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ON HOLOMORPHIC FIELDS OF COMPLEX LINE ELEMENTS
WITH ISOLATED SINGULARITIES

by A. Van de VEN (Leiden)

1. Introduction.

Let Vd be a compact, connected, complex manifold of
complex dimension d ;> 2. If we attach to each singular point
(zero point) of a (continuous) field of tangent vectors with
isolated singularities on V^ in a standard way an index of
singularity, the index sum is always the same, namely equal to
the Euler-Poincare characteristic of V^. An analogous result
is no longer true for fields of complex line elements with isola-
ted singularities. This can be seen already in the projective
plane : a field obtained by joining all points with a fixed point
has index sum 1, a field obtained from a « general » collineation
has index sum 3. The question which number occur as index
sums was answered by E. Kundert ([12]), who proved a.o. a
general theorem on U(rf)-bundles with fibre the (d—1)-
dimensional complex projective space. As noticed by F. Hirze-
bruch, the results can be stated in simple terms, which read
for the case of the tangent bundle 9 of V^ as follows : be given
a field ^ of complex line elements with isolated singularities.
Then there exists a (continuous) line bundle $ on V^ and a
continuous section s of the tensor product 6 ® ^ , which has
zeros exactly at the singularities of ^, of the same index as
those singularities and which projects on ^ outside of little
spherical neighbourhoods of the singularities. And conversely,
given any continuous complex line bundle $ on V^, 0 ® ^



100 A. VAN DE VEN

has always sections with isolated zeros, giving a field of complex
line elements with isolated singularities. It follows, that the
integers occuring as index sums of fields of complex line
elements are precisely the Chern numbers 0^(9 <8)^), where ^
runs through all continuous complex line bundles on V^.

It will be clear, that one can also define holomorphic fields
of complex line elements with isolated singularities on V^
(the two examples given earlier are such fields), and it seems
natural to ask questions of the following type:

(1) which index sums 0^(9 0^) can be represented by a
holomorphic field with isolated singularities?

(2) can the holomorphic fields with isolated singularities,
like in the topological case be classified in some sense by the
holomorphic sections in vector bundles 9 0 S;, where ^ now
is a holomorphic line bundle on V?

In this paper we consider questions of this type and partially
answer them.

In fact, the second question can be answered completely
by Theorem 4.2 of this paper:

Let Vd, d ̂  2, be a complex manifold^ X a discrete subset of
V, a a holomorphic d-vector bundle on V, ? the associated bundle
with fibre P -̂i, s a holomorphic section of ?|V— X. Then there
is a holomorphic line bundle S; on V and a holomorphic section s'
of a0^ such that on V — X 5=it(5'), where TC is the cano-
nical bundle map.

It follows that holomorphic fields (with isolated singulari-
ties) on a compact complex manifold can be classified in a
natural, unique way by (possible empty) Zariski-open subsets
of the projective spaces belonging to the complex vector
spaces H°(V, 0<E)^ ) , where S mns through all holomorphic line
bundles on V.

However, the answer is not completely satisfactory in as
far as we have no necessary and sufficient criterion whether a
bundle 0 ® ^, having holomorphic sections, has also holo-
morphic sections with isolated singularities,

Nevertheless, our methods provide complete answers in
many familiar cases. We give a few examples.

THEOREM 3.1. — The product V = V^X W^X .. . XW> of
the rational homogeneous manifolds V^,. . ..V^ with second
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Betti number 1 admits a holomorphic field of complex line
elements without singularities if and only if at least one V^0

is a Pi; and in that case V admits only the trivial fields, i.e.
the fields attaching to (^i,.. . Xf,) e V the line elements tangent
to ( î,. . ., î-i, ii, •3^+i) • • - 5 xk)'

In particular, the odd-dimensional projective spaces and
quadrics of dimension .̂ 3 have no holomorphic field of line
elements without singularities, though they have continuous
fields of such type. As another example, the 2-dimensional
quadric Pi X Pi has only the two trivial fields.

THEOREM 3.3. — The only holomorphic field of complex line
elements without singularities on the Hirzebruch surfaces S^,
n ̂  1, is the field along the fibres.

On Sn there are many homotopy classes of continuous
fields.

(COROLLARY TO THEOREM 4.4 AND 4.5) A number i occurs as
index sum of a continuous field of complex line elements with
isolated singularities on Sn, n ̂  0, if and only if i is even; i
occurs as index sum of a holomorphic field if and only if i is
even and non negative, with exception however of the case n = 0,
i=2.

This paper is written in the language of complex manifolds.
Nevertheless, the main examples are algebraic and can, like
the whole problem, be treated for characteristic p by essentially
the same method.

We have used freely the classical, so called GAGA-results of
W. L. Chow and J. P. Serre, for example about the equiva-
lence of holomorphic and regular algebraic maps, in particu-
lar sections, and vector bundle classes for (projective) alge-
braic varieties (see fl6]).

The author is indebted to R. Remmert, who suggested the
proof of Lemma 4.1, and to Ch. Ehresmann and G. Reeb,
who asked some questions which are answered by some of
the theorems above.

At the time this lecture was delivered, the author learned,
that Theorem 4.2 and the remarks after Theorem 4.3 were
proved independantly by Mrs. F. Benzecri-Le Roy in her
Paris thesis ([21]).
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2. Preliminaries.

Complex manifolds, vector bundles.
Let Vd be a compact, connected, complex manifold of

complex dimension d. The complex structure defines in a
natural way an orientation of V. With respect to this orienta-
tion we apply Poincare duality H'^V, Z) ̂  Hgd-^V, Z), car-
rying over the multiplicative structure on H*(V, Z) onto
H^(V, Z). According to A. Borel and A. Haefliger ([4]),
it is possible to attach to each analytic cycle on V an element
of H^(V, Z), such that the analytic intersection (if defined)
corresponds to the homology product as introduced above. If
W is another compact complex manifold, and f: V-^ W a
continous map, we denote by /** the induced homomorphism
for homology.

In this homological framework, the Chern classes
Co(^), . . . ,C<,(S;) of a complex <°-vector bundle ^ on V are
homology classes, C^) e Hg^^V, Z).

But for the change from cohomology to homology, we
shall use the notations and the basic results of [10]. In parti-
cular :

PROPOSITION 2.1. — If ^ is a complex elector bundle and
Y) a 1-^ector bundle (line bundle) on V, then the total Chern
class of the tensor product ^ ® Y] is given by

G(S ® Y]) = (i + CiW + (i + CiW^c^) + • • • + c^).
Let Gn,e be the Grassmann manifold of the (e)-dimensional

linear subspaces Ce of the (n + l)-dimensional complex vec-
tor space C^. Let the subset E c G X C/i be defined by

E== |(g^)eG X C n . X ^ g }

E is the bundle space of a holomorphic (e) -vector bundle on G,
which is called the universal subbundle X on G. If Tn is the
trivial (n + l)-vector bundle, then we have an exact sequence
0 -> X -> T^. The quotient bundle co is called the universal
quotient bundle on G. It is known that the Chern classes of
<o can be represented by certain Schubert • cycles on G, all
with a positive sign.
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We say that a holomorphic e-vector bundle ^ on a complex
manifold V is generated by its (global) sections if the restric-
tion homomorphism H°(V, $) —> H°09? ^|p) 1s surjective for
all points p e V.

PROPOSITION 2.2. — Let V be a compact, complex manifold,
^ a holomorphic e-vector bundle on V, which is generated by its
sections. Then the Chern classes of ̂  can be represented by non
negative analytic cycles.

PROOF. — From the fact that ^ is generated by its sections,
it follows that there exists a holomorphic map f: V -> G,
where G is the Grassmann manifold of C^-/ s in a C/i, such
that jT((o) == S([l]), P. ^17). The statement now follows from
Lemma III. 2 in [19], modified for the Borel-Haefliger homo-
^gy-

Fields of line elements.

In this section we give only some definitions; the theory
of the topological case can be found in [12] and [181.

For a (not necessarily compact) complex manifold V^ we
denote by 9y the contravariant tangent bundle of V, and by
Qy the associated bundle with fibre Pd-i, the complex projec-
tive space of complex dimension c?-l. The points of the fibre
over x e V of this last bundle are called the complex line
elements tangent to V at x,

Let A c V be a closed subset of V (possibly empty). A conti-
nuous (holomorphic) field of complex line elements with A
as singular set or set of singular points will be a continuous
(holomorphic) section of the restriction Qy| V -- A. In this
paper A is always a discrete subset of V, hence the fields of
complex line elements considered here are always fields
with isolated singularities. It is assumed that the field can
not be extended to any point a e A. Then each point a e A
has an index of singularity, different from zero, which can
be described as follows; take a neighbourhood U of a on V,
such that QJU is trivial. For any sphere with centre a (in
any Riemannian metric on V) the field defines a map of that
sphere into P^-i, which gives (with a standard convention
about signs) an element of ^2d-i(Pd-i)? hence an integer.
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This integer is independant of the way the metric and the
sphere are chosen.

In the case of a holomorphic field, the index of any singula-
rity is always positive. This « well known » fact can be dedu-
ced from Lemma 4.1 of this paper and the analysis of a holo-
morphic map f of a neighbourhood of (0, . .., 0) e C^(y, . . . , z/n)
into itself with f (z/i, ..., y ^ ) = (0, . . ., 0), if and only if
(^..•^-(O, • • • , 0 ) .

The surfaces S/».
We consider algebraic surfaces (sometimes called Hirze-

bruch surfaces) which are the bundle space of an algebraic
PI—bundle over Pi. It is known that there is an infinite
number of biregularly inequivalent surfaces So, Si, ... S^, .. .
all of them of course rational. 2^ can be described as the
bundle space of the associated Pi — bundle of the 2-vector
bundle on Pi, which is the direct sum of the trivial line bundle
and the line bundle of degree n. For n ̂  1 S/» can be charac-
terised among the 2, by the fact that this surface admits a
(unique) cross section K^ with K^2 == — n. So is just PiXPi.
^i is obtained from Pa by blowing up a point to Ki. The homo-
logy class X of the fibres and the homology class Y of K/» form
a base for H^Sn, Z). Let ^ and YJ be the C*—bundles on Sn
with Ci($) == x and Ci(r\) = y respectively. Then each line
bundle on S^ is one of the bundles S;0®^, a, &esZ . The
bundle along the fibres is the bundle ^<8)y]2 and there is
an exact sequence

0 -> ^0Y]2 -^ 6s, -> S2 ->• 0

from which it follows that Ci(S/») == (n + 2) x + 2y and
€2(2^) = 4. We now show how to calculate dim ?(2^, S^Y]6)
for all n, i ̂  0 and a, b e Z arbitrary. We give a general
procedure, in particular cases there are simpler methods to
get the result more quickly.

First of all, by general theorems ([11])

H^.^Yi^Ofor^S.

Furthermore by Serre-duality (loc. cit.)

H2^,, S^Y)6) ̂  H°(^, S^^vT^2)-
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Once dim H°(S^ ^0^) and dim H2^,, ^0^) are found,
the Riemann Roch theorem gives dim H^S^, ^^Y)6). There-
fore, it is sufficient to calculate dim H°(S^, ^(^Y)6) for all
a, b e Z. Now if & < 0 there is no algebraic curve on £„ in
the homology class ax 4- ^/? tor (aa; + by).x= b would be
negative, which is impossible, because there is always fibre
intersecting a given curve in a finite number of points. If we
have a curve C in the homology class ax + by with a <; nb
(hence b ̂  1), then its intersection with Kn is negative, and
K^ is a component of C. Thus we have in this case :

dim H°(^, ^0y]6) = dim H°(S,, ̂  0 Yj^1)

So we are left with the case a ̂  nb ̂  0.
Let F be any fibre. From the cohomology sequences induced

by the exact sequences 0 —> ^a~'l —> ^a -> ^[p —^ 0 and from
H^Sn, r) == 0 (the surfaces £„ are simply connected) we
derive ?(2^, ^a) for a ̂  0. (Here T denotes the trivial line-
bundle on SJ.

From the cohomology sequence induced by the exact
sequence

0 -> ̂ a 0 y^-1 -> S° 0 ̂  -> ̂  0 YI^K, -> 0

for rf == 1, . . . , b we find H^S,, ^ 0 T]6) == 0 and

dim H°(S,, ̂  0 Y)6) == dim H°(S^, ^ 0 y;6-1)
+ dim H°(K,, ^ 0 YI^J

== dim H°(2^ ^ 0 Y)^-1) + {a—nb+t).

Starting from dim H°(S^, ^a) = a + 1 we get the desired result :

0 if a < 0 or b < 0.

(&+l)(a--||-^+l)
(2.3) dimH0^,^^^)^ if 0 < nb < a

( c + ^ f a — ^ n c + l )
\ ^ /1 if 0 < a < yife,

where c is the largest number with a ̂  nc.
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Holomorphic vector bundles on P].

Let $ be the line bundle on Pi with Ci(^) = 1. Then each
line bundle on P is isomorphic to a bundle ^n = ^ 0 • • • 0 ^
(n times) n is called the degree of the bundle : deg (^n) = n.

PROPOSITION 2.4. — Let Y] == Y]i © • • • ©YJK? wAere Y), is a
holomorphic 1-^ector bundle on Pi of degree M(, such
that MI ̂  Ug ̂  * ' • S -̂ n^ Then there exists a holomorphic
i-dimensional subbundle ofr\ of degree d if and only if d == Mi,
or d ̂  Ha- If n! ^> ^2? then Yji is the only holomorphic i'dimen-
sional subbundle of Y] of degree ni.

PROOF. — Let a be any holomorphic 1-dimensional sub-
bundle of Y] of degree d. By taking a suitable meromorphic
section of a and projecting it on Y), we find that either d ̂  n,
or that a is contained in Y)i © • • • © y](_i © Yji+i © • • • © Y]K.
Since there is at least one i such that a is not contained in
TJI © • • • © Y]i-i © Y)i-n © • • - © y]K, we have d ̂  n, <; MI. Now if
d > n^ the projection of a onto Yjg © • • • ©TJK has to be zero,
hence a = Y)i. These remarks already prove the only-part of
our theorem. To prove the it-part, we can restrict ourselves
to the case A* == 2. We may assume that Y]i is the trivial
bundle and Yjg == S;~", n ^> 0.

The ((closure at infinity)) V of the bundle space W of TJ is
a holomorphic Pi — bundle over Pi, namely the Pi — bundle
associated with Y), i.e. S^. Let a be any holomorphic 1-dimen-
sional subbundle of Y). Its infinity is a cross section C on V.
We claim : C2 == — 2d — n. To see this, let TT : V -> Pi be
the bundle projection and 'n:i = ^\c. T^Y)) has a canonical
1-dimensional subbundle y and y|c == TCi^a). Now we have
on an exact sequence ([5], § 7)

0 -> T -> -T^(Yl) 0 y' -> P -> 0

where T denotes the trivial line bundle, (3 the bundle along the
fibres and y* the dual bundle of y. (3|c is the normal bundle
of C in V, hence Ci((i|c) = C2. By restriction of the exact
sequence to C we get therefore

C2 = Ci(^(Y]) 0 f\c) = ^(Ci(Y] ^ a*)) == — 2d — n

by Proposition 2.1. In particular, if we take for a, Y)i, we get a
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section C with C2 == — n, which has to be K^ for n ̂  1.
The homology class of C is y — dx. We have to prove that
this homology class can be representated by a holomorphic
section if and only if d <; — n, i.e that there is an irreducible
curve on S^ representing y + mx if and only if m ̂  n. If
a curve representing y-\-mx is reductible, it follows from the fact
that dim H°(S^ ^a 0 Y)6) for b < 0 that it splits into another
section and a number of fibres (with multiplicities). To prove
our theorem we have to show that for m ̂  n

dim H°(2,, ̂  ^ ̂  > dim H°(2,, ̂  0 Y)) + (m — p)

with n ̂  p < m. This however follows from the general
formula given above. For n == 0 the argument is similar,
but simpler.

Rational homogeneous manifolds.
As was proved in [6] by A. Borel and R. Remmert, each

compact homogeneous Kahler manifold is the product of a
torus and a rational homogeneous manifold, i.e. a projective
homogeneous manifold which is birationally equivalent to P/».

Among the rational homogeneous manifolds are the «irre-
ducible » ones, that are those with second Betti number 1.
Their classification is known (see for example [5]), and among
them are the projective spaces, more generally the Grassmann
varieties, and the complex quadrics of dimension ;> 3. All
other rational homogeneous manifolds are fibre bundles with
a strictly lower dimensional homogeneous manifold as base
and an irreducible one as fibre.

A lemma on holomorphic vector fields on Pn.
Let the non singular algebraic variety V^ be regularly

embedded in P^. By a general hyperplane section of V we
mean a non singular hyperplane section V n Pn-i, along
which V and P^-i intersect simply. It is well known that
for all P^-i e P^ (the projective space of P^) outside of a
proper algebraic subset of P^, V n P^-i is general.

LEMMA 2.5. — Let the algebraic manifold V^, d ̂  2, be
regularly embedded in P^, such that V is not contained in any
hyperplane of P^. Then each holomorphic vector field on P^,
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tangent to V in each point of V and identically zero on one
general hyperplane section H n V is identically zero on P^.

PROOF. — Let ^ be a vector field as described in the lemma
and g an element of the one parameter group of collineations,
generated by ^. V^ n H is not contained in any hyperplane
Pn-2 c H, otherwise the Pn-i through this Pn-2 anc! a point
of V outside H would contain V. Therefore, a general P^-2 c H
will intersect V n H in a variety, not contained in any
Pn-3c H. Since V n H is invariant under g, the Pn-s ls

invariant under g. So all Pn-2c H which intersect V n H
generally are invariant under g. But the Pn-2 c H, invariant
under g form in the dual projective space of H also a Zariski-
closed subset. It follows that all Pn-2c H are invariant
under g, hence that g induces the identity on H, or that %
is identically zero on H. Now, by elementary projective
geometry, if ^ is not identically zero on P^, ^ has outside H
either one or no zero. In the first case the 1-parameter group
generated by ^ is just the group transforming each line
through the fixpoint into itself and V would have to be a
cone, which is impossible. In the second case, for each g there
is a point q «= H, such that all the lines through q are trans-
formed into itself. Now it is impossible that V has a finite
number of points in common with such a line, because such
a pointset is never invariant with respect to g. So V would
again be a cone, which is impossible. It follows, that % is
identically zero on P^.

REMARK. — The theorem remains true for d == 1 with one
exception: a non singular conic in the plane.

An exact sequence of vector bundles on P .̂

Let S; be the line bundle on ?„, such that Q(S) is the natural
generator of H^-g^n? Z), and let T^+i be the trivial (n + 1) —
bundle on ?„. Then there is an exact sequence of holomorphic
vector bundles

(2.6) o -> y ̂  T î -> Qpn 0 r -> o.
For the proof see ([10], § 13) or [20], where more general
results are given.
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3. Holomorphic fields of line elements without singularites.

We start with

THEOREM 3.1. — The product V == V<^ X • • • X V00 of the
irreducible rational homogeneous manifolds V^, ..., V^
admits a holomorphic field of complex line elements without
singularities if and only if at least one V^0 is a Pi; and in that
case V admits only the trivial fields^ i.e. the fields attaching to
the point (r^,...,^) the line element tangent to (x^y ...,^_i,
•r!? xi+l9 • • • ? ^n)'

PROOF. — The if-part of the theorem is trivial. To prove
the only-part, we start with the case n = 1, stating that the
only irreductible rational homogeneous manifold V^ admitting
a holomorphic field of line elements is Pi. The assumption
means that on V we have an exact sequence 0 -> S -> 0V?
where S; is a holomorphic line bundle on V. It is well known ([5],
§ 16), that H^V, Z) = 0, H^V, Z) = Z, hence S = ̂  with
Ci(Y)) equal to the natural generator of I^d^V, Z). We consi-
der two cases : (a) k <; 0 and (6) k > 0. In case (a) we proceed
as follows. We have an exact sequence 0 -> T —> Oy0^~1 ,
where T is the trivial line bundle on V. Hence Oy^Y)""11 has
a holomorphic section without zeros, or Cd(9y 0 Y]""^) = 0-
According to Proposition 2.1 this gives that the part of homo-
logical dimension 0 of

(i) (i + c^))' + (i + c^-^^cw
+ •.•+C,(0,)=0.

Setting Ci(Y]) == h and writing out we get a polynominal in
A, Ci(O^), .. ., Cd(6i,) with non-negative coefficients only.
But h^C^Oy) :> 0 for 0 <; i ̂  d because A is a hyperplane
class and Ci(6), . . ., 0^(0) can be represented by non-negative
algebraic cycles on V according to Proposition 2.2 On the
left handside of (1) we get a sum of non-negative terms, of
which at least one, namely Cd(Oy) is positive. For Cd(Oy) is the
Euler Poincare characteristic of V which is positive (the odd
Betti numbers of Vare all zero, see ([5], § 14 and § 16). But this
would give a contradiction. So we have excluded case (a).
In case (V) we consider separately the cases V^ == P^ and V^
otherwise. In the last case S; = Y)^ k >. 1, defines a regular
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embedding f: V^ —> PN for suitable N, such that the hyper-
plane sections of W^ == f(Vd) are the zero sets of the sections
of ^. It is known (1) that each holomorphism of W is induced
by a collineation of PN, leaving W invariant. This means that
each holomorphic vector field on W is the restriction to W of
a vector field on PN. Now if ^ would be a subbundle of Oy?
there would be holomorphic vector fields on W, not identi-
cally zero, but zero on a general hyperplane section of W. The
extension to PN would fulfill the conditions of Lemma 2.5,
without being identically zero, which is a contradiction.
We are left with the case V^ = P^. In this case we find from (1)
as only possibility n odd and k == 2. Hence there would be
holomorphic vector fields on P^, zero on a non singular quadric,
without being identically zero. It would follow that there
exist collineations of P^ different from the identity and leaving
a non singular quadric pointwise fixed, which is impossible
for d ̂  2. After we have finished the proof for the case n = 1,
we consider the general case. Let ^ : V —> V^ be the canonical
projection of V onto V^0. In the exact sequence 0 —> E; -> 9v,
E == Y]{<0 • • • ®Y)^ where Y), = •7i?((J4), p-i being the line-bundle
on V^0 defined in the first part of this proof as Y). First,
we exclude the possibility that any A\ > 0. To that
purpose, consider a « fibre » W0^ == (a;i, ..., rc^i, V^0,
^i-n, ..., o^). W0^ is regularly embedded in V and biregularly
equivalent to V0^. Clearly, Y^W^ is the trivial bundle for
f =^= i and (up to an obvious identification) pi, for / == i.
Now OvIW0^ is the direct sum of the tangent bundle to W0^
and a trivial bundle T0^ (of dimension dim V—dim V^).
Now, according to the result for n = 1, if W0^ is not a Pi,
^[W0^ is not a subbundle of OW0^. In any case, if ^ > 0,
^[W^ would have holomorphic sections, not identically zero,
but zero on a divisor. The projection of such a section onto T^
would have the same properties, which is obviously impossible.
Therefore, /c, ̂  0 for i == 1, 2, . .., n, unless our field is one
of the trivial fields. We can finish the proof of our theorem
in exactly the same way as we excluded the case k < 0 for
n == 1, provided that we justify the following remark: given
an irreducible, positive algebraic cycle C on V, then for

(l) See A. Blanchard, Sur les varietes analytiques complexes. Ann. EC. Norm.
Sup. (3), 73, p. 174 (1957).
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almost all positive divisors D in [Y)(], C.D is defined, i.e. consists
of components of the right dimension only. This can be seen
as follows. Set

TC..(C) == C' and C" === \p e C'| dim (^(p) n C)
> d i m C — dimC/j

C^ is a proper algebraic subset ofC'. Almost all positive divisors
E in [(Jij, intersect C' simply along D', D' <t C^ because [(xj
is a hyperplane section divisor class. D = ^^(D') clearly
fulfills our conditions, and since H0^0, a,) ̂  H°(V, Y)() in
a canonical way, we have proved the remark.

REMARKS. — 1) The theorem was proved for n = 1 and
Vd = Pd in [20] by a different method. There arej still other
methods to prove the theorem in this special case, and we men-
tion a few of them.

After it is found, as in the proof above, that k = 2, it is
clear that the restriction of ^ to any line in P^ has also degree 2.
The restriction of the tangent bundle of P^ to a line Pi c P^ is
the direct sum of one bundle of degree 2, namely 9p^, and
d — 1 bundles of degree 1. From Proposition 2.4 it follows
that S;|Pi has to be the tangent bundle to Pi. For d >. 2 this
is absurd, because it would have to hold for any line Pi c P^.

Also it is possible to use the exact sequence (2.5), from which
we get 0 -> Y)~2 -> Td+i ® Y)""1 -> 9p^ ® Y]"""2 -> 0 where T^-n is
the trivial {d + l)-vector bundle on P^. Now

Ho(Pd, Td+i 0yr1) = 0 and H ,̂ Yp2) == 0 for d > 1,

hence H°(Pd, Op^yp2) = 0 for d > 1, and 9p^0Y]~2 can have
no trivial subbundle.

(2) It will be clear that a manifold V may have continuous
fields of complex line elements not homotopic to any holomor-
phic field. According to section 1 the fibre preserving homo-
topy classes of such fields are in 1 — 1 — correspondence with
the continuous line bundles S on V^ with Cd(90^)==0. On the
protective space P^ there is no such class for d even and exac-
tly one tor d odd. On the complex quadric Q(<, d ̂  3, there is
no such field for d even and one homotopy class for d odd. In
the case V = Pi X Pi, let h^ and Ag be the set of generators
of H^V, Z) represented by the « horizontal » and « vertical »
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fibres, Pi X x^ and ^ X Pi. Then Ci(V) == 2 (h^ + /^) and
Ca(V) == 4. An element a^i + ag/^ of Hg(V, Z) satisfies
(ai/ii + o^)2 — 2(Ai + /^) (aiAi + a^g) + 4 = 0 if and only
if a^a^ — ai — a^ + 2 == 0. This equation has two solutions :
oci == 2, ag == 0 and ai ==0, ag === 2. Therefore, in this case,
there are only continuous fields homotopic to the trivial
fields. From this the statement of the theorem follows imme-
diately for this case, because the restriction of a 1-dimensional
subbundle S; of 0 with Ci($) = 2Ai to a fibre P X x^ has degree
2 and therefore has to coincide with the tangent bundle to
PI X ^2 hy Proposition 2.4.

It is possible that on a product V^XV^X ... XV00,
as considered in the theorem, the only continuous fields
(up to a homotopy of course) are fields on a P^ or Q^, fitted
to the product. If this is true, and once we know the theorem
for Prf and Q^, it is clear that such a field can be holomorphic
only if d = 1 (Pi == Qi) and the same trivial kind of argu-
ment as in the case of Pi X Pi will prove the theorem for the
general case.

(3) Theorem 3.1 can be generalized in several directions :
reducible rational homogeneous manifolds, other simple types
of rational manifolds, homogeneous manifolds in general,
in particular homogeneous Kahler manifolds, which are
always the product of a rational homogeneous manifold and
a torus, according to a theorem of A. Borel and R. Remmert
([6]). In the sequel of this section we consider three examples :
flag manifolds, the surfaces Hn, n = 1,2, ... and the product
of Pi and an elliptic curve.

Flag manifolds.

The set of all flags

C^ C Crf. C . . . C C^ c Crf, 1 < (^ < rfg < • • • < ÊL < d——i

is in a natural way a rational homogeneous manifold, called
the flag manifold of type (c?i, c^, ..., C?K; d). We shall denote it
hy F(c?i, . . . , C ? K ; d), and call k the lenght of F. There are
canonical projections of F(c?i, . . . , C ? K ; d) onto the flag mani-
folds F(rf^, ... d^), where dj^ ..., d^ is a subset of d^y ... d^.
In particular, there are canonical projections TC( : F •-> Cr^,<x«
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If.r.is a natural generator of HgdhnG-^G-^d, Z) it is known that
^(a-i), ...,'i^(a^) form a set of generators for

H2dimF-2(F? Z)

Finally, we shall denote by p, the canonical projection of
F(^, ...,^; d) onto F(^, ...,^-i, ^+i, ...,4; rf).

THEOREM 3.2. — The only holomorphic fields of complex
line elements without singularities on a flag manifold F are
fields tangent to the fibres of canonical projections of F with
fibre Pi onto another flag manifold, in as far as such fiberings
exist.

PROOF. — Let ^ be a holomorphic line-subbundle of Op.
k

Then Ci($) = ^ a^. In the same way as in the proof
1=1

of Theorem 3.1 we find : a, > 0 for all i, i = 1, . . ., A-. On
the other hand, it can also be proved in the same way as in
the case of Theorem 3.1 that, if in any point p e F, $ is tan-
gent to none of the fibres

pr1^), pi <= F ( r f i , . . . , rf,_i, r f , + i , . . . , d^ d}
passing throught p, then a, ̂  0 for all i. Hence E; is tangent to
the fibres of a p, and application of Theorem 3.1 completes the
proof.

For the surfaces 2^ we use the notations of section 2.

THEOREM 3.3. — The only holomorphic field of complex
line elements without singularities on S^, n ̂  1, is the field
along the fibres.

PROOF. — Let Y be a holomorphic 1-subbundle of 6^, and
let y' be the quotient bundle 6/y. Then C(9sJ = Ci(y)Ci(y').
If we set Ci(y) == arc + py, we find by elimination of Ci(y')

w ^'-^y-4

(the case p === 1 is easily excluded). Now if y is not the bundle
along the fibres, application of Proposition 2.4 to the restric-
tion of Y to a fibre and to K« gives

(3) P < 0, and ether a == np + 2 or a < n(p — 1).
Colloque Grenoble. 8
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An elementary calculation shows that (2) and (3) are not
compatible for (3 ̂  — 1. Therefore, we are left with the case :
n arbitrary, a == 2, ? == 0, i.e. to finish our proof we have
to show that 9 ® S;"2 has no holomorphic sections with isolated
zeros.

This will be proved when we show that each section of 9,
which is zero on two fibres is zero on K^.

We can cover 2/» by four maps, each biregularly equivalent
to the affine plane Cg, with coordinates (^, $1), (z[, Y]i), {z^ ^2)
and (^2, ^2) respectively, such that

(i) the fibres of S^ are given by z^ = constant and z^ == cons-
tant;

(ii) Kn is given by Si == 0 and ^2 == O?
(Hi) the coordinate transformations are (a.o.) given by

( 1 } ^zl = zl (II} ^2 == z!1 / T T T \ ^2=^2
V1^ )^ —— t-1 \lil )t —— y"? v / ^Y) —— S-1

(^l — Sl (^2 — ^iSl (Y]2 —— ^2

everywhere where these expression are defined. Then the
restriction of a holomorphic vector ^ on S^ to Cg^i, Si) is

given by o)i(zi, ^ i )—+ ^2(^1? ^i) -r" where (1)1 and cog are
^i ^^i ^ ^

polynomials in Zi and Ei. Now from (I) we get-p- === — Y ) ^ — »
so on CsQsi, Yji) g is given by ^ Y)l

l̂( l̂, ^ll1) ̂  + ̂ ^2^1, y]l1) ,—— •
OZ-^ 07] i

It follows, that 0)1 is a polynomial of degree 0 in ^i and 002
a polynomial of degree ̂  2 in ^i, i.e.

,̂ ̂ i) == A(^)^ + B(z î + C(^)

where A(zi), B(zi) and C(JSi) are polynomials in Zi. From (II)
we derive

b 2 6 , . 6
—— = —— ZJ,— + ̂ 2 .r-
0^ OZg ^^2

^ -. .-n ^

^1 ~ ̂  ^2
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Therefore, on 62(^5 ^2) S is given by

<^l(^21) (—— ̂  ̂  + ̂ 2 .r- ) + ^2(2?1, ^2)^2" .r
\ OZ2 <^2/ °S2

= —— JSJ(Oi(JS21) —— + (n^2^l(%1) + ̂ n^2(^l? ̂ 2)) .s-
0^2 °S2

It follows that degree coi ̂  2, i.^. that (Oi^) = az^ + &^ + ^
where a, 6 and c are constants, and that

n^W + bz^ +c)+ ^(A(z21) W + B(^)^2 + c(%1))
= nazi1^ + ^&S2 + ncz^ + A(z21)z2^|
+ B(z21)^ + ̂ C(^) = A(^)z^22

+ (na^1 +nb+ ncz^ + B(z21))S2
+^C(Z21)

is a polynomial in z^ and ^- This means, that degree
A(zi) ̂  TZ, C == 0 and B(zi) == — yzazi + constant. We conclude
that the restriction of any field ^ to C^{z^ Si) is given by

0 , b ,,
^l,—+^2.r> With

bZi b^

^ == az^ + & î 4~ ^
^2 == (^n + dn^r1 + " • + d,}^ + (— naz, + ̂ Si

where a, &, c, c?o? • • • ? ^ n ^d ^ are constants (It is easy to
check that these constants can be chosen arbitrary, from
which it follows that dim H°(S^, 6) == n + 5 for n > 1,
but we do not need this fact). Now if ^ is identically zero
on ^i == 0 and z^ = 0, then a = b = c == 0, i.e. ^ is also
identically zero on K^.

REMARK. — On S/» there are several homotopy classes of
continuous subbundles of 9. For example, for n = 1 we
find, in addition to the case Ci(^) == x + 2y (of the field
along the fibres) also the cases a == 0, ? = — 1 $ a == 2,
(3 = 0; a = 2, (3 = 3$ a == — 1, ? = — 2. According to
Theorem 3.3 these homotopy classes cannot be represented
by .holomorphic subbundles of 0.

The product V of Pi and an elliptic curve E.
Let xe H2(V, Z) be the homology class of the fibre p X E,

and y e I-^V, Z) the homology class of a fibre Pi X e,
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6eE. Then x and y form a base of H^V, Z). Obviously,
Ci(V) = 2a; and CgfV) == 0. From this it follows immediately
that there are the following continuous subbundles ^ of 0 :

(a) Q(^) == ax^ a e Z arbitrary;
(&) Ci(^) == a; + 6y, B e Z arbitrary.

In the second case, the restriction of ^ to a fibre Pi X e
has degree 1. It follows from Proposition 2.4 that this is impos-
sible if ^ is holomorphic. Therefore, all the homotopy classes (&)
of continuous fields of complex line elements cannot be repre-
sented by holomorphic fields. On the other hand, the classes (a)
can be represented by holomorphic fields if and only if a == 2
or a ̂  0. In fact, since Oy|p X E and ^\p X E are trivial
vector bundles, each holomorphic 1-subbundle of 0 is the
pull back of a holomorphic 1-subbundle ̂ ofv) 2® T, where C^{r\) is
the natural generator of Ho(Pi, Z) and T the trivial line bundle
on Pi. (Observe, that Oy is the pull back on V of Y]2®^. But
the holomorphic subbundles of Y^OT are known by 2.3 and
Proposition 2.4. There is one of degree 2, namely r\2 itself,
and an infinity of rational families of them of each degree
^ 0. Since a = degree (/J, our claim is proved.

Summarizing, we can say: On P^ X E there is an infinite
number of homotopy classes of continuous 1-subbundles of
the tangent bundle, with Chern classes arc, a e Z arbitrary
and x + by, & e Z arbitrary. The classes with Chern class ax,
a = 1 and a ̂  3, and all the classes with Chern class x + by
cannot be represented by holomorphic subbundles; the class
2x by exactly one subbundle, the one tangent to the fibres
PI X e, and the classes with Chern class ax, a ̂  0 by an
infinite family of subbundles, naturally parametrised by a
Zariski open subset of a projective space.

Using the methods of this section, and the theorem of
Borel and Remmert, it seems possible to determine all holo-
morphic fields of complex line elements on any compact homoge-
neous Kahler manifold, at least in the following restricted sense.
First of all, it seems reasonable to expect a theorem valid for all
rational homogeneous manifolds V^, and extending Theorems 3.1
and 3.2. Probably, such a theorem can be proved rather easily
in the same way as in the special cases just mentioned, by
using the results of J. Tits in [17]. On the other hand, on a
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torus Te the situation is completely different. Since the tan-
gent bundle of Tg is trivial, a holomorphic 1-subbundle can
be seen as a holomorphic map of T<. into P^-i. For a « general»
torus there are no such maps but constant maps ([14], §2).
However, for special tori there are many such maps and to
find all of them one has to solve two problems of different
nature ([15], § 2) : (a) to determine all homomorphisms with
a subtorus as fibre from Tg onto any lower dimensional torus
TycP^, and (&) to find all (ramified) coverings of Ty onto
algebraic varieties in P<—i. Modulo these problems it should
be possible to find all holomorphic fields of complex line
elements on a product V^ X T<»

The problem to find all holomorphic fields of complex line
elements on a compact, complex manifold V^, d ̂  2, is clearly
equivalent to the problem of finding all exact sequences

(4) o^T->ev^-1

where S; is a suitable holomorphic and T the trivial line bundle
on Vd. Given 2;, the following conditions are obviously neces-
sary for the existence of a sequence (4) :

(a) C^^^)=0
(6) dimHo^Ov^^X)

However, these conditions are not sufficient. The trouble is,
that all holomorphic sections of Oy <^ ^~~1 can be « non general »
in the sense that their (analytic) set of zeros has components
of dimension > 0. This can happen in the simplest cases, as
is shown by the following example, for which ^ = T. Let C
be a curve of genus g ̂  2, Wi == Pi X C, and Wg obtained
from Wi by blowing up 4g — 4 points Oi, . .., 04 g^ on one
and the same fibre p X C, pePr Since C2(Wi) == Euler
Poincare characteristic of Wi == 2(2—2g), and blowing up
a point adds one to the Euler characteristic, we have
(^(Wg) == (4 — 4g) + (4g — 4) == 0. The identity component
of the group of automorphisms of W^, leaving Oi, . . ., 04^4 all
fixed is naturally isomorphic to the identity component G
of the group of all automorphisms of Wg. Each projectivity
of Pi, leaving p fixed induces an automorphism of Wi, leaving
p X C pointwise fixed. Therefore, dim H^Wg, OwJ > 0. On
the other hand each automorphism g e G leaves a curves
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invariant, because it is lifted from an automorphism of Wi,
leaving p X C pointwise fixed. Hence there are holomorphic
sections of Ow,, not identically zero, but all of them are zero
on a curve.

It does not seem obvious to give a simple criterion that
guarantees that 9v0^~1 has at least one section without
zero's, once the conditions (a) and (&) are satisfied. But
even so, in practise sometimes it will already be difficult to
find all holomorphic line-bundles $ satisfying (a) and (6).
In many cases, like in those of this section, it is possible to
limit the possibilities a priori, by using special devises. For
example, suppose a bundle S; is found, satisfying condition (a).
Then, if dim H°(V, S;) > 0 it follows that for each section s
of ^ there is a 1-parameter group of automorphisms of V,
leaving the zero set of s pointwise fixed, which is often seen to be
impossible. Also, in many cases a bundle $ is excluded because
its restriction to a (non singular) rational curve on V would be
such that it contradicts Proposition 2.4.

4. Holomorphic fields of line elements with isolated singularities.

Let Vd be a complex manifold, S a holomorphic line bundle
on V. If O v ® S has a holomorphic section with only isolated
zeros, this section gives a holomorphic field of complex line
elements with isolated singularities on V in an obvious way.
If V is compact, the index sum of this field equals Cd(0v®^).
We shall show that this is the only way of getting holomorphic
fields of complex line elements with isolated singularities on
any complex manifold V^, d ̂  2.

LEMMA 4.1. — Let Vd, d ;> 2, be a complex manifold, a a
holomorphic d-vector bundle on V, ? the associated bundle with
fibre Pd-i, x a "point on V, s a holomorphic section of (3|V—x.
Then there is a neighbourhood U of x on V, and a holomorphic
section s/ of a[U, zero at most at x, such that onV—x, s = ̂ {s'),
where TC is the canonical bundle map.

PROOF. — Let W be a neighbourhood of x on V, such that
a[W is trivial, and let S|W be given by ^p), ..., ^(p), with
p e = W and (Si, . . . ,^) a set of homogeneous coordinates in
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Pd-i. The functions ^~~ are meromorphic on W — x, for in
"d{P)

each point p e W there is at least one index i, such that

W^O and J4^ ==J44 fl44V1- According to Levi's
' / W W W)/ .

extension theorem for meromorphic functions ([2], p. 50)

' t / are meromorphic also in x. Hence there is a neighbour-
u / . E (p) .hood W; of x, such that is as far as y / / is defined on W» — x

( \ W)
this function is given by ^'-^f gi and h^ holomorphic in Wr

^(P)
If we set on U' = Wi n • . • n Wd_i for i === 1, . . ., d — i

^(P) "= gi{P) • ̂ (P) ^(P) . • • ̂ -1(P) ^+1(P) • • • ^(P) and

W = W ... A,(p),

then (A'i(p), . . ., ^(p)) is a section 5" of a|U' with TC(^) == y
everywhere where A-i(p), . • . ,^(p) do not vanish simultane-
ously. Hence 5" is a section of $, considered as a subbundle
of a |U'—x. The zero set is an analytic set A of complex
codimension 1 on U', on which all functions /Ci, . . ., k^ vanish.
After dividing k[, . . ., k'^ by suitable powers of the local
equations of the irreducible components of A at x and restric-
ting to a suitable neighbourhood U c U' of x we get functions
A*i, . . ., kd giving a section s of a|U as was required.

THEOREM 4.2. — Let Vd, d ̂  2, be a complex manifold,
{x^, i' e I a set of isolated points on V, X == [ J x^ a a holomor-

iei
phic d-^ectorbundle on V, (3 the associated bundle with fibre
P -̂i, s a section of P|V— X. Then there is a holomorphic line
bundle ^ on V anc? a holomorphic section s' of a 0 S; 5ucA ^Aaf
on V — X s == 'n;(5'), where TI 1*5 (/i<° canonical bundle map.

PROOF. — Let Vi be an open neighbourhood of Xiy such
that Vi n Uy == <& if i -=f=- /. 5 can be considered as a holomor-
phic 1-subbundle y of a. If U\ is small enough, it follows
from Lemma 4.1 that y has a non vanishing section over
Vi — x^ hence y is trivial on U^ — x^ Therefore y can be
extended to a bundle on V. Now a^y^jV — X has a sec-
tion 5" with ^(s") = 5. By Hartogs theorem s" can be exten-
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ded to a section s ' of a ® v~1 over V. Setting $ == y* we get
the statement of the theorem.

COROLLARY. — Let Vd be a complete algebraic manifold,
s a holomorphic field of complex line elements with isolated
singularities on V. Then s is a rational field.

Theorem 4.2. reduces the problem of finding all holomorphic
fields with isolated singularities on a complex manifold V^
to the problem to find the holomorphic sections with isolated
zeros of all bundles O y ^ S , where S; is a holomorphic line
bundle on V^. So, if the question is asked wheter on a compact
manifold V^ there is holomorphic field with only isolated
singularities and of index sum i, a necessary condition is the
existence of a holomorphic line bundle $ on V with

Crf(9v ̂  ^) == i and dim H°(V, 9y 0 $) > 0.

However, due to the same troubles as in the case of fields
without singularities, this condition is not sufficient. This
follows already from the example in the last part of section
3 and also from the results on Pi X Pi given below. The fol-
lowing theorem gives a criterion wheter a holomorphic rf-vec-
tor bundle a on V^ with Cd(a) > 0 has a section with only
isolated singularities.

THEOREM 4.3. — Let Vrf be a compact complex manifold,
a a holomorphic d-^ector bundle on V. For each point x e V^,
let g^ be the dimension of the linear subspace of the fibre of a
at x, generated by the global sections on V. If we set

W(^)== ^V|g,<^

then for 0 <; e ̂  d W(^) is an analytic subset of V. If for
o ̂  e <^ d dim W(e) ̂  <°, then there exist holomorphic sections
of a with isolated zeros. If g^ is constant on V and Cd(a) > 0,
then there exist holomorphic sections of a with isolated zeros
if and only if g^ == d.

PROOF. — It is clear that the sets W(<?) are analytic subsets
of V, because they are locally given as the sets where the
rank of a matrix of holomorphic functions does not exceed
a certain number.

Now let S = H°(V, a), g = dim S, T == V X S, p : T -> V,
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<r : T -> S the canonical projections, B the bundle space of a,
11: S -> B the canonical holomorphic map and s the zero sec-
tion of a. iT"1^) is an analytic subset A of T. A has a finite
number of irreducible components, all of which have dimen-
sion <; g if dim W(e) ̂  e for all o. Since a- is a proper map,
it follows from this (see [13]), p. 356) that for all points p e S
outside of a proper analytic subset of S, or-1^) consists of a
finite number of points, i.e. the section p e S has only
isolated zeros.

Finally, if g^ is constant on V, A is irreducible. If in addition
Cd(a) > 0 and if there exist holomorphic sections of a with
isolated zeros, then A has dimension s and g^ == d.

REMARKS. 1. — In general, the condition of Theorem 4.3
is only sufficient, not necessary, for the existence of sections
with isolated zeros, as can be seen from the following example :

Let Vd, d ̂  2 be a compact complex manifold, with a
holomorphic line bundle ^ without holomorphic sections,
and let T be the trivial line bundle on V. For the direct sum
of T and d — 1 copies of ^ we have dim Wi == d ̂  2, but
obviously there is a holomorphic section of a on V without
singularities.

2) It follows from the proof of Theorem 4.3 that the holo-
morphic sections of 9 y 0 $ with a zero set of strictly positive
dimension form (in the case of a compact V) an analytic
subset U of the complex vector space H°(V, O y r ^ S ) with
the property that s e U implies y^ e U for all complex num-
bers y. Therefore, the holomorphic fields of complex line
elements with isolated singularities, arising from sections
of Ov ̂  S are parametrised in a natural way by the points
of a Zariski-open subset in the projective space of

H°(v,ev^).
Given any holomorphic field of line elements with isolated

singularities on V, there is only one holomorphic line bundle ^
on V, such that the field arises from a section on 9v0^ . To
see this, first consider the case of a field ^ without singulari-
ties. If 9v0y] has a section, projecting on ^, we have an
exact sequence 0 —> T -> Oy^'y], where T is the trivial line
bundle on V, and hence an exact sequence 0 —> Y)~"1 -> 9,
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where Yj~1, considered as a field of line elements, is precisely ^L
This shows that in this case Y] is determined in a unique way.
In the general case, if a section of 9v ̂  Si ^d one of Oy <^ ^2
give the same field, ^i and ^ are isomorphic outside of the
singularities of the field, but such an isomorphism can be
extended to all of V. (This follows for example from Hartogs
theorem and the fact that a holomorphic function on a mani-
fold of dimension at least 2 has no isolated zeros).

These remarks give a complete classification of holomorphie
fields of complex line elements with isolated singularities on
any compact, complex manifold. This classification can be
extended in a straight forward way to the case of fields which
have singularities in an analytic subset of codimension ^ 2.

We proceed by considering two special cases :
(1) a product V = V<1) X ... X V^ where V<1), . . . , W>

are irreducible rational homogeneous manifolds;
(2) the surfaces S/i, n ̂  1.
In the case (1), we use the notations of the proof of Theorem

3.1, denoting by ^ : V -> V° the canonical projection, by
(J4 the line bundle with Chern class dual to the natural genera-
tor of H^V^, Z), and setting TT*(^) = ̂ -.

Then we have

THEOREM 4.4. — The bundle Ov®^*^ • • • ̂ r^has holomor-
phic sections with isolated zeros if and only if all a, are non
negative; with exception of the case k == 1 and V = P»(M ^s. 2)
in which case B^Y)" has such sections if and only if a ̂  — 1.

PROOF. — For n = 1 the statement follows from the consi-
derations in the proof of Theorem 3.1.

In general, if all a, are non negative, it follows from Propo-
sition 2.2 and the fact that all bundles p^-, i = 1, ..., n are
ample, that the global sections of Oy ̂  r^ 0 • • • ® Y)^ generate
each fibre of this bundle. Therefore, the result follows
from Theorem 4.3.

Now let k ̂ . 2, and suppose at least one a,, say Oi, is
negative. The restriction of 9v0Y)^0 • • • ^rf^ to V^ X p,
peV^ X • • - X V^ is the direct sum of Oy®^ and a
positive number of copies of pi^. Since this last bundle has no
holomorphic section besides the zero, each section of the
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restriction of O v ^ Y j ^ 0 • • • ®Y]^ to V^ X p is contained in
Oy^ ® ̂ i1. This means that the global sections of

Oy ® Y)? ® • • • 0 Y)^)

do not generate the fibres of this bundle. It follows from the
last statement of Theorem 4.3 that this bundle has no holo-
morphic section with isolated singularities only.

Let d be the dimension of V. Since the cohomology ring and
the Chern classes of V are known, the numbers

Cd(9v®Yji1® • • • ®Y]^)

can be calculated. The same holds for

dim H°(V, 6v 0 Y]? 0 • • • 0 YJ^) ([7]).

For example, in the case n == 1 and V = P^ we easily derive
from the exact sequence (2.5), from dim H'(Pd, rf) ==0 for

all a ([7]), and from dim H°(P^ Y)0) = 0 if a<0, ( n + ̂ if a>0.
\ n /

I 0 if a < — 2
. n + 1 it ^ =— 1

dimH^ep®^)^ /,,4^/^+^+1\ /^+a\
{ +i'\ n )~[ n )

\ if a > 0.

In particular, the standard fields with one singularity of index 1
(obtained by joining the points of P^ with a fixed point) are
the only ones of index 1. But they are not the only ones
with exactly one singular point, as will be shown below.

Application of the same ideas to the dual bundle of 6 (i.e. the
covariant tangent bundle) gives immediately the results of
W. Habicht ([8]), p. 155) and generalizations of these results
to quadrics,....

Consider the projective plane Pg with homogeneous coor-
dinates {x^ x^ Xs). A triple

(A l̂. ^2, ^3), /2(^1, ^2, ^3),/3(^1, ^2, ^3)) ̂  (0.0,0)

of homogeneous polynomials x^ x^ x^ of the same degree d ̂  1,
satisfying the identity f^ + ̂ 2 + /3^3 = 0 can be interpre-
ted as a holomorphic field of complex line elements on Pg.
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This field has singularities, which need not to be isolated. It
is easy to prove ([9], p. 484) that all solutions (fi, /g, fs) of

<
degree d of ^ f^ ̂  0 can be written in the form

1=1
fl = ^2g3 —— ^3g2

f2 = ^lg3 + ^3gl

/3==^lg2——^2gl

where gi, g^ ^d gs are arbitrary homogeneous polynomials
in ^, x^ x^ of degree d — 1. A triple (gi, g2, ^3) gives

(A^2,/3)= (0,0,0)

if and only if (gi, g^ g^) == (A^i, A^, ^3), where A is an arbi-
trary homogeneous polynominal of degree d—2 in x^ x^ x^.
It follows that the fields of degree d form a projective space

of dimension 3 (^+ l^—f^ford>2and2fo^ d=l. The fields
\ ^ / V-"/

with isolated singularities in this family will be the fields
arising from sections with isolated zeros of the bundle Op^ 0 y]^""2.
The situation can also be described in a slightly different way.
Attach to the point {x^ x^ x^) the line element through this
point determined by line through [x^ x^ x^) and (gi, g^ gs).
The singularities of the field are the points (r^i, x^ x^) for
which (x^, a^, x^) = (gi, gg, gs). For each d there are fields
with only one singular point; for example, if we set

gi(rci, x^ Xs) = x^, g^, x^ x^) = a;3d-l and g^i, x^ x^) == 0,

then the only singularity is the point (1,0,0). This construction
has an obvious generalization to Pn, n ̂  2 : attach to each
point (x-i, ...,0^4.1) the line element determined by the line
throught (.^,...,^4.1) and (gi, . . . ,g^i) where gi, . . . ,g,+i
are homogeneous polynomials in x^ . .., Xn+i of degree d— 1,
d ̂  1. In particular, for each d there are again fields with
only one singular point, one can take for example

gl = ̂ 2d~l, • • • , gn = ̂ l1, gn+1 == 0-

This description can easily be translated in terms of Pliicker
coordinates.

In the topological case, if on V^ a d- vector bundle a is given,
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there are continuous sections of a which have in prescribed
points Oi, ..., OK on Vd zeros of prescribed index s^ ..., s^,

k
provided of course that ^ Sj === Cd(a). This is not true in

j=i
the holomorphic case, even if we restrict ourselves to positive
indices and to bundles with many holomorphic sections with
isolated zeros. A simple example is the following one. Take
for V the projective plane Pg and for a the tangent bundle
9p^. Then there is no holomorphic section of 0 having zeros
(of index 1) only on three points on a line, because each pro-
ject! vity of ?2 leaving three points on a line fixed leaves
every point of the line fixed. One can ask, however, more
restrictive questions like the following one. Be given positive

*
integers n^, . . . , n ^ with ^ n^ == C^(a), does there exist a

1=1
holomorphic section of a having exactly k zeros, of index
H I , . . . , y^ respectively? In particular, does there exist a
holomorphic section of a with only one singularity (of index
Cd(a))? It does not seem easy to give a general answer to
these questions. In be case of P» the remarks above will
provide a positive answer to the last question for all bundles
Op^Y)" which have holomorphic sections.

As another example, consider the 2-dimensional quadric
V == Pi X Pi. Let x, yeH^(V, Z) be represented by the
horizontal and vertical fibres, and let $, Y] be the line bundles
on V with Ci(^) == x and Ci(T)) = i/. Then each line-bundle
on V is of the form ^ ® Y)6, a, b e Z, and we have

C^Ov^^y]6) == 2 {ab + a + b + 2).

According to Theorem 4.4, Oy^S0^^ has holomorphic
sections with a positive number of isolated zeros if and only
if a ̂  0, & ̂  0. Therefore, in this case, as index sums of
continuous fields can occur all even numbers, and as index
sums of holomorphic fields only the non negative even num-
bers with exception of 2. All the bundles with either

a == -— 1, & > 0 or a > 0, 6 == — 1

have holomorphic sections, but never with isolated zeros,
On the surfaces S^ we have, with the notations of section 2.
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THEOREM 4.5. — The bundle 9^0^07]^ has holomorphic
sections with a positive number of isolated zeros if and only if
&>0, a>n&— 1.

PROOF. — We have the exact sequence

0 -. ̂  <g) yj2+& --> 6 0 ̂  0 Y)6 -> ̂  0 Y)6 -> 0

with the corresponding exact cohomology sequence (*)

0 -> H°(2,, ̂ a 0 Y]2^) -> H°(a,, 60^ ^&)
-> H°(S,, S24-0 ̂  YI') -> H^S,, ̂  0 v]2^) ̂  .. .

Now if b< 0, H°(S,, ^-^Y^) ^ o (section 2), hence in
this case O^^^y] 6 has either no holomorphic sections, or
sections with a zero divisor or sections with no zeros at
all. Therefore, in our case we have b ;> 0. Let p be the line-
bundle on K^ with Ci(p) equal to the natural generator of
Ho(K^, Z). Then O^^k^ p^^+Dep24-0-^ has no non
vanishing holomorphic sections if a <^ nb — 2, so we find
a > nb — 2.

First we consider the case a ^ nb — 1. We claim: the
global sections of 60^~1 generate O®^"1!? if p e S ^ — K ^ .
Let F be any fibre of S^. e^^lF = (T^T, where Ci((r)
equals the natural generator of Ho(F, Z) and T the trivial
line-bundle on Sn. A holomorphic section of O^S""1!? is
either contained in the subbundle a2 or has no vector in com-
mon with it, in particular not the zero vector. From (*) and
section 2, we find H^, O^S"1^""1) = 0, hence the
homomorphism of H°(S,, 9 0 ̂ -1) into H°(K^ O^IKJ, indu-
ced by the embedding of K^ into S ,̂ is surjective. It
follows that there is a global section s of 9 0 S;""1, such that
5|F is transversal to o"2 (more precisely transversal to the
unique subbundle of O^^ jF which is isomorphic to a-2).
It remains to be shown that for each point q e F, q« K^
there is a section of 9 0 S;""1 not zero at q and contained in
o-2 along F. This is clear, however, because there is such a
section in S;71"1®^2 and this bundle is a subbundle of 90^~1,
the restriction of which to F is o-2. To finish the proof of the
it-part of the theorem, it will be sufficient to show (Theo-
rem 4.3) that for all a, &, b :> 0, a >. nb —1 there are global
sections of 9 0 ̂ a 0 ̂ b not identically zero on K^. Since
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<lim H°(K^ 60^0 Y^IKJ =/=(), it is sufficient to prove that
for b > 0, a > nb — 1, H^S^, 9 0 ̂  0 Y]-1) == 0. This is a direct
consequence of the sequence (*) and section 2. We are left
with the case b ̂  0, a = nb — 2. We shall prove that
each holomorphic section of 6 0 ̂ nb-2 0 r^ is identically zero
on K^, or, equivalently:

dim H°(S,, 6 0 ̂ ~2 0 YI^) == dim H°(2,, 6 0 ̂ -2 0 7]6-1).

In the case b = 0, it follows from (*) and Theorem 3.2 that
we have an isomorphism

0 -> H°(^, ̂  0 Y)2) ̂  H°(^, 6 0 S~2) -> 0
and it is clear that each section of S;71""2 ^)y]2 is identically
zero on Kn. From now on we assume b ̂  1. Since we have
standard injections

0 -> 0 0 S716"2 ̂  y]6"2 -> 0 0 ̂ n6'"2 0 Y)^"-1

and
0 -> 9 (g) ̂ -2 (g) Yj^-l -> Q 0 ̂ ^-Z (g) yjfr

we can define a coherent sheaf @^& on S^ by the exact sequence

0 -> 6 0 ̂ &-2 0 Yl6-2 -^60 ̂ ft6-2 0 Y)6 -> @^fe -> 0

@^ is concentrated on K^. Since

dim H^,, 6 0 ̂ -2 0 Yj6-2) == 0

by (*) and section 2, and since

dim H°(K,, 6 0 ̂ nb-2 0 'nb-l\^) = n + 1,

it will be sufficient to show that dim H°(S^, @n,&) ==== TZ + 1.
We consider separately the cases n ̂  2 and n = 1.

Let n ;> 2. Since ^0^ is trivial in a neighbourhood of
Kn, @n.& is isomorphic with

@ == @,i dim H°(^, @) = dim H°(^, 9 0 S"-1 0 Y))
— dim H°(S,, 9 0 ̂ -2 0 Y)-1)
= dim H°(^, 0 0 ̂ re-2 0 Y]) — (3n — 2)

Let C be a cross section of 2n, of homology class nx + y, and
consider the exact sequence

o -> e 0 ̂ -2 -^ e 0 ̂ n-2 0 Y) -^ e 0 ̂ -2 0 y]|c -> o
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Now if we can show that the induced homomorphism
a : H°(^, e 0 S""2 <8) Y]) -> H°(C, 9 0 ̂ ~2 0 Y)|c) is surjective, then
we are ready, because then we have

dim H°(^, @) = dim H°(S,, 9 0 ̂ ~2 ® ^]) — (3n — 2)
=d imH O (S„90^- 2 )+2
= dim H°(S», S"-2 0r]2) + 2 = n + 1.

To show that a is surjective, we proceed as follows.
(^©Y2)®^--^ = ()0^n--20^[^ where Ci(y) is a natural gene-
rator of Ho(Ci, Z). a will be surjective if and only if the
natural homomorphisms H°(^, 9) —> H°(C, y71 © y2) and
H°(^, ^-207))-> H°(C, -f-2) are surjective. This is clear
for the last one; as to the first one, its surjectivity follows
from the following remarks: First, the homormophism
H°(^, ^^YI^-^H^C, S^^ic), induced by the embed-
ding of C in S^ is surjective. Second, there is an automorphism
of Hn, leaving exactly two prescribed fibres invariant. This
automorphism gives a section of 9, the restriction of which
to C is the sum of a field, as considered in the first remark
and a field tangent to C with two prescribed zeros.

For n == 1 the argument is analogous, but for the fact that
instead of proving the surjectivity of the natural homomor-
phism H°(ili,9) -> H°(C, 9|c) one proves the surjectivity
of the natural homomorphism

H°(Si, 9 0 S-1) ̂  H°(C, 9 0 S^lc).

This again follows from two facts :
1) the natural homomorphism H°(S, Y)2) -> H°(C, Yj2|c)

is surjective;
2) there is an automorphism of Si leaving a prescribed

point p e C and a fibre outside p pointwise fixed, without
transforming any other fibre onto itself. This automorphism
gives a section of H°(Si, 9), leading in an obvious way to a
section of H°(Si, 90^~1) which gives a section of B^^lc
with a prescribed zero.

REMARKS. — 1) Another proof of Theorem 4.5 can be given
by explicit calculation of dim H°(^, 90^0 YJ^) as was
done for a == — 2, b === 0 in the proof of Theorem 3.3.
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(2) We have

C^e®^^) == 2ab—nb2 + bn + 2a + 46 + 4,

which is always an even number. All even numbers occur
this way, already for b == 0 and a arbitrary. From the theorem
it follows that 0 0 ̂ a, a ^> — 1 has holomorphic sections
with isolated zeros, hence all non negative even numbers
occur index sums of holomorphic fields of complex line ele-
ments.
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