy). Suppose m =i, k
is a cocycle representing x and n is the minimal degree of such a cocycle.
Then it follows that k, is a cocycle with coefficients in Ox and ne U k,, is
a coboundary. If n > 0 our hypothesis imply that k, = (n + 1)eUr + 6s
for some (i—1)-cocycle r and some (i—1)-chain s, and so,

k+6(ruz™tt +suz™)
has lower degree than k. Thus n = 0 and R% (Ox) — R}, (Oy) is surjective.

Now, to complete the proof, we must determine the kernel of
R}* (Ox) — R}, (Oy). Suppose « is an i-cocycle of degree 0 and o = 6k for
an (i—1)-cochain k. Then if the degree of k is greater than 1, we may, as
above, change k by a coboundary to decrease the degree. Hence we suppose
k has degree at most 1 so equals ky U z + ko and then it follows from (%)
that 6k; = 0 and a = 6ky — e U k1. Thus « represents an element in the

image of R}:I(Ox). o
COROLLARY 2.4. — If S is flat over Z, m.(Og) = Os.
Proof. — The scheme G may be expressed as a successive extension

of non-trivial G,-torsors starting from A. The corollary follows from the
lemma in the case i = 0 by induction on the number of G,-torsors using
the facts that m.(0a) = Os and R(O,) is a locally free Os-module. O

It follows that H(G,Q)q injects into h'(G) and so if S is a Q-
scheme is equal to Inv(Q). Since, Qf /s injects into QE.Q /5o if S is flat
over Z,
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COROLLARY 2.5. — If S is flat over Z, H°(G, Qg)d = Inv(Qy).

For any morphism ¢ : Z — S, let R;, (Oz) denote the sheaf of graded
algebras @;R'(0z).

COROLLARY 2.6. — If S is a Q-scheme and the left annihilator of
¢ in Ry, (Ox) is Ry, (Ox) U ¢, then Ry, (Oy) = Ry, (Ox)/(9)-

Proof. — Clearly, in these circumstances, the hypotheses of the
lemma are satisfied for all 3. a

COROLLARY 2.7. — If S is a Q-scheme, then R, (Og) = Os.

Proof. — This follows from the previous corollary by induction using
the facts that m,.(04) = Os, R(O4) is a free Os-module and R*(04) =
A'R! (OA ) . O

Remark. — One can use the arguments in the lemma to show that

the conclusions of Corollaries 2.4 and 2.7 do not hold for arbitrary S.

3. The equality of (, )chern and ( , )curv.

Now we will show that ( , )chern = ( ; )curv When S is flat over Z
(which we do not yet assume). First we will describe (, )cury more precisely.
Let P# denote the pullback of P to G x G. For a product X x X, px; will
denote the projection onto the i-th factor. If X is a group, pux will denote
the addition law. By the theorem of the square, there are isomorphisms

vz ¢ (id X pe,1)*P* @ (id x pe2) P* — (id x pg)*P* on G x G x G
and
v i (g, X id)*P# ® (g, X id)*P# — (ug x id)*P# on G x G xG.

Using the universal property of G there is a canonical integrable connection

i O v~ - P# 1 #
relative to G, VG P > QGxG/G ® P#* such that both vg and

vg are horizontal. Similarly, there is a canonical integrable connection

Ve : P# — QL ® P# such that both vg and v4 are horizontal. Since
GxG/G G

QL s naturally isomorphic to the direct sum of QX . and QL
GxG GxG/G GxG/G

there is a connection V : P# — Ql@xG®P# which restricts to both VES and
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Ve and is such that vg and vg are horizontal. Let w denote the curvature
form of V. It follows that on G x G x G x G,

(ng X pe)'w = (pg, X Pe,1)"w + (pg, X Pc2)"w + (g, X Pa1)'w
+(pg, X Pa2)*w

and since Va and Vg are integrable the images of w in Q4 . and
GxG/G

2 * * s
anG/G are zero. We deduce that (ug x pe)'w — (pa1 X pg.1)*w is zero
when considered as a relative differential with respect to PG, X Pg2- In
other words, w is an invariant 2-form on G x G and hence gives a pairing
on Lie(G x G) = Lie(G) & Lie(G). The pairing (, )curv is now defined as
above. Henceforth P# will denote the pair (P#, V).

Since w maps to zero in Q% . and Q% ,
GxG/G GxG/G

(U, w,)Curv - (Uly w)Curv = W((U, UI), (Ulu wl))
where v and v’ are sections of Lie(@) and w and w’ are sections of Lie(G).
Moreover, w is a global section of the image of Inv(QlG\) ® Inv(Q). It is
clear that (, )curv is also the pairing corresponding to this tensor.

Suppose X — Y is a morphism of S-schemes. Then invertible sheaves
on X relative to Y with connection are represented by global sections of
RY(O% dlog QY /y) while invertible sheaves on X with integrable connection
relative to Y are represented by global sections of R (€% /Y) where Q% /-
denotes the multiplicative de Rham complex,

ox Bk, Lok, Lo

Let X = G x G. Taking hyper-cohomology of the commutative
diagram:

0 — Fz(Q'X) — Q% — (O;{% Q}() — 0

| l |

0 — FlQy) — Q¢ — 0% — 0
0 — Fl(Q;\ ) — Q% — Ox — 0
AxA AxA AXA

in which the rows are exact, yields a commutative diagram:
RO =5 QY) — R(FAQ) —  Hpp(X)

RY(O%) — R(F'(2)) —  Hpp(X)

| | I

RYO% ) — RAFNQ ) — Hpp(AxA)
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where for a complex &, F*(S) denotes the subcomplex, such that
F{(S)! =0 for j < iand F'(S) = &7 for j > i.

Regard, for now, P as a global section of RI(OE\XA) and P# as a

global section of R} (0% X% QL). The fact that, as a sheaf, P# is the
pullback of P implies that the image in R}(O%) of P is equal to the image
of P#. Moreover the image of P in ’H%,R(g x A) is its Chern class while
the image of P# in R%(F%(Q%)) is the image of its curvature under the
injection from Inv(Q2%). The equality of (, )curv With (, )Chern When S
is flat over Z now follows from Theorem 2.2 which implies that the maps
Inv(Q2) — HZe(X) and H34(A x A) — H2(X) are injections, and so
the curvature is the image of the Chern class.

4. The equality of ( , )cuv and (, )vec-

The pairings ( , );, where ¢ equals Curv or Vec, induce homomor-
phisms from Lie(G) to Hpr(A) which we will denote by h;. We will now
show ( , Jourv = (, )vec When S is flat over Z by showing Acury = Pvec.
The argument was motivated by the proof of Théoreme 5.1.6 of [BBM],
which is a similar but weaker result.

By a pointed invertible sheaf on A, we mean an invertible sheaf £
such that e*L is trivial where e : S — A is the origin. The scheme G clas-
sifies isomorphism classes of pointed invertible sheaves on A algebraically
equivalent to zero with integrable connection (see [MM]). If S if flat over
Z, the existence of an integrable connection on an invertible sheaf implies
that it is algebraically equivalent to zero. L.e., in this case, for an S scheme
T, é(Tl is the group of isomorphism classes of pointed invertible sheaves

on T x G with integrable connection relative to T It follows that when §
is flat over Z,

G(T) = Ker(Rl(Q;‘xA/T) — RY(T,0%)).
Let Sle] equal the scheme of dual numbers over S and Ale] =

S[e] xs A. For u € Lieg(9), let f, : Sle] — G denote the corresponding
element of G(S[e]).

Taking hyper-cohomology of the exact sequence

0 — Qg @ Yy — Vi — Vipeyyspe] — 0
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we get a map

(*) RN (apys1e) — B2 © Qa) = Qfpg © Hpg(A).

Let 0/0ec denote the derivation on Sfe], a + be — b, and also, when
appropriate, the corresponding homomorphism QIS[E] — Og. The image
of the element of R! (974[5] / S[E]) corresponding to f, under the composition
of (x) with 9/0¢ is, by definition, Ayec(w).

Let (£,V) denote the invertible sheaf with connection on G x A
corresponding to the identity element in G(G). Then L is the pullback of P
to G x A. Let ¢ denote the global section of Rl(ﬂ’idx A/a) corresponding to

(L,V).If T is an S scheme and f € G(T), f corresponds to (id x H*L,V)
on T x A or equivalently to (id x f)*¢ in R! Qs a/7)-

In particular,

LEMMA 4.1. — The image of { under the composition
1 * (fu xid)* 1 1 1 )
RO, 48 — R Qapyse) — Dspg OR ()
is de ® hVec(u)-

Let X = G x G. Then invertible sheaves on X with connections whose
relativations over G and over G are integrable correspond to global sections
of R1(S) where S denotes the complex

Ox =% Qk — Q) @0, 595 Oy e @05 5

of sheaves on X where the map from Q% to Q% /G & Q2 X/6 ~. is the exterior

derivation composed with the direct sum of the natural maps from Q% to
2 2 . .
Q% e and QX/E? Now S sits in an exact sequence

O—>F1(96)®F1(Qé)—>9}—>8—>0.

Let P# be the sheaf with connection on X as above. Then the
relativation of P# with respect to G is the pullback of (£, V). Let 8 denote
the global section of R(S) corresponding to P#. Then the image of 3 in
RZ(FI(Q'@) ® F1(Q)) is the class of w (the curvature form of V). We will
now suppose S is flat over Z. We know R?(F! (Q5)®F 1(925)) is canonically
isomorphic to Inv(Q ) ® Inv(22},) by Corollary 2.5. If u € Lieg then the
image of B under the composition

R (S) — Inv(2%) ® Inv(Q)“SS Inv(Qf)
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is hCurv (u) .

Let S[e] denote the complex

« dlo d d
Ofe) = Qe — Woeyste —— Qoeyyste) — -+

where the map QE[E] — Q2G[€] /5[] is the exterior derivation composed with
the natural map. Since F'(Qg,,)) = (0,Q2f,0,...) we have a commutative
diagram

0 — FI(QE)@)FI(Q’G) — Q% — § — 0

| (Fuxiay® !

0 — Q}S[e] ® FI(Q’G) — Q*G[e] — Sle] — 0
in which the rows are exact. Taking hyper-cohomology yields the commu-
tative diagram

RY(S) — R2(F1(Q'a) ® F'(Q)) = Inv(QUInv(Qf)
L(fuxiay v

RI(SE]) — Ry @ F'(Q)) = Oy, lv(Qg)

as R'(F(g)) = Inv(Q) by Corollary 2.5. From the commutativity of
1 1
Inv(Qa) F Q514
AN 8/
Os
we see that the diagram
R'(S) — Inv(2%) ® Inv(2) — Inv(Q})

/. 8/dexid
RY(S[e]) — Qg © Inv(Q)
commutes. Hence,
LEMMA 4.2. — The image of 8 via the composition

RY(S) — R'(S[e]) — Q1 ® Inv(Qg)
is de ® hcury ().
Taking hyper-cohomology of the natural commutative diagram with

exact rows:
0 — le[€]®F1(QG) — QE[E] — Sle] — 0

l | l

0 — Qe  — Qg — sy — O

1 |

0 —  Qug®% — Yy — Ugysg — O
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we obtain the right-hand side of the commutative diagram:
R'(S) —  RISE)  — Qo)

RY(Q ) — RQse) — Db ® Hpr(G)

5><G/5
1 . 1 .
R (anA/a) — R Qse) — Qg @ Hpr(4)

The commutativity of the left-hand side is automatic. Moreover, the arrows
in the last column are injections by Theorem 2.2 (ii). Since the image of
0B in the global sections of Rl(ﬂéxc/a) is equal to the image of ¢ by
definition, it follows from Theorem 2.2 (i), Lemma 4.1 and Lemma 4.2
that hAcury = hvec. This concludes the proof of Theorem 1.1 when S is flat
over Z.

To deduce from this the theorem in the case when S is reduced,
observe that it suffices to prove the result when S is a spectrum of a field
since Hhp(A) is locally free and so commutes with arbitrary base change.
Next, any abelian scheme over a field can be lifted to an abelian scheme
over a ring flat over Z ([NO], Cor.3.2). So the theorem follows by again
using the fact that H}z(A) commutes with base change. O

What we need to do, in general, but can’t, is lift an abelian scheme
over a local artinian ring to an abelian scheme over a base flat over Z. We
can, however, lift it to a formal abelian scheme over such a base and it
seems possible that one could set up the foundations necessary to make
our arguments above go through.

5. Curves and jacobians.

Suppose X is a smooth proper curve over S and J is its jacobian.
Then Hhp(X) is canonically isomorphic to H}g(J) and J is canonically
isomorphic to J. Hence the pairing described in the previous sections gives
rise to a nondegenerate pairing (, )x : Hpr(X) x Hhg(X) — Os. We will
describe this pairing in terms of the geometry of X in this section.

Suppose Y is a smooth proper connected scheme of dimension
n over S. Let ty : HPR(Y) — Ogs be the trace isomorphism. Let
U: Hpp(X) x Hhp(X) — H3g(X) denote the cup product.

THEOREM 5.1. — (w,v)x = tx(wUwv) for w and v sections of
Hip(X).
DR
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Proof. — Let a : X — J be an albanese morphism. Then identifying
J with J, and letting ( , ); denote the resulting pairing on Hhy(J) it
suffices to prove
(a,8)s =t(a*aUa"p)
for sections o and 8 of Hig(J).

For v a section of Hhg(X) let v, denote the section & — tx(yU$) of
Hhr(X)V. Let p1 and pe denote the first and second projections of X x X
onto X. Then

c(P)(a"vy, a™vs) = c((a xa)*P)(vy,v5) = —tx xx(c((axa)*P)UpiyUp36).

Here we use the compatibility of the trace isomorphisms with the Kunneth
formula. Now (a x a)*P is isomorphic to the invertible sheaf associated to
a divisor of the form A — F where A is the diagonal and F is the sum of
a horizontal and a vertical divisor on X x X. It follows that

c((a x @)*P) Upiy Up36 = c(A) UpivyUp3é.
Hence
—txxx(c((a x a)"P) UplyUp;36) = —tx(c(A) Upiy Up;b)
= —tx (YU ) = vs(7).
Here we use the projection formula applied as the diagonal map of X into
X x X and the compatibility of the Chern class of a divisor and its de
Rham homology class (see Thm.7.5 and Prop.7.7.1 of [H], §II for the case

in which the base is a field). If h denotes the canonical isomorphism from
Hhr(J)Y onto Hpr(J) we can summarize the above as

h(a*vy)(a*vs) = vs(7)
and, in particular, h™1(a*a@) = a.v4 for a a section of Hpp(J). Hence if
a and 3 are sections of Hhg(J), we have

(a’a ﬂ)J = a*va*a(ﬂ) = va‘a(a*ﬁ) = tX(a*a U a*ﬁ)
which completes the proof. O

Suppose S = Spec(K) where K is an algebraically closed field. As a
corollary, we establish Serre’s formula for the cup product of two de Rham
cohomology classes on a curve X over S when K has characteristic zero
and prove an analogue when K has positive characteristic. Let p denote
the characteristic of K if char(K) > 0 and oo otherwise.

For a divisor D on X over K, |D| will denote the support of D
considered as a divisor on X and D(+1) will denote D + |D|. Suppose
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D is a non-special effective divisor such that ordpD < p — 1 for all P in
X(K). Let Q% (D(+1))o denote the sub-sheaf of Q% (D(+1)) consisting
of differentials with zero residues along D. Then the inclusion map of
the de Rham complex Qy into the complex d : Ox(D) — QL (D(+1))o
is a quasi-isomorphism. Let H,p(X) denote Hhp(X)(Spec(K)). Since
H(X,0Ox (D)) = 0 we conclude that H},(X) is canonically isomorphic
to HO(X, Q% (D(+1)0)/dH®(X,Ox(D)). In particular, if E is an effective
divisor such that ordpE < p — 1 for all P, we have a natural map
of HO(X, 04 (E(+1)o) into H},5(X). Moreover, if E' < E, the obvious
diagram commutates.

Denote by W the space of differentials w on X with zero residues
such that ordp(w) > —p. By the previous discussion we may associate to
each such differential a well defined class [w] in H},z(X). Explicitly, if w is
regular on an open U, there exists a rational function f on X with poles of
order strictly less than p such that v := w —df is regular in a neighborhood
V of X — U. Then [w] is the class of the hyper-cocycle ({w,v},{f}) with
respect to the covering {U,V'}.

COROLLARY 5.1. — Suppose w; and w, are elements of W and for
each P € X(K) let g; p be a Laurent series in a local parameter at P with
pole of order strictly less than p such that wy —d\; p is regular at P. Then

([wi]; [w2]) x = Z Resp(A1,pwa — A2 pw1 + A2 pdA1 p).
PEX(K)

In particular, if dA1,p = w; for all P or wy is holomorphic, then

([wi], [w2])x = Z Resp(A1,pw2).
PEX(K)

Proof. — There exists a covering {U,V} of X, vi,v2 € Qi , (V)
and rational functions g;, g2 € Ox (U NV) such that w; € Qﬁ( / x(U), gi has
poles of order < pon X and w; —v; = dg; on UNV for ¢ = 1 or 2. It follows
[w1] U [we] equals the class of the hyper-cocycle

unv = g1V — gawq

in H%(X). The trace of the class of this hyper-cocycle is

Y Resp(g102 — g2w1)
PeD
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where D = (X — U)(K). Now

Resp(g1v2 — gaw1) = Resp(A1,pv2 — gown)
= Resp(A1,pw2 — A1, pdga — gowr)
= Resp(A1,pw2 — A1, pdga — g2dA1 p + g2(dA1 p — w1))
= Resp(A1,pw2 + A2, p(dA1,p — w1) — d(g2)1,p)
= Resp(A1,pwz — A2 pwi + A3 pdA; p)
for P € D using the fact that (g1 — A1 p)ve and (g2 — A2,p)(dA1,p — w1))
are regular at such P. On the other hand, if P is not an element of D (i.e.,

an element of U(K)), then Resp(A1 pwa — A2 pw1 + A2 pdA1,p) = 0 since
both w; and wy are regular on U. This proves the corollary. a
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