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INSTABILITY OF EQUILIBRIA IN DIMENSION THREE

by Marco BRUNELLA

Let us consider an analytic vector field v defined on a neighbourhood
of 0 in R71 and having there an isolated singular point. We shall say that 0
is a stable singular point if it has a fundamental system of neighbourhoods
which are invariant by v\ this is equivalent to the Lyapunov stability in
the past and in the future. In even dimension there are many examples of
stable singular points: take, for instance, a hamiltonian vector field near
a strict minimum point of its hamiltonian function. In odd dimension,
however, examples are more difficult to construct (we don't know any),
at least in the analytic category. For instance, if v is homogeneous then
the nonvanishing of the Euler characteristic of an even dimensional sphere
implies immediatly the existence of a trajectory of v which tends to 0
and consequently the instability of 0. Aim of this paper is to generalize
this last remark when n = 3, or more generally when v is tangent to a
three-dimensional analytic variety containing 0 and smooth outside 0.

THEOREM. — Let v be an analytic vector field defined on a
neighbourhood U of 0 e IR71 and having at 0 an isolated singular point.
Let M C U be an analytic irreducible subvariety of dimension three,
containing 0 and smooth outside 0, invariant by v. Suppose that the link
of M at 0 (which is a compact connected surface) has nonvanishing Euler
characteristic. Then there exists p € M \ {0} and T G {—oo.+oo} such
that 7p(t) —> 0 as t —> T, where 7p denotes the trajectory of v througth p.
In particular, 0 is an unstable singular point.

Of course, if n = 3 we may choose M = U. If n = 4 we may apply the
theorem to a hamiltonian vector field, provided the hamiltonian function H
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has an isolated critical point at 0 and ^^(^(O)) has an irreducible
component whose link at 0 has nonvanishing Euler characteristic. This
happens, for example, if

H{q^q<2,p^p2) = ||(^+^i)+F(gi,92)

and F has an isolated critical point which is not a minimum nor a
maximum. This gives the following refinement of a (not too) particular case
of a theorem of Palamodov [Pa].

COROLLARY. — Consider the second order differential equation

q = — grad F

where F is an analytic function on a neighbourhood V ofO € M2 such that 0
is an isolated critical point which is not a minimum nor a maximum. Then
there exists initial conditions (qo^qo) € V x M2 (resp. {qi^qi) C V x M2) such
that the corresponding solution tends to (0,0) as the time tends to +00
(resp. —oo).

The fact that there are two trajectories tending to (0,0), one in
the future and the other in the past, follows from the reversibility of
the differential equation. We notice that it is rather easy to prove the
instability of (0,0) when F has a maximum point, even in the strong
form of our corollary (Maupertuis principle and Hopf-Rinow theorem).
However in that case our theorem does not apply because the link of
{j(P2 +PJ) +^1^2) = ̂ (0,0)} is a 2-torus.

We now sketch the main elements of the proof of the theorem. To give
the idea, suppose n = 3 (and so M = U) and consider the case where after
a blow-up of 0 the transformed vector field v is tangent to the exceptional
divisor D ^ §2 and has only isolated singularities with nonnilpotent linear
part. By Poincare-Hopf formula, there exists a singular point s G D of v
whose Poincare-Hopf index w.r. to V\D is not zero. The linear part of v
at s is either a rotation or (partially) hyperbolic. Using the result of [BD]
in the first case or centre manifold splitting plus the simple structure of
two-dimensional singularities [AI] in the second case, we obtain a trajectory
of v which tends to s and which is outside D. The blow-down of this
trajectory gives the desired 7?. Remark, moreover, that this trajectory has
a well defined tangent line at the origin.

The general case requires: 1) the (local) desingularization theorem of
Cano [Cal], [Ca2], which roughly speaking says that we can always reduce
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the singularities of a three-dimensional vector field to nonnilpotent ones;
2) a definition of Poincare-Hopf index w.r. to the exceptional divisor D of
a nonisolated singularity of v on D. Thanks to an equidesingularization
theorem of Sancho de Salas [Sa], we show that if 7 C D is a singular
curve of v then there is a finite set of "exceptional" points on 7 which
have a "consistent" index w.r. to D (the other points will have index zero,
by definitioil). These indices will satisfy Poincare-Hopf formula relatively
to D. Of course, the location and the indices of these exceptional points
will depend on the full structure of v (not only v\^) near 7: intuitively, the
dynamics of v outside D induce a "canonical" perturbation of v\j^ having
only isolated singularities in correspondence of the exceptional points of 7,
and then we can take the usual Poincare-Hopf indices of these isolated
singularities.

We remark that, as the proof will show, the trajectory 7? that we
find approaches the origin in a rather regular way, for instance with a well
defined tangent line. In order to exclude many trivial cases, the proof will
be done by contradiction. A "positive" proof (left to the reader) will show
that there are in fact at least ^(link of M)| trajectories which tend to 0.

It is a pleasure to thank R. Moussu for his constant help during the
elaboration of this work. Thanks also to F. Cano for giving me some useful
references about desingularization in dimension three.

1. Reduction of singularities in dimension three.

In this section we survey some results concerning the reduction of
singularities of three-dimensional vector fields; for more details and results
we refer to the works of Cano and Sancho de Salas.

Let w be an analytic vector field on an analytic 3-manifold TV, whose
singular set Sing(w) has at most dimension 1 and so it is a locally finite
union of points and analytic curves (possibly singular). There are two types
of blow-up:

_1) If p € Sing(w) we may do a spherical blow-up centered at p,
TV? : N —> TV, which consists in replacing the point p by the set (diffeomorphic
toj§2) of half-lines of TpN; N is an analytic manifold with boundary
8N ^ §2 ,7Tp maps that boundary to the point p, and Tip : N\9N -^ N\{p}
is an analytic diffeomorphism; 7r^(w) is an analytic vector field (up to the
boundary) which is frequently identically zero on 9N, but after division
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by an analytic function vanishing on 9N and positive on N \ ON we can
obtain an analytic vector field w on N whose singular set Sing(w) has again
dimension at most one.

2) If NQ C N is open and 7 C Sing(w) D No is a smooth open interval
which is closed in NQ, then we may also do a cylindrical blow-up centered
at 7, Tr/y : No —> No, which consists in replacing each point p of 7 by the
set (diffeomorphic to a circle) of half-planes of TpNo containing Tp7; the
boundary of No is now diffeomorphic to §1 x M and projects by TT^ to the
curve 7, and TT^ realizes a diffeomorphism between No \ 9 No and No \ 7;
as before, we obtain after division an analytic vector field w on No, whose
singular set has dimension at most one.

We remark that, in the cylindrical case, the localization on an open
subset No C N may be unavoidable, because the component of Sing(^)
which contains 7 may be singular. Remark also that it is not required
that Sing(w) is smooth at every point of 7, but only that 7 is a smooth
subset of Sing(w).

In both cases, the exceptional divisor D = 7^pl(p) or D = Tr1^)
can be non invariant by w: this is the so-called dicritical case. In fact,
we shall not be concerned with such a possibility, because if we find a
dicritical situation after some sequence of blow-ups then we find also plenty
of trajectories of the initial vector field which tend to the initial singular
point. Let us also observe that Tr1^) has dimension two, whereas 7^~l(p)
has dimension one.

In order to consider sequences of blow-ups, we have to work in the
category of manifolds with boundary and corners, i.e. locally modelled on
open sets of [0,1)3. If N is such a manifold, we denote by 9oN the smooth
part of 9N, 9^N the codimension one singular subset of 9N (a union
of smooth curves) and Q^N the codimension two singular subset of 9N
(isolated points). In the case of a spherical blow-up, the center p may still
be any singular point of w; of course, TTp"1 (p) will be only a closed portion of
a two-sphere i f p G 9N. In the case of a cylindrical blow-up, we will require
that the curve 7 is an open, closed or half-open smooth interval which
has normal crossing with 9 No, in order to ensure that No shall still be a
manifold with boundary and corners. See [Gal] for the precise meaning of
normal crossing.

We can now state the local desingularization theorem of Cano and
the equidesingularization theorem of Sancho de Salas.
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Cano's theorem is formulated in terms of a game between two
players A and B. The starting point is an analytic vector field w on an
analytic 3-manifold with boundary and corners TV, with dimSing(w) < 1.
Player A chooses a singular point p of w with nilpotent linear part and then
player B performs a blow-up centered at p or along a (permitted) curve 7
containing p. After this blow-up, A chooses again a singular point p of w
with nilpotent linear part on 7^~l(p), where TT = TV? or TT^ depending on the
choice of B, then B chooses a blow-up througth p, and so on. The game
stops, and B wins, when A cannot do his choice, i.e. all the singularities
of the transformed vector field on the "last" 7^~l(p) have nonnilpotent
linear part.

THEOREM (see [Cal], [Ca2]). — There exists a winning strategy for
the player B.

This means that if player B does the "good" choice (between spherical
and cylindrical blow-up) at every step, depending on the previous choice
of A, then the game stops after a finite number of steps. It is a local
desingularization theorem because after every blow-up the player A
relocalizes the problem at a point of Tr"1^). A global desingularization
theorem is still lacking, however the theorem of Sancho de Salas that we
now describe says that a generic point on a singular curve of w has a good
desingularization.

More precisely, by a tower of cylindrical blow-ups we mean the
following data:

1) an open set NQ C N and a smooth open interval 70 C Sing(w) Fl NQ
closed in NQ and having normal crossing with 9No (that is, by openness,
70 C intTVo or QoNo or 9-iNo),

2) a sequence of cylindrical blow-ups TT^ : Ni —>• A^_i, i = 1 , . . . , k^
with TTi centered along a smooth open interval 7^-1 C Sing(w^_i) Ft A^_i
which projects diffeomorphically onto 70 by 71-1 o TT^ o • • • o TT^-I (here wi-\
is the transformed vector field on A^_i, and WQ = w).

We will say that the singularities of w on a smooth open interval
70 C Sing(w) are equidesingularizable if Sing(w) is smooth at every point
of 70 and there is a tower of cylindrical blow-ups {M), 7o? ̂ I'tLi such that

1) Sing(wfc) H (Ti-i o • • • o TT^'^o) is a collection of smooth open
intervals, each one of which projects diffeomorphically onto 70 by 71-10- • -OTT^;
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2) every singular point ofw/c on (71-1 o • • • o^k)"1^) has nonnilpotent
linear part.

THEOREM (see [Sa]). — There exists a discrete set S C Sing(w)
such that Sing(w) \ S is a collection of equidesingularizable smooth open
intervals.

This is a sort of "parametric" version of the classical (Seidenberg's)
desingularization theorem in dimension two [AI], and the proof of Sancho
de Salas is in fact virtually bidimensional.

2. Definition of the index.

Let us again consider an analytic vector field w on a 3-manifold
with boundary and corners TV, with dirnSing(w) ^ 1. Let us suppose
moreover that Sing(w) C 9N and that w is tangent to ON. Let 70 be an
equidesingularizable open interval of Sing(w), contained in 9oN or <9i7V,
and let TT : No —> NQ be the composition of the sequence of cylindrical blow-
ups which desingularize w along 70. Let us assume that the lifted-divided
vector field w is still tangent to ONo. We now want to analyze the structure
of w near a singular interval 7 C 7^-l(7o) under the following additional
hypothesis: no orbit ofw outside 9No tends, in the past or in the future, to
a point 0/7.

We firstly consider the case where 7 is in<9oM). I fpe7 then the linear
part of w at p is nonnilpotent, and cannot be a rotation around 7 because
QNo is w-invariant. Hence it has at least one nonzero real eigenvalue. The
corresponding eigenspace must be contained in Tp(9oNo), otherwise there
would be orbits of w outside QNo tending to p, by the (un) stable manifold
theorem [AI]. It follows that the linear part of w at p has exactly one nonzero
eigenvalue, with multiplicity one and whose eigenspace is in Tp(<9oM)) and
transverse to Tp7. In particular, w has near p an invariant center manifold W
which is two-dimensional, transverse to <9oM)? 8in(^ intersects <9oA/o along 7
(see [AI]). Because no orbit of w on W \ 7 tends to a point of 7, we are (up
to reversing time) in one of the two situations of figure 1 (and remember
that the topological structure of the flow is a product of the flow on the
center manifold and a hyperbolic singularity [AI]).

Consider now the case where the interval 7 is contained in Q^NQ. If
p G 7, it is now possible that the linear part of w at p has two nonzero real
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Figure 1

eigenvalues, one positive and the other negative, and whose corresponding
invariant manifolds are contained in 9 No. Then the structure of w is the
following one:

/////
Figure 2

Otherwise, the linear part of w at p has only one nonzero real
eigenvalue, and there will be again a two-dimensional center manifold W,
contained in 9 No. Then one can easily show that, outside a discrete set
T(7) of points of 7, we are (up to reversing time) in one of the following
three situations:

zZZZ^
Figure 3

The exceptional set T(7) projects by TT to a discrete subset of 70.
Doing the same for every interval of Sing(w) ̂ 7^-l(7o), we obtain a discrete
subset T C 70. In fact, T is discrete not only in 70 but also in Sing(w),
and so we may include it in the discrete set S which appears in Sanctions
theorem.
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We can resume this discussion in the following proposition.

PROPOSITION 1. — Let w be an analytic vector field on a 3-manifold
with boundary and corners TV, with Sing(w) at most one-dimensional and
contained in 9N. Suppose that no orbit ofw outside 9N tends, in the past
or in the future, to a point of ON. Then there is a discrete set S C Sing(w)
such that Sing(w) \ S is composed by equidesingularizable smooth open
intervals, and moreover the local model of the desingularized vector field w
near a singular point p over Sing(w) \ ^ is onp of fig:iirw 1 2 ^

We can now define, under r.h(- assumptions and nora r ion^ of r h <
previous proposition, an index of s 6 S w.r. to 9N , 7^-, w, o N ) . The easiest
case is when s is an isolated point of Sing(w) (observe that all isolated
singular points of w are contained in S). Even if 9N is not necessarily
smooth at p (because s can be, of course, in 9^N or Q^N), we may consider
the Poincare-Hopf index of the restriction w\g^ at the isolated singular
point s G QN. By definition, we set I ( s , w, 9N) equal to that index.

If s e S is not isolated in Sing(w), let us consider a small disc D
in 9N centered at s. We may assume that Sing(w) Fl D is the union of s
and a collection of smooth intervals 71,...., 7/e C Sing(w) \ S joining s and
9D. We may simultaneously equidesingularize w over DQ = D \ {s}; let
TT : No —^ No (where 9 No = No H 9N = Do) be the corresponding map (a
composition of cylindrical blow-ups) and w the lifted-divided vector field,
whose singular set has the local structure of figures 1, 2, or 3. Remark that
Do = 7^~l{Do) = 9No is still a disc D minus a point 5, and Sing(w) is a
union of intervals 71,.... 7m converging to that removed point.

We can perturb W| ̂  to a nonsingular vector field u on Do by removing
each singular interval 7^ in the following "canonical" way, mainly dictated
by the dynamics of w on the center manifold (and we also smooth corners):

Figure 4
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Now we can consider the Poincare-Hopf index of u on DQ C D with
respect to the removed point s. By definition, this index is set equal
to I(s,w,9N).

Because the structure ofw is uniform over every interval in Sing(w)\5',
we deduce the following Poincare-Hopf formula.

PROPOSITION 2. — Under the same hypotheses and notations of
Proposition 1, assume moreover that 9N is compact (and so, in particular,
S is finite). Then

^I(s,w,9N)=x(9N)
s^s

where \( • ) denotes the Euler characteristic.

Of course, there is also a relative version of this formula, for a compact
subsurface S C 9N whose boundary is disjoint from S.

In order to uniformize the notations we will set I ( p , w, 9N) = 0 for
every p € Sing(w) \ S ' , this is clearly coherent with the definition for s G S.

3. Analysis of nonnilpotent singularities.

The final step of the proof of the theorem will require the following
proposition.

PROPOSITION 3. — Let w be an analytic vector field on a 3-manifold
with boundary and corners N , whose singular set is at most one-dimensional
and contained in 9N. Suppose that no orbit ofw outside 9N tends to a
point of 9N. Let p € Sing(w) be a point where the linear part of w is
nonnilpotent. Then

I ( p , w, 9N) = 0.

The proof is a case-by-case analysis.

Consider firstly the case where the linear part of w at p is a rotation R.
Then, because w is tangent to 9N, the point p belongs to 9^N and the axis
of R is transverse to 9oN', in particular, p is an isolated singularity of w. By
a theorem of Bonckaert and Dumortier [BD] the axis of R is tangent to a
trajectory of w which tends to p, contradicting our hypothesis. Hence this
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case do not occur. More generally, the spectrum of the linear part cannot
contain a pair of conjugate nonreal eigenvalues.

Consequently, the nonnilpotent linear part of w at p must have a real
nonzero eigenvalue, say a negative one A < 0. Henceforth we shall assume
that this is the only nonzero eigenvalue (with multiplicity one), and that p
is nonisolated in Sing(w). This is the more degenerate situation, the other
(easier) cases are left to the reader.

lip belongs to 9^N^ then the (one-dimensional) A-eigenspace must be
contained in Tp^OoN) (compare the discussion in Section 2), in particular
Sing(w) is smooth at p, transversely hyperbolic with respect to the
restriction Wj^^ ana lt coincides (locally) with the transverse intersection
between 9oN and a center manifold TV. As in Section 2, the fact that no
orbit of w outside 9N tends to a point of 9N implies a local structure like
that drawed in figure 1. We see that the index J(p, w, ON) is equal to 0.

Suppose now that p € <9i7V. If the A-eigenspace is not contained in
Tp(9i7V), the situation is again close to that of the previous section: Sing(w)
locally coincides with 9\N", the center manifold W is inside 9N and the
pictures are either those of figure 3 or the following ones:

Figure 5

This happens because W cannot contain an orbit positively asymp-
totic to Sing(w), otherwise, by the local product structure of the flow
near p, there would also be an orbit outside 9N positively asymptotic to
Sing(w). Hence the flow on W has only nodal sectors of repelling type or
hyperbolic sectors whose attracting side is in 9^N (see [AI] for the notion
of sectors of plane singularities).

Incidentally, let us observe that situations like those in figure 5 occur
also at the points of the set T which was introduced after figure 3.
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In all these cases one clearly has the vanishing of J(p,w,<97V), for
instance:

^e
Figure 6

If p € 9\N but the A-eigenspace is in Tp(Q\N\ then the center
manifold W is transverse to Q\N'. By the same arguments as before, w
on W has the dynamics of a hyperbolic sector and there are only two
possibilities, depending on the number of branches of Sing(w) converging
to p:

Figure 7

and the index still vanishes:

Figure 8

Finally, the case p € Q^N. Using again the center manifold theorem
and the structure of two-dimensional singular points, one finds the following
possibilities, and in all cases it is easy to verify that J(p, w, 9N) = 0 (we



1356 MARCO BRUNELLA

only draw what happens when there are two branches of the singular set
converging to p, the other case, with a single branch, being totally similar):

Figure 9

This ends the proof of Proposition 3.

Proof of the theorem.

We can now give the proof of our theorem.

By Hironaka's resolution of singularities theorem, we can take a
sequence of blow-ups M -^ M such that^M is a 3-manifold with boundary
and corners whose boundary S = 9M is homeomorphic to a compact
connected surface with nonvanishing Euler characteristic (the link of M
at 0). Even if M is smooth at 0 we take at least one blow-up, in order to
have a nonempty boundary.

Let w be the lifted-divided vector field on M. We want to prove that
there is an orbit of w outside S which converges to a point of S, in the past
or in the future. To do this, we assume by contradiction that no such orbit
exists. By Proposition 2 we find a point p e S H Sing(w) whose index w.r.
to S is not zero.
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If p is a nonnilpotent singularity then we just are in contradiction with
Proposition 3. If p is nilpotent we apply Cano's winning strategy: player
A chooses p and, consequently, player B chooses a spherical or cylindrical
blow-up TT through p. By definition of the index, it follows that the sum of
the indices of the singularities of the transformed vector field on 7^~l(p) is
equal to J(j>, w^ S), and in particular we can find a new singular point with
nonvanishing index.

Iterating this process we finally arrive, thanks to Cano's theorem, to
a nonnilpotent singular point with nonvanishing index. Contradiction with
Proposition 3.
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