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GOLDBACH NUMBERS IN SPARSE SEQUENCES

by J. BRUDERN and A. PERELLI

1. Introduction.

An integer which can be written as the sum of two odd primes is called
a Goldbach number, in remembrance of Goldbach’s famous letter to Euler,
dated 1742, where the belief was expressed that all even natural numbers
exceeding 4 are of this form. The question is still undecided, and even
counting possible exceptions is a difficult problem. Hardy & Littlewood
[HL] assumed the truth of the Riemann Hypothesis for all Dirichlet L-
functions and were then able to estimate successfully the number E(N) of
all even integers n < N which are not the sum of two primes. Their result
was E(N) < N 7+¢ and at the moment there seems to be no argument
available which would produce bounds for E(N) breaking the barrier v/N,
unless one is prepared to introduce further hypotheses which go well beyond
the scope of the Riemann Hypothesis (see Goldston [G] and Languasco &
Perelli [LP]). The best unconditional estimates, of the form E(N) <« N1~
derive from work of Montgomery & Vaughan [MV]; here § > 0 is rather
small.

One can set up a more sensitive test for the distribution of possible
exceptions by choosing a thin subset V of the even integers, and then try
to establish that almost all elements of V are Goldbach numbers. In this
spirit, Perelli [P] has checked the values of a fixed integer polynomial, sat-
isfying some natural arithmetical conditions. There is also a vast literature
concerned with short intervals. We only mention the current record due to

11
Baker, Harman & Pintz [BHP]: if 6 > 60 then almost all even integers in

the interval [z, + 2°] are Goldbach numbers.

Key words: Goldbach’s problem.
Math. classification : 11P32 — 11P55.
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In a precursor to this paper [BP], we have described a method which
has the potential to yield almost-all results for Goldbach numbers in se-
quences rather thinner than the values taken by any polynomial. We shall
now refine these ideas and prove the following result.

3
THEOREM 1. — Let 1 < v < 3 Let E(N) be the number of all
natural numbers n < N for which the inequality

(1) |p1 + p2 — exp ((logn)7)| <1

has no solution in odd primes p;,p2. Then, there exists a constant ¢ > 0
such that

E(N) < Nexp ( — ¢(log N)3_27).

We note that ¢ and the implicit constant are effective; our argument
will, in particular, be free of any use of the Siegel-Walfisz theorem.

Throughout this paper, we shall write

F(z) = F,(z) = exp ((log x)'y)

For n € N, let v, = [F(n)] for convenience of notation. One of the two
integers vy, v, + 1 next to F(n) is even, and this number is denoted by oy,.
Theorem 1 implies, in particular, that almost all numbers 7,, are Goldbach
numbers.

By the methods of [BP], the estimation of the exceptional set is linked
with a study of the exponential sum formed with the numbers F(n). Our
basic auxiliary result is Theorem 2 below, which might be of some inde-
pendent interest.

THEOREM 2. — Let 1 < v < g Given real numbers 0 < ¢ < 1

and 0 < C < v — 1, there exists a constant k > 0 such that uniformly in
F(2N)~¢ < |a| < F(N)© one has

Z e(aF(n)) < N exp(—«(log N)3~27).
N<n<2N

A very similar result occurs as Theorem 2 in Karacuba [K], but with
a much more restricted range of uniformity. Since Karacuba’s argument is
rather sketchy and it is not immediately clear that values of || as small
as F(N)*~1 are covered by his method, we have felt a need to present a
detailed proof, in §8.
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In §3 the principal ideas of [BP] will be recalled. We shall count the so-
lutions of (1) by a Fourier transform method. An application of the Poisson
summation formula will reduce a relevant integral to more familiar Fourier
coeflicients over major and minor arcs in the Hardy-Littlewood treatment
of Goldbach’s problem. The minor arcs are readily dispensed with by the
methods of [BP] in conjunction with Theorem 2 and Vinogradov’s estimate
for exponential sums over primes.

The major arcs will be dealt with in §4. Based on the subtle approach
of Montgomery & Vaughan [MV], there is a ramification in the argument
due to the possible existence of exceptional zeros of L-functions. The treat-
ment of Montgomery & Vaughan applies immediately in the new context
if such zeros do not exist, but if they do then Montgomery & Vaughan use
an averaging procedure, and it is this part of their method which we will
have to reexamine. Roughly speaking, we will have to show that averaging
over the thin set 7, is enough. There is also the unconventional problem
that an upper bound is needed for the major arc contribution in the binary
Goldbach problem for an odd number. It is, however, not appropriate to
comment on this matter at the present stage.

2. Notation.

Some parts of this analysis are heavily dependent on the work of
Montgomery & Vaughan [MV], and for ease of reference we have tried to
use their notation whenever possible. Most of our notation is standard
and should be clear from the context. Implicit constants in the O and <«
symbols will depend on « and on various other constants introduced later,
for which we use ¢, C or §, but they will never be dependent on P, X, N and
A. The parameters P, N and X are always assumed to be sufficiently large,
and will ultimately be related via P = X% and X = F(N), although this
is not necessary in parts of the paper. The parameter A will take different
values (in terms of X) in different contexts.

3. The Fourier transform method.

In the next two sections we prove Theorem 1. Our first lemma is an
abstract version of [BP], Lemma 1.

LEMMA 1. — Let h : R — C be a function of period 1 which is
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' integrable on [0, 1], and let

h(n) = /01 h(a)e(—an)da.

Let K € L*(R) be continuous, and such that its Fourier transform

(o o}
k@)= [~ K(@)e(-ap)is
has support in [-1,1]. Then, for any v € R,

/_ ~ h(a)K (a)e(—av)da = K ({v})h([v]) + K({v} — D)h([v] + 1).

Proof. — The left hand side of the proposed identity equals

o0 n+1 1 St

Z / h(a)K (a)e(—av)da = / h(a) Z K(a+n)e(—v(a+n))da.
n=—oo V" Y n=-—00
The Fourier transform of G(z) = e(—v(a + z))K(a + ) is G(z) = e(az)
K (v + ). Hence, by the Poisson summation formula,

o0

Y e(~v(a+n)K(a+n) = e(—alu]) K ({v}) +e(~alv] - 0)K({v} - 1),

n=-—00

and the lemma follows immediately.

1
We now take 0 < A < g to be determined later, and define the
weight function

1 if |o/<1-A
) w(a) =40 it o] >1
Ll if 1-A<l|ol<1.

Then w(ca) is continuous and even. We define K(a) = w(a) and note
that K (o) is infinitely often differentiable and even; Fourier’s inversion
formula shows K (o) = w(a). To write K (a) in closed form, we put Y () =
max(0,1 — |a|) and note that

w(a)z%T(a)—(%—l)T(lfA).

. 2
s

) we have

since T(a) = (

T~

3) K(a)=_i_ (Sir;;ra)z_%(l—Af (%)2.




GOLDBACH NUMBERS IN SPARSE SEQUENCES 357

For later use, we note the simple bound
(4) K(a) < min(1, A7 |a|72)

implied by (3).
We are now in a position to embark on the proof of Theorem 1. Let

1
0<é< 100 be another parameter to be chosen later. Put P = X%, For
a real number v consider the weighted counting function

5)  r@) =r@X)= Y logpilogp; w(ps +pz —v).
P<p1,p2<X

Roughly speaking, one expects that if %X < v < X and v is not too close
to an integer, then r(v) > X, and we shall now prove this on average for
v = F(n).

With K(«a) given by (3) and

S(@)= Y logp e(ap)

P<p<X

we can write (5) as a Fourier integral,
©) r(v) = / S(0)2K ()e(—aw)da.

We dissect the real line into the major arcs M, defined as the union
of all intervals |ga —a| < PX~! with (a,q) =1,a € Z and 1 < ¢ < P, and
the minor arcs n = R\ M. We also write 9t = 9N [0,1].

To prepare for the treatment of the major arcs in the next section we
introduce, for m € Z,

(7 Ry(m) = / S(a)%e(—am)da
m
which coincides exactly with the quantity R;(m) used by Montgomery &

Vaughan [MV]. By Lemma 1 with h(a) = S(a)? for @ € 91 and h(a) =0
otherwise, we have

(8) A5(0)2K(a)e(—av)da = w({v}) Ra([o]) + w({v} - )R ([v] + 1).
One of the numbers [v] and [v] 41 is even, and for even m one may expect

that Ry(m) > m. It is therefore plausible to hope that the left hand side
of (8) is large. We shall make this precise in the next section.
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4. The major arcs.

In this section we try to evaluate R;(m), defined by (7), as precisely
as possible. OQur argument heavily borrows from Montgomery & Vaughan
[MV]. It will be convenient to recall the concept of an exceptional character:
there exists a constant ¢ > 0 such that
(9) Lio,X)#£0 for o>1— logCP
for all primitive characters x of modulus ¢ < P, with the possible exception
of at most one real primitive character, called the exceptional character. We
write ¥ for the exceptional character (if it exists) and 7 for its modulus; 3

is the unique zero of L(s, x) violating (9), which satisfies

3 (logF) 2 1—-fB< ——.
(10) o logR) < 1= < o

For all this see Davenport [D], chapter 14, for example.
Next we introduce the singular series
1 1
(11) 6(m)=H(1————2>H<1+——)
(r-1) p-1
pfm p|m

and can then state

LEMMA 2. — There exists an absolute constant ¢; > 0 such that if
the exceptional character does not exist one has
m log X
Rt = o)+ 0{ 2 s (e 255
l(m) mG(m) + (p(m) €Xp C1 lOgP

whenever m < X.

Proof. — Combine (6.17) and (7.1) of Montgomery & Vaughan [MV].

The argument is more subtle if the exceptional character exists, as we
now suppose. We follow through the argument of Montgomery & Vaughan
[MV] leading to their important formula (6.17), but avoid divisor estimates
producing an X€ (these occur only in (6.19) and the formula thereafter).
A careful examination of their work then produces

LEMMA 3. — There exists an absolute constant co > 0 such that if
the exceptional character exists one has, for m < X,

Ri(m) =m&(m) + I(m)&(m) + XT1(m) + XTo(m)
x(m)?rmX mX o exo [ —ec log X o
0 (Smem ) O (Fomg = Pese (eaigs ) ).
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where
s 7 7 1 1
S(m) X( 1)'u((f,m)> (p(f)ip( (F;L))pﬁm(l (- 1)2)!:}1(1+ D 1)
(12) plm
(13) I(m) = Z (k(m — k))'é—l
P<k<m-—P
i q
(14) Ti(m) < 5 QE%}:; ) D L)
(15) Ly(m) < 7 Z '—_IT_

ey p(g)p( (m.q) )

g=0 (mod )

This is (6.17) of Montgomery & Vaughan [MV], with the error in
(6.19) and thereafter kept explicit, followed by an appeal to their (7.1) to
estimate W.

We now have to show that I';(m) and I'2(m) are small, at least for
almost all m = v,. Our approach to this problem rests on the following
consequence of Theorem 2.

LEMMA 4. — Let k be as in Theorem 2, and suppose that 0 < k < k.
Then, uniformly for F(N)_% < |a| €1 and 0 < 29 < z; <1, one has

#{%N<n§N:z2§{aF(n)}<zl}

(21 — 22) N + O(N exp(—F#(log N)>~27).

[N

Proof. — For the rest of this paper we shall write

£ = exp(i(log N)3727).

1
In Theorem 2 take ¢ = 3 and apply the standard argument of Vinogradov

[Vi], chapter 5. We may omit the details. For a very simple variant which
quickly yields the upper bound < (21 —22) N+ NE~! (which suffices below)
see [BP].
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Recall the notation v, = [F(n)| introduced in §1, and note that
. e fa F(n) a+1
= - < :
Vp, = a(mod d) holds if and only if {d} < { yi } < { 7 } From

Lemma 4 we infer that

(16) #{%N<n§N:VnEa(modd)}=%4-0(1\]5—1)

is valid uniformly for a € Z and 1 < d < F(N)%.

LEMMA 5. — Suppose that X = F(N). With I';(m) satisfying (14)
and (15), we have for j = 1,2

3 (0w + 05 (v + 1)) < NETV2,

IN<n<N

Proof. — We use the elementary inequality ¢(q) > g(loglogq)~!.
By (14),

Z IT1(vn)| < ;;(loglogX)2 Z Z (Vn,q)

P q
1 i q<
2N<'n,<N 2N<n<N a=0( )

< Pl(oglogx)? Y 3 "”’q’”)

— N<n<N q<P/F

A routine transformation in conjunction with Lemma 4 shows that

Yoy ten o wyd oy

L N<n<N q<P/7 q<P/'rd|'rq 3 N<n<N
vn =0 (mod d)

< Y > - < + NE™ )
q<P/rd|1‘q

< N Z g ' (d(7q) + o(Fq)E~1).
q<P/7

Now use d(7q) < d(¥)d(q) and similarly for o(7q). Well-known divisor sum
estimates then bound the previous sum as

< N d(r)z q a(MET N %‘1)

q<P q<P/F

< Ni‘(log P)® + NE™ lPU(r)
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But o(7) < 7loglog#. Since 7 < P we deduce

> ITi(va)l < NP + NE~(loglog X)?
%N<n§N

which is more than required. The argument is exactly the same if v, is
replaced by v, + 1.

The estimation of I'y requires a little more care. We begin as before
and find that

> M)l < #(loglog X)) ) (n,9)

2
q
1 1 >P
3 N<n<N 3 N<n<N qEO‘I( od 7)

< 7 Yloglog X)? Z Z ——(V”’qf)

q?
q>P/7 $ N<n<N
(17) < 7 Yloglog X)(Z1 + Z»),
where
(vn, q7) I/mqr
a= Y ¥y tf o,y %
P/f<q<X1/3  N<n<N $N<n<N ¢>X1/3

For notational convenience, we temporarily write Y = X1/3. We estimate
Z; in the same way as we treated I'y; this gives

s ¥ YL oy o

P/F<q<Y d|qr i N<ngN
v =0 (mod d)

«n Y (M),

q? q?

(Note that Y7 < YP < VX, so that Lemma 4 is applicable for all relevant
d.) Proceeding as with the estimation of I'; we now find that

(18) Z) < N(d(F)FP~ ! 4+ €7 10(7)) log X.

Turning our attention to Zs, we first use (vp, q7) < (Vn, ¢)(Vn,7) and
observe that for any m € N one has

IR S D VIR S D M

>Y d|lm qsoq(;‘o’d & dlm q>Y/d
< YY) dt <Y ld(m).

d|lm dlm
d<Y d>Y
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Trivial bounds then immediately yield

(19) Zo <Y )" (vn, P)d(vn) < XTEN.

I N<n<N

From (17), (18) and (19) we obtain

> Ta(va)| < NETV2,

L1 N<n<N

and as before, the same bound holds if v, is replaced by v, + 1. The proof
of Lemma 5 is complete.

To extract a lower bound for the major arcs contribution, we also
require an upper bound for R;(m) when m is odd, which is superior to
what is obtainable from the previous lemmata. We can supply the required
estimate only on average. With this mind, we write v for the unique odd
integer from the set {vy,,v, + 1}, and recall that 7, is the even integer in
this set. In this notation, our result is

1
LEMMA 6. — For all but O(NE~1/12) values of n € [iN’ N] one has

Ri(12) < XETV/8,

We postpone the proof to the next section; it will transpire later
that Lemma 6 is more like a minor arc estimate. We can now deduce the
important

LEMMA 7. — Suppose that 6 > 0 is sufficiently small. Then, for all
but O(NE~Y/12) values of n with 3 X < F(n) < X one has

Ri(vp) + Ri(vp + 1) > XEY/10,

Proof. — In view of Lemma 6 it suffices to show that Ry (7,) >
XEY10 for all but O(NE~Y/12) values of n in the relevant range. We
consider various cases.

(i) First suppose that the exceptional character does not exist. Then,
by Lemma, 2,

Ri(D) > 0n6 (0, +O(Xe—cl/6‘5—ﬁf’—>;
1(V) ( ) (p(’/n)

m

p(m)

1
and hence R;(9,) > X for all n with §X <, <X.

but &(m) > for m =0(mod 2),
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(ii) We may now assume that the exceptional character exists. More-
over, by Lemma 5 we may also assume that

L)l <€7° (§=1,2)
since the number of n violating this is acceptable. By Lemma 3 we then

infer that

Ry(0p) = in&(0n) + f(ﬁn)é(,;n) + O<X8_1/9)
(20) +O(XX(Vn) (7 30?:")) + O(X%(l _ B)e—eal6s logP),

The argument now bifurcates again.
(ii a) Suppose that (&,,7) = 1. Then, by (12) and (13),
< Un, 7
o) < ) o
and the bound |1(#,)| < 7y, is trivial. The term I(i%,)&(y,) can therefore
be absorbed into the error term in (20) Moreover, (10) shows that 7 >
(log P)3/2? from which we see that ——— o7 5 < (log P)~!. We can now argue
as in case (i) to show that Ry (7,) > X for all n under consideration.

(ii b) We may now assume that (#,,7) > 1. Then x(¥,) = 0, and
the middle error term in (20) vanishes. Now, by (11) and (12) we find (see
[MV], (8.5))

. i 1
(21) Sol<ein) [ ==
pI7.p fom,p>3
If the product is non-empty, then |&(7,)| < %G(ﬁn), and we recall that
|I ()| < 7. Hence

5u&(i) + 1)) > = 7 6(50)

and, as before, (20) shows that R;(¥,) > X for all n under consideration.

(ii ¢) We may now suppose that the product in (21) is empty. In this
case we have p|¥, for any prime divisor p > 3 of 7, and 7 is the modulus of
a real primitive character. Hence # = 2*¥u where u is odd and squarefree,

1
and k < 3. Thus, if the product (21) is empty, we must have (,,7) > ﬁf.
With the aim of showing that this happens only for very few n, we estimate

the sum
Z E (r,vn) Z Z d.

LN<n<N dlr  LN<n<N
d<N I/n—O (mod d)
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By (16),

Z < Z d( + NETY) < d(r)N +o(r)NE™
d<N

and hence
@) #{iN<n<N: > LV Dy, 70 e
2 24 T
If 7 > £1/7, say, then it follows from (22) that the product in (21) is empty
only for acceptably few values of n.

(ii d) We are now reduced to the case where 7 < £1/7 and where the
product in (21) is empty. In this case, we note that I(m) < m? whence

0n& () + 1) 6 () > & () (0 — #8) > (1 = B)irm(log P) FZ?L)
(compare with (6.21) of [MV]). From (20) we now infer that for X <
Vv, < X one has

R1 () > (1 — B)(log P)X —2— + O(XE~V/?)

( n)

+0(Xe~%2/%(log P)(1 - f) ﬁ)

For sufficiently small § the last error term will not exceed 5 times the
leading term. Moreover, by (10),

1- B> i Y2(log#) ™2 > £/ (log N)~2(3-27),

It follows that Ry () > XE~1/19 as required. This completes the proof
of Lemma 7.

We are now able to estimate the major arc contribution to (6). In (8)
we take v = F'(n). Then, if

(23) A<{Fm)}<1-A,
we deduce from (8) and (2) that

/nS(a)zK(a)e(—aF(n)) da = Ri(vn) + Ri(vn + 1),
and we can apply Lemma 7. However, if n violates (23), then {F(n)} < A

or {F(n)} > 1— A. By Lemma 4, the number of such n does not exceed
O(NA + NE~1). We can now conclude as follows:
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LEMMA 8. — Suppose that 6 > 0 is sufficiently small, and that
A=g8,

Then, for all but O(NE~/12) values of n with %X < vp < X one has

/ S(a)?K (a)e(—aF(n)) da > XE/10,
n

5. The minor arcs.

In this section we complement the results of Lemma 8 with an upper
bound for the contribution from the minor arcs. The argument is essentially
the same as in [BP] but we provide the details for completeness. The first
step is to reduce to a finite interval. By (4), for k € N we have

/k<la|5k+1 1S(@)*K ()| da < A™ /

We sum over k > P. Then, writing

k+1 lS )!

da < A7'k™2X log X.

n =nN[—P, P

we deduce that

/S(a)zK(a)e(—av) da = _/ S()?K (e)e(—av) da + O( Xfix)
24) "
for any v € R.

‘We now consider
(25) E= S(a)*K (@)e(~aF () daf

1 N<n<N b

Squaring out brings in the sum

a)= Y e(aF(n)

1 N<n<N

and yields

(260 == / [ S(0y'S(~0/"8(a — B)K(0) K (=) dadp.
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In Theorem 2 we take ¢ = 1 — 36. Then, for all (o, ) € n? with |a — 3| >
X36-1 we have (8 — a) < NE~!. Therefore, this set contributes to (26)

at most
< Ng-l( /

—0o0

1S(2)2K (a)| da)2 < NX2(log X)2€1.

On the complementary set we have |« — 3| < X3~!. By a change of
variable we see that this contribution to (26) is bounded by

@) N / 15(c)2K ()] dax sup / 1S(8) P dB;
" (a—X36-1 a4 X36-1)Nm,

here we have estimated ®(a — ) and K(f) trivially. By Vinogradov’s
estimate for trigonometric sums over primes, |S(8)]? < X2P~!(log X)®
uniformly for 3 € n; (see Vaughan [Va], Theorem 3.1), and hence (27) is

< N(/oo lS(a)ZK(a)l da) (XZP—I(IOg X)S)x?)é—l < NX2_26.

This shows that Z < NX?%(log X)2€£~!. From (24) and (25) we finally
deduce via a standard argument that the inequality

/“S(Oz)i’K(a)e(-aF(n))da‘ < XE-V/3

holds for all but O(NE~1/4) values of n € [%N , N ] When combined with
Lemma 8 and (6), it follows that r(F(n)) > 0 for all but O(NE~1/12) values

1
of n with =X < v, < X. A routine dyadic dissection argument completes
the proof of Theorem 1.

6. Proof of Lemma 6.

The basic observation is that for odd m one has

/01 S(a)?e(—am)da =0

so that
(28) Ri(m) = —/ S(a)%e(—am) da = —Ry(m),

say, where m = nnN [0, 1].
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Now let

Ne

1
{n: §N<n§N,VnEO(mod 2)},

N, = {n: %N<n§N,yn51(mod2)}.

We proceed to show that

(29) > IRa(vn + 1) < NX2ETMV?
n€Ne
(30) S IR(m)? < NXZETUB,
neN,

But v, + 1 =12 when n € N, and v, = v2 when N,. Therefore, by (28),
(29) and (30) we get

> IR(R)P <« NX2ETE,
1 N<n<N

and Lemma, 6 follows easily.

It remains to establish (29) and (30). We shall concentrate on the
“even case” (29), the alterations for the cognate (30) will only be indicated.
We shall again use Lemma 1, with a different kernel. Let w(a) be the
function defined in (2), and put

(31) we(a) = w20+ 1).

1 A
Then we(a) =0 for & < —1 or & > 0, we(a) = 1 for 5A—1 <a< 3
and we (@) is continuous and linear in the intervals [—%, O] , [—1, % - 1].

Its inverse Fourier transform is

Ko@) = [ w@esaas=; [

e (5~ 1a) de

1 «a Qa
=3¢(-3)%(3)
with K (a) given by (3). Hence (4) is valid for K.(a) in place of K(a).

In Lemma 1 we take h(a) = S(a)? when o € n, and h(a) = 0
otherwise. Then, since K¢(a) = we(e) by construction, we have

/ 5(0)? Ke(@)e(~aF(n)) da = we({F(n)} — 1) Ra(vn +1).



368 J. BRUDERN, A. PERELLI

Summing over n we find that

(32 3 (Rl + D2 = 3 | / S(a)2Ko(0)e(—aF(n)) do|” + O(R)
'nENe nENe

where R is the contribution from n with 0 < we({F(n)} — 1) < 1. This

happens only for 0 < {F'(n)} < % orl— 5 < {F(n)} < 1, and by Lemma

4 the number of such n is O(NA + NE~1). Combined with the trivial
bound

1
|Ry(m)| 5/ IS(a)|? d < X log X
0

this yields

(33) R < (NA+ NETHX2(log X)2.
We note that A is again freely at our disposal, and we now take
(34) A=¢g13

Then (33) is certainly acceptable.

As in §5 we now remove a tail from n. We remarked earlier that (4)
holds with K(a) in place of K(a). Arguing as in §5 we find that

/Oo |S(a)?Ke(a)|da < Xlog X(YA)™L.
Y

Therefore, if ny = nN [-Y,Y], we have

a)e(—aF(n)) da|

< @)2Ke(a)e(—aF(n)) da|2 + X2(log X)2(Y A)~2

We take Y = £1/2. Then, by (34), (33) and (32),

S [Ra(vat D) <

S(a)*K.(a)e(—aF(n)) da‘2+NX256—% .

nENe neNe
(35)
Squaring out now brings in the exponential sum
(36) Be() = ) e(aF(n)),

nGNe

and further progress with (35) will depend on a successful estimate of this
sum.

LEMMA 9. — Let a € R with |a| < X?. Suppose that |®.(a)| >
NE~1/3, Then there is an integer h with |h| < £2/3 and ‘a - %hl < X651
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We prove Lemma 9 in the next section, and proceed directly with
(35), arguing as in §5. Squaring out yields

60 [ [ S@PS(HPK@K(-9)2.(6 - a) dads,

and we begin by considering the subset of all (o, 8) € n2 with |®¢(8—a)| <
NE~2/3. The contribution of this set to (37) is

<« Ne3( / |S(a)2Ke(a)|da)2,

1
and since |Ke(a)| < 3 ’K(%)‘ we have

o0

|S(20)*K ()| da < X log X.

@) | 15(0)? Kefo)|do < /

Therefore, the total contribution of pairs (a,8) € n3 with |®.(8 — )| <
NE~2/3 s

< NX267%3(log X)?,
which is acceptable.

It remains to consider the set where |®(8 — )| > NE~%/3. Here we
estimate ®.(8 — a) trivially, but by Lemma 9 we can deduce that the total
contribution to (37) of the set in question is

<N / 15(0)2Keo(a)] da( 3y 1) sup / 1S(8)[2 dB.
" (a+ih—X6-1 a4+ Lh+Xo-1)Nn,

(39)

Again, by Vinogradov’s estimate we have S(8) < XP~z (log X)* uni-
formly for 8 € no, hence by (38) we have that (39) is

< NXlog XE23X51X2P (log X)® <« X?7°N.
Collecting these results, we see that (29) follows from (35). To deduce

(30) one merely has to replace we(a) with wo(a) = we(—c) in the above
argument.

7. Another exponential sum.

It remains to establish Lemma 9. We will remove the summation
condition v, = 0 (mod 2) implicit in (36) by a Fourier technique. We again
use the function we(a) from the previous section.
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The function

Y(a) = Z we(k — 20)

keZ
1
is continuous, of period 1 and vanishes on [5, 1]. We write

(@) = 3 cne(ha),

heZ

and by the Poisson summation formula, (4) and |Ke(a)| < % }K (%)‘ we
see that

(40) cn < min(1, A7'h7?).

Here we take A = £71/3, and recall that v, = 0(mod 2) if and only if

{@} < % By Lemma 4 and (31) it follows that
D(a) = Z w(ﬂ(zn—))e(aF(n)) + O(NE™Y/3)
I N<n<N
(41) = S ed(a+ %h) +O(NE~3),
heZ

By (40) and the trivial bound |®(a)| < N we can remove from (41)
all terms with |h| > AT1EY/3 = £2/3. Now, if |a + 1h| > X5~ for all
|h| < £2/3, then |®(a+ 1 k)| < NE~! for all h in this interval, by Theorem
2. From (40) we then find that

®c(0) « NET'A™L 4 NET/3,

contrary to the hypothesis in Lemma 9. This completes the proof.

8. Proof of Theorem 2.

In this section we deduce Theorem 2 from the following exponential
sum estimate due to Karacuba [K].

LEMMA 10. — For given real numbers 0,0,0, and § satisfying the
inequalities
0<é6<1l and 0<O<0<Oy<1,
let F = F(N,0,0,0¢,6) be the set of all functions f(z) for which there
exists a k > 3 such that f(x) is k-times differentiable on [N, 2N],

f®(2)
8

| < N~k (N <z <2N)
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and there exists a set S C {1,2,...,k — 1} with #S8 > 6k and
(s)
N7% < ’fs—'(m)‘ <N™® (N<z<2N)

for all s € S. Then there exist constants B,c > 0, depending only on
0,0,0¢ and 8, such that for any f € F one has

> e(f(n)| < BN

N<n<2N

Proof. — This is Theorem 1 of Karacuba [K], with a change of
notation (our k is Karacuba’s n + 1, ¢g = §,¢; = Oy etc.).

It transpires that precise information is required about the derivatives
of the function F(z) = exp((logz)?). It is, in fact, quite straightforward
to determine the asymptotic behaviour of the s-th derivative F(*)(x) of
F(z) as z tends to infinity, for fixed s. However, we will be forced to use
Karacuba’s estimate in the case where k tends to infinity with N, and must
therefore supply estimates for F(*)(z) which are explicit in both z and s. It
is this uniformity problem which is responsible for most of the complication
below.

We now proceed to examine in detail the function F(*)(z). Most of
the following is elementary calculus, but the situation is sufficiently tricky
to justify a fairly detailed exposition. We begin with a preliminary analysis
of the factorial polynomials defined by go(z) = 1 and, for s > 1, by

(42) gs(z) =z(xz—1)...(x —s+1).

For 1 <t < s one has

(43) ¢P(z) = Z H (z—17)
11,000t jej(‘il,.,‘,’ig)

where the sum is over all ordered ¢-tuples (i1, ..., ;) with all entries distinct
and 0 < ¢; < s—1, and where J (i1, . . ., i) is the complement of {iy,... 4}
in {0,1,...,s — 1}. This is readily established by induction on t, using
Leibniz’s rule. Here the number of terms in the sum over i; is s(s —
1)...(s—=t+1) = ¢f(s), and for z > s we always have

H (z—j)<z(z-1)...(x—(s—t)+1) = gs—t(x).

JET (i1,...1¢)

From (43) we now deduce that for 0 <t < s and = > s one has

(44) 0 < ¢{(z) < qu(s)gs—t(z) < 5°qs—s(2)
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(we proved this only when ¢t > 1, but for q§°) = ¢s this is obvious from
(42)). The upper bound in (44) is almost sharp.

LEMMA 11. — Let v > 0 and F(z) = exp((logz)”). Then, for any
s € N there are polynomials Q,; (0 <t < s — 1) with real coefficients, of
degree at most s — t and with no constant term, such that

FO ) = £ )Z(logx> ‘Qu (r(loga) ).

These polynomials satisfy the recursion relations

(45) Qs0(8) = ¢s(8), Qst1,5(8) =gs(y—1)E (s21)

and, for1 <t<s-1,

(46) Qs+1,(8) = (£ — 8)Qs,t(8) + (v — 1)EQ% -1 (§) — (¢ — 1)Qse-1(8)-

Note that this is some sort of asymptotic expansion. We will see later
that terms with ¢ > 1 have a negligible effect. Before we embark on the
proof, we introduce some useful abbreviations which will be valid for the
rest of the paper. Let

Lzlogw, V=’Y_'17 §:§($)=7LV

Proof. — We have

(47) F(a) = T sogp=1 = Kl g

which proves the lemma when s = 1, with Q; ¢(§) =¢&.
Now suppose the lemma holds for s. Then, by (47)

Ferg = L (E@)y ZL Quel®) = 28 (¢~ )3 L Qur(e)
t=0
F&) 3 (17402, (06 (@) — 11-1570,,(9)

W(ZL €= 5)QualO)+ 3 LT (6@ 1)~ (1~ DQura©).

T=1
This establishes the formula for F(5*1)(z) and (46). Moreover, we see that

(48) Qs+1,0(8) = (£ — 5)Qs,0(£),
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(49) Qs+1,s(§) = Vngs,s—l(g) - (S - 1)Qs,s—l(§)‘

The first identity in (45) is immediate from (48) and Q1 ,0(¢) = &. To verify
the second identity in (45), we use (49) to confirm that Q21 (§) = v, which
is the identity in question for s = 1. Now, if the second identity in (45)
holds for s — 1 in place of s, then (49) yields

Qs+1,5(8) = v€gs-1(v) — (5 — 1)gs—1()§ = &gs(v),

as required.

LEMMA 12. — Let se N,0<t<s—landj>0witht+j <s.
Then, for 1 < v < 2 and € > s we have

(50) 1QY)(6)] < 22*g,_y;(€)
and
(51) YRR}

Proof. — Note that (51) is trivial since @, ; is a polynomial of degree
at most s —t.

The proof of (50) is by nested induction. First suppose that ¢t = 0.
Then, by (45) and (44) we immediately have (50) for all possible values of
s and j.

We now proceed by induction on ¢, and assume that (50) holds with
t replaced by t — 1, and all possible values of s and j. We have to verify
(50) for all s > ¢t+1, and all 0 < j < s —¢. First take s =t + 1. Then,
by the second identity in (45) (with s = t), the required estimate in (50)
follows from the obvious inequality |g:(v)| < (t + 1)? (note that |v| < 1 so
that |g:(v)| < t! which is rather sharper). This verifies (50) for s =t + 1,
and all j (note that only j =0 and j = 1 are of interest).

With the value of ¢ fixed, we now induct on s. We suppose that (50)
is known for s (and all j), and proceed to verify (50) for s+ 1 (and all 7).
Since s > ¢ + 1, we can use the recursion formula (46). We differentiate
(46) j times, using (51) whenever necessary and the obvious formula

& . .
357 (€ = a)g(€) = (€ — a)g" (&) + kg~ (8),
to deduce that

QY. (&) = (¢ — QYN + QU V(&) + veQUHY
(52) +vQU)L_1(6) — (t — QYL (6).
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We now begin with j = 0. Then, for £ > s + 1, we deduce from (46)
and the induction hypothesis (which applies with ¢t — 1 for all s and j)

1Qs+1,6()| < (€ = 9)|Qst(E)] + €1Q% 11 ()] + (£ = 1)[Qs,e—1(€)]

< (€ — 5)s%qe_y(€) + EsP 7 g (€) + (t — 1)s%72g541-4(€)

= (€ —s+1t) —t)s*qs_+(§) + (€ — s+ 1) + 5 — t)s*1gs_4(£)

+(t — 1)s%72g11-4(€)

= (8% + 8271 4 (8 — 1)s* 7)o p1-4(€) + (5% — ts* — 152 1)g,4(¢).

Here we used (£ — s + t)gs—¢(§) = ¢s+1-1(€). Now, for t > 1,
th + 82t—1 + (t _ 1)S2t—2 < (S + 1)2t, s2t _ ts2t _ t52t_1 < 0,
and (50) follows for s+ 1 in place of s when j = 0.

For j > 0 we can use (??), and the same reasoning produces

Q £Qlt<£>|<< 9)1QYY(E) + 71UV (€) + €1QU (6) + 51QV)_, (6)]

+(t = D)IQY)_1(6)] < (€ — 8)s%Hgoe—;(€) + js* I gqu_y_j41(€)
+552t+1 IQS t— J(€)+(]+t 1) 2= 2+J‘13+1 t— ](5)

As before, we use brute force to generate terms with gs41-¢—;(§). This
yields
Q9 4(€)] < Bidssr-t-5(€) + Bads—i—5(6).

The coefficient of gs41-¢—;(£) is
B; = S2t+j + (J + 1)S2t+j—1 + (] +t— 1)S2t+j—-2 < (S + 1)2t+j,
and the coefficient of gs_;—;(&) is
By = % — (t 4 j)(s*10 + s¥H7) <.

This establishes (50) for s + 1 in place of s, for all j > 1. This completes
the inductions on s and t.

We can now deduce a precise asymptotic formula for F(*) (z). In
Lemma 11 we single out the term with £ = 0 to obtain

FO @) = £ (q,(6) + B@)
where

s—1
E(®) =) L™'Qs:(¢)
t=1

We bound E(z) with the aid of Lemma 12. When £ > s this yields

IB(@)| < g:f () o) < qs_l(ﬁ)si (%)
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(note that £ > s is needed in Lemma 12 as well as to arrange that gs_;(¢) <

gs—1(§) for 1 <t < s—1). If we also suppose that s < §L, we can sum
the geometric series and may conclude as follows

LEMMA 13. — Let 1 <y < 2 and s € N. Then
F(z)

_,L-s

F®(z) =

(¢s() + E())

1
where, for y(logz)?~! > s and s% < 5 log z, the function E(xz) satisfies

252 _
|E(z)] < @Qs—l(W(IOgm)7 h.

One comment might be useful. When v < g the condition s < ¢

1
implies s? < y%(logz)*~2 < 1 logz for z > zo(7y), so in this range for
only the condition £ > s is relevant in Lemma 13. Moreover, still subject
to £ > s, we then find

F(z)
xs

252

log x

F(z)
xs

FO(2) > =22 (,(6) - 6O 5+ 5).

qs—l(ﬁ)) > 5

The factor gs—1(£)(§ — s+ 3) is an increasing function for £ > s, and takes
the value %5! at £ = s. This proves the following

LEMMA 14. — Let1 <y < g Then there is a constant xo = zo(7)
such that for all s € N and all z > z¢ with y(logz)?"~! > s one has

FO@) _ F)
st T 2zs

It would be easy to establish a complementary upper bound for F(*) (z)
from the above results. However, such a bound would be subject to £ > s
which is inappropriate for our later purposes. Although it would be possi-
ble to provide the required estimate by a variant of the previous argument,
it is much simpler to estimate F(*)(x) by Cauchy’s integral formula.

LEMMA 15. — Let v > 1 and N > 10. Then, for all s € N and
N < x < 2N we have

|32 <2(5) P
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Proof. — The function F'(z) = exp((log2)?) is a holomorphic func-
tion of z = x + iy in the half-plane x > 1, defined by analytic continuation
of the real function. Let C be the oval in the complex plane, consisting of
all points of exact distance 3 N from the real interval [N, 2N]. Then, for
N <z < 2N, by Cauchy’s formula

FO ) _ 1 F(¢)

st 2w Jo (C—x)HT

dc.

Since [¢ — x| > 1N for all ¢ € C, and the length of the oval is (1 + 2)N,

we have

s!

<2( %) max|F(2))

It is readily confirmed that
|F(2)| < exp(|log 2|”)

holds for all z € C. Now write z = re®®. For z € C one has |¢| < Z, whence
|log z| < logr + F < log(3N). Consequently, |F(z)| < F(3N) for z € C,
and the lemma follows.

We now establish Theorem 2 by an appeal to Lemma, 10. The follow-
ing result will be useful.

LEMMA 16. — Let a >0, 0 < ¥ < 1 and write a = N~4.

(a) Let s be a natural number satisfying

(s+1)log2 = (log3N)”
log N logN

(53) s(1—9)+A>

Then )
‘O‘—ES'—("”—)) < NP (N <z <2N).

(b) Let s be a natural number satisfying s < y(log N )’Y—1 and

_ log 2
— < -1 _ 8%
(54) s(1—-9)+ A< (logN) Tog N
Then (®)
’an—'(w)‘ >N~ (N <z<2N).

Proof. — For (a), use Lemma 15. Then, it suffices to verify the
inequality

20F(3N) ( %) < N7
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which after taking logarithms is seen to be equivalent with (53). For (b),
use Lemma 14 and note that z~°F(z) is increasing for z > N, since s <
v(log N)*~1. Therefore, it suffices to show that

aF(N)

> N—"I98
2Ns  ~

which is equivalent with (54).

To prove Theorem 2 it will suffice to consider @ > 0. Choose 8 with

1
0<b< 3 and C < (1 — ), which is always possible. We now proceed to

show that the function aF(z) is in F(6, %0, %, 6), where

o= 70 -5~ = 38)

for all o € [F(2N)~¢, F(N)®]. This will establish Theorem 2.
We confirm the hypotheses of Lemma 10 with ©¢ = %, 6= %0 and
= [9(log N)""!] + 1. With o = N~ we have

_ log 2N)7
- "l A< (—
(55) C(log N) <A<e Tog

(k)
aF?(z) x)l N—1F as

Take ¢ = % and s = k in Lemma 16 (a) to verify \
required.

We now wish to determine the values of s for which we have N~ <
’M| <N "93 for N < z < 2N. Suppose for the moment that

s < y(log N)*~!. Then the required inequalities will follow from Lemma
16 provided we have

(-5 roew) (e —4) <5< g (dos - £EL)
(50

Note that the choice for 8 implies that all s satisfying (56) will auto-
matically satisfy s < y(log N)?~! < k; this follows from (55). Therefore,
in Lemma 10 we can take S as the set of all s satisfying (56). It is then
readily seen from (56) and (55) that #S > 6k, at least for large N. All
the conditions of Lemma 10 are satisfied, and the proof of Theorem 2 is
complete.
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