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THE DISTRIBUTION OF EXTREMAL POINTS
FOR KERGIN INTERPOLATION: REAL CASE

by T. BLOOM and J.-P. CALVI

1. Introduction.

The general purpose of this note is to study, in some cases, the
sequences of Kergin interpolation operators that are the best (see below)
for approximating holomorphic functions. Let K be a C-convex (for the
definition see [I], [2] or [3]) compact set in C71, n > 1. We say that an
infinite triangular array of points in K

(1.1) A = {Af; j = 0,1,. . . , d; d = 1,2,...}

is extremal for Kergin interpolation on K if, for every function / holomor-
phic on a neighborhood of K (i.e. / € H(K)), the Kergin interpolation
polynomial IC^df of f with respect to the points A^ , . . . , A^ converges to
/ uniformly on K as d —> oo. If such an array exists, we say that K admits
an extremal array. The question of knowing whether a given array A is ex-
tremal or not is related, as we shall see, to the study of the distribution of
the points, that is to the behavior of the sequence of probability measures

(i.2) /^-/^—E^ (^u,...)
j=0

where [x] stands for the Dirac measure of the point x.

The first author was supported by NSERC of Canada.
Key words: Kergin interpolation - Polynomial approximation of holomorphic functions
- Logarithmic potentials.
Math. classification: 32A05 - 41A05 - 41A63.
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Recently, examples of extremal arrays have been found in the case of
circular convex sets (see [4] and below). Here, we shall study the case of
(totally) real sets, the definition of which follows.

One says that a real subspace V of C71 is totally real if V D iV = {0}.
A compact set is said to be totally real if it is contained in a translate of a
totally real subspace, in particular its interior as a subset of C77' is empty.
A compact set of the form

(1.3) E= {a+rcos(9ei +rsin(9e2, 0 < r < 1, 6 e [0,27r]}

is said to be a (totally real) ellipse if the space V :== vectR(ei,e2) is
a totally real plane. The measure daE is then defined, by f^ fdaE =

— L /(cos^ei + sm0e^)d0 for all functions / continuous on E. daE
is supported on the boundary of E as a subset of V. In fact, if A is an
affine automorphism from M2 to V that maps the unit disc of center 0
onto £', then the measure do-E is only the image by A of the standard
—d0 measure on the unit circle. A segment E = [a-\-te^,t G [—1,1]} (not
27T
reduced to one point) is said to be a degenerate ellipse, the measure daE is
defined by f fdaE = — f^ f(a + cos 6e\)d0. Thus daE is the image of the
arcsin distribution on [—1,1] by the map t —^ a + ie\.

The main result of this paper is the characterization of those totally
real compact convex sets which admit an extremal array.

THEOREM 1. — Let n > 1. A totally real convex compact set K in
C71 (not reduced to one point) admits an extremal array if and only if it
is a (possibly degenerate) ellipse. Furthermore, in this case, an array A is
extremal for K if and only if the sequence p,^ converges weakly to do-K-

Using basic properties of Kergin interpolation, we shall easily reduce
the statement to the simpler

THEOREM 2. — Let K be a convex compact set in R71 C C71 ofnon
void interior (as a subset ofW^).

(1) Ifn = 1, every K (which must be an interval) admits extremal arrays.

(2) Ifn=2,K admits extremal arrays if and only if it is an ellipse.

(3) Ifn>2, there is no extremal array in K.

In the first two cases, an array A is extremal if and only if^ converges
weakly to do-K as d —^ oo.
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We shall assume that the reader is familiar with the definition of
Kergin interpolation. We refer to [I], [2], or for a brief elementary survey,
to [4]. Let us just recall the fundamental invariance formula. Let A be an
affine mapping from C^ to C71, let X = {x°,..., a^} be a finite subset of a
compact C-convex set K C C^ and let A(X) = {A(x°),... A(^)}. Then
for every / C H(K) we have

(1.4) / C X ( / O A ) = / C A ( X ) ( / ) O A .

In particular if n is equal to 1 then /C^(x) ls ^ne Lagrange-Hermite
interpolation polynomial with respect to the points A(a;°), A(;c1),..., A^^)
in the plane.

It also follows that the computation of Kergin interpolation is inde-
pendent of the choice of coordinates for the vector space. We can therefore
define the Kergin interpolants of a function defined on an abstract finite-
dimensional complex vector space V. Furthermore if Y is a subspace of C71

and if K is a C-convex compact set of C7'1 included in Y then K is as well,
C-convex as a subset of Y. Now if X is a finite subset of such a C-convex
set K and if / is holomorphic on a neighborhood of K (as a subset of C71)
then, it follows easily from formulas defining Kergin interpolants that

(1.5) /C^(/,y)=/Cx(/)|y,
where g\y denotes the restriction of g to V. We shall call this formula, the
restriction formula for Kergin interpolation.

It is known that every totally real C-convex compact set is actually
convex in the usual geometric sense. Therefore, in this paper, there will be
no loss of generality in considering only such standard convex sets. (There
is a survey on C-convexity in [3].)

In Section 2, using a convergence theorem that we proved in [4], we
give a new general criterion for deciding whether an array is extremal or
not. It is used in Section 3 to prove Theorem 2. Lemma 2 of Section 3 shows
that Theorem 1 follows from Theorem 2. The rate of convergence of Kergin
interpolation for an extremal array is investigated in the final Section 4.

We will review some concepts from potential theory in the complex
plane. An excellent general reference is the book of Ransford [11].

Let ^ be a finite positive Borel measure on C and let

(1.6) p^(z) = [\og\z-t\d^t)
Jc

be the negative of its logarithmic potential.
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Let AT be a compact subset of C. We will assume K is polynomially
convex, which is equivalent to C\K being connected. We let GK^Z} denote
the Green's function of C \ K with a logarithmic pole at oo. For K non-
polar we let U,K denote the equilibrium measure of K. It is known that
supp(/^) C QK. We let cap (K) denote the logarithmic capacity of K.

The set K is said to be regular (for the exterior Dirichlet problem) if
GK(^) has a continuous extension (by zero) to QK (which we also denote
by GK^Z})' A regular set K is non-polar, so cap (K) > 0 and we have

(1.7) GK(Z) = JW (z) - log(cap (K)) for z e (C \ K) U OK
and

(1.8) JW(^)- log M - ^ 0 as H->oo.

For compact sets K C C, K is C-convex, by definition, if and only if
K and C\K are connected. Thus K is C-convex if and only if it is connected
and polynomially convex. Furthermore, it is known ([11, th. 4.2.1]) that if
K is polynomially convex, connected and contains at least two points, then
K is regular.

For K a compact subset of C we let Ha(K) denote the functions,
continuous on K and harmonic on Int (K). The proposition below defines
a balayage of measures (from K to OK) similar to what is done in [9, p.
205-208]. However we do not assume Int {K) is dense in K.

PROPOSITION 1. — Let K C C be compact, polynomially convex,
connected and contain at least two points. Let p, be a finite positive Borel
measure on K. Then, there is a unique finite positive Borel measure,
denoted b(p,), on QK such that, for all f e Ha(K)

(1.9) [ fd^ = ( fdbW.
JK JQK

Proof. — By [11, Cor. 6.3.6] given (f) continuous on QK (denoted (f) e
C(9K)) there is a unique function H((/)) e Ha(K) such that H((/))\QK = <^.
The linear functional on C(9K) given by

(1.10) (f> —— / HWd^i
J K

is positive and hence, by the Riesz representation theorem, given by
integration with respect to a measure, denoted &(/^), on QK. D

The next proposition gives equivalent characterizations of measures
obtained by the balayage procedure of Proposition 1.
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PROPOSITION 2. — Let fi (resp. v) be a finite positive Borel measure
on K (resp. 9K). Let K be as in Proposition 1. Then the following are
equivalent:

(i) v = W

(ii) p^(z) = p^(z) for all z € C \ K.

(hi) f^z^d^i = f^z'^dv for m=l ,2 ,3 , . . .

Proof. — (i) => (ii) applying (1.9) since for fixed z € C \ K, the
function t —> \og\z —t\ is in Ha{K). Similarly (i) =^ (iii) since for any
positive integer m.Re^7"') and Im^771) are in Ha(K).

Now (iii) => (i) since by [11, Cor. 6.3.4] every function / € Ha(K)
can be uniformly approximated on K by functions of the form Re (g) where
q is a polynomial in z.

Also (ii) =^ (i) by the reasoning in [11, p. 175]. D

2. A general convergence criterion.

Let K be a compact C-convex set in C"', n > 1. K is said to be
regular C-convex (this is, of course, a property distinct from regularity for
the exterior Dirichlet problem for compact sets in the plane) if it admits
a basis of neighborhoods that are also C-convex but having smooth (C2)
boundary. Every convex (geometric sense) compact set is regular [5]. Given
an infinite triangular array A of points in K (as in (1.1)), we let M A denote
the set of all the weak limits of the sequence ̂  (see (1.2)). This is a closed
subset of M(K), the convex cone of the probability measures supported
on K and endowed with the weak-* topology. If I is a non-zero linear form
on C71 (we shall write I G (C71)*) and v a probability measure on JC, l-kv is
the probability (measure) on 1{K) C C defined by {I -k v){f) = v{f o I ) for
/ continuous on 1{K).

We are now able to state a criterion characterizing the extremal arrays
for Kergin interpolation.

THEOREM 3. — Let K be a regular C-convex set in C71 which is not
included in a complex hyperplane and A, a triangular array of points in K.
Then A is an extremal array for Kergin interpolation (on K ) if and only
if for every non zero linear form I and every weak limit ^ e M.A one has
b(l-kii) =/^(j<).
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Let us make a few comments on this statement.

First, for every non zero ;, l(K) is compact and C-convex [3, th.
2.3.4]. It follows from the restriction formula (see also the proof of Lemma
3) that there is no loss of generality in assuming K not to be contained in
an hyperplane, so we may assume l(K) contains at least two points. Thus
l(K) is regular, non-polar and satisfies the hypothesis of Proposition 1.

It is not necessary to verify the hypothesis for every l^ but just for I
in a subset S of (C71)* satisfying the following property:

(2.1) I e (C71)*,^ 0 =^ 3(A,^) e C x S such that I = \q.

This comes from the relations b(h^i/) = h-kb(u) and f^h(E) = h-k^E where
E is any non-polar plane compact set and h = h\ : z e C —> Xz € C. In
particular, in the one dimensional case (n = 1), we may take S = {Id}.

In the case n = 1, Theorem 3 follows from the classical Kalmar-Walsh
theorem [7, p. 65] or [15] on convergence of Lagrange-Hermite interpolants.
We give a version of that result below:

THEOREM 4 (Kalmar-Walsh). — Let K C C be polynomially
convex, compact and regular. A triangular array A C K is extremal (for
Lagrange-Hermite interpolation) if and only if lim ———log|wd(^)| =

d—^co d + 1
d

P^K^) uniformly on compact subsets ofC\K. Here Wd(z) = ]~[ {z - Af).
i=0

COROLLARY 1. — Let K be as in Proposition 1. Then A is extremal
for K if and only if for any [L e MA we have b(^) = /^.

Proof. — Let fi € MA' By definition of MA, there exists a sequence
{p"rij} which converges weakly to /z. (We will use the notation /^. —!- .̂) It
follows from (1.6) that lim pu.^\z} = p,,(z) for z e C\K. Thus, since A is

J'—>00 3

extremal, by the Kalmar-Walsh theorem p^{z) = p^(^) for all z € C \ K
and by Proposition 2(ii), b{fi) = ^LK-

Conversely, suppose b(p,) = /^ for all fi e M A. We will show, by
contradiction, that lim p^(z) = .pujc(^) uniformly on compact subsets

d—>oo
of C \ K, so, by the Kalmar-Walsh theorem, we may conclude that A is
extremal.

Thus, suppose for some sequence nj and compact set L C C \ K
we have lim \\p^. - p^\\L = 6 > 0. Then, by Helly's Theorem, there

]—>00 J
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is a subsequence rik of nj such that the sequence of measures {/^n^fceN
converges weakly to a measure IJL G M.A' Using Proposition 2(ii) we
conclude that {p^ }ke^ converges uniformly to p^ on L thus arriving
at a contradiction. D

It follows in particular that when lnt{K) == 0 then A is extremal if
and only if {/^} converges to /^. More generally, if A C 9K then A is
extremal if and only if {{jLci} converges to [LK- (In these cases, one must
have M.A = { ? ' K } ' ) In general however M.A can be much larger.

The proof of the sufficient part of Theorem 3 makes use of the
following general convergence theorem proved in [4, Th. 3.1 and Cor. 3.11].
We recall it now as well as its (rather technical) "machinery".

THEOREM 5. — Let f2 = {p < 0} be a C-convex open neighborhood
ofK with C2 boundary i.e p is a C2 defining function.

We assume that the (sub)sequence
. dk

(2.2) ^:=^^^[A^] ( f c = 0 , l , 2 , . . . )
k ' 3=0

converges weakly to some probability /x (in M(K)).
If for every non zero linear form I , we have

(2.3) IW D F^l)

where

(2.4) -^(0 = {u eC such that pu^,(u) < sup p^(w)}
wei(K)

then, for every function f holomorphic in a neighborhood offl,,

(2.5) Jm^||/C^(/)-/||j<=0.

Here again, it suffices to check the property (2.3), for I in a set S as
above.

Proof of Theorem 3. — Let us first make a preliminary remark. For
I € (C71)*, Z(A) is a one dimensional array for which we may consider M.I^A)-
Then setting (-k M.A := {^ '*• AA, /^ e M.A\-> we claim that I -*- M.A = M.I^A)-
That ( -A- MA C MI(A) is obvious. Let us prove the reverse inclusion. Let
v G M-I^A}' There exists a subsequence JL^ such that l^^dk ^ v ' But the
subsequence /^ has itself, by Helly^s theorem, a convergent subsequence
say p,d^ to 11. Hence v = lim I * [L^, = I * fi and v € I * M.A'
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Now if A is extremal for K then, for I e (C^* and g e H(l(K)) we
have g ol e H(K) whence /C^d(^ o ;) converges uniformly on K to g o I .
However by the invariance property (1.4), we have IC^d^ol) = ^(A^p)0^
Therefore ^(A^Q^) converges to g uniformly on l(K). Thus l(A) is extremal
for Lagrange-Hermite interpolation in the plane and consequently, by
Corollary 1, ^(A^(A)) = { p ' i ( K ) } ' This is what was to be proved since
A^(A) == I ^ M A '

Let us now establish the sufficiency. Using the notation of Theorem 4,
we first prove that

(2.6) F^l) = l(K)

for I e (C^)*. Clearly we have 1{K) C F^(l). Since 6(Z^) = ̂  we have (by
Proposition 2(ii)) pi^ = p^^. Since 1{K) is regular, sup p^ (w) = 0

we^)
and P^(K)(^) > 0 for ^ e C \ JC. Hence (2.6) follows. Now, if there exists
a function / e H(K) for which H/CA^/ - /||x does not converge to zero
then, using Helly's theorem, one can find a subsequence /^ converging to,
say, [i such that

Urn \\^f-f\\K=6>0.
k-^oo

This together with (2.6) leads to a contradiction. Indeed, all the hypothesis
of Theorem 5 are satisfied in taking for ^ any smooth C-convex neighbor-
hood of K such that / G H(^l) and the conclusion of Theorem 5 yields a
contradiction. Q

It is of interest to state the hypothesis on A in Theorem 3 in another
form. The hypothesis (on A) holds true if and only if for every fi e MA
and every I e (C^*, we have

(2-7) E (^^-/W^ (fc=l,2,3,...)
H=fe v /

where if l(z) := f; ̂  then ̂  = ^1...^71 and (n) = n\/a^\.. .a^!.
%==i \ Q! /

Indeed, by Proposition 2(iii) b(l -k p) = /^^) if and only if both measures
agree on the (holomorphic) polynomials. Thus the existence of extremal
arrays for Kergin interpolation on K requires that the equilibrium measures
p,i^K) behaves very regularly as a function of I and clearly, this cannot be
expected of a general C-convex compact set in C71.

We showed in [4] that extremal arrays exist on compact sets that are
circular and convex. Indeed, supposing that K is circular of centre 0 then
for every Z, l(K) is a disc centre 0 whose equilibrium measure is the standard
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invariant measure on the boundary of the disc so that /^(^(w^) = 0 for
k = 1,2,.... Therefore A is extremal if and only every /JL € M.A represents
0 on the polynomials (i.e., fr^p(z)dp, = p(0) for all polynomials p). This is
the case when p, is invariant, that is for every 6 € M and every continuous
function / on K we have f f(e^ez)d^(z) = f f{z)dp,(z). Several natural
examples are given in [4]. However there are many measures that represent
0 without being invariant.

Example. — Let us consider the euclidean unit ball in C2 i.e
B2:={Z={Z^Z2)\Z^+\Z^^1}^

and let ^ be an automorphism of D, the closed unit disc in the plane. Next

we define the function y?: D —> B^, by (p(u) = ( —IA, —u^(u)). Let v be
\ Li Zi f

the measure on 9B^ defined by

/ /•27T J(\

'^•-l d-^'"^-
Now we can easily verify that v represents zero while v is not invariant

(its support is not invariant).

It is not difficult to find a convex compact set of non-void interior in
C71 which does not admit extremal arrays for Kergin interpolation. But, as
a by-product of our main theorem, we shall exhibit in Section 4 the first
examples of non circular convex compact set of non-void interior in C2

which admit extremal arrays. Whether or not there is a non-circular convex
compact set of non-void interior admitting extremal arrays for n > 2 has
still not been settled.

Let us finally note that Theorem 3 can be made more precise when
restricted to sequences (a sequence A is an array for which j <, d <,
d' => A^ = A^). In this case, M.A is always a closed connected subset
of M. (This follows as in [13, p. 35] since the sequence {/^} satisfies
/^d+i — ^Ld ^ 0.) Conversely if X is a closed connected subset of M(K)
such that (y e X^ I e (C71)*) =^ b{l -*- v) = ̂ (K), then X is the set of weak
limits of the sequence {/^} for an extremal sequence in K. Indeed, by a
theorem ofTotik, (see [13] or [14, p. 35-36]), there exists a sequence A such
that X = MA'

3. Proof of Theorem 1.

The following basic property has already been used in the case n = 1
in the proof of Theorem 3.
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LEMMA 1. — Let K be a C-convex compact set in C771 and (j) an
affine endomorphism from C771 to C71. If A is an extremal array for K, then
0(A) is an extremal array for (f){K).

Proof. — The lemma follows immediately from the invariance prop-
erty (1.4) together with the observation that / e H{(f){K)) => fo(f> e H(K).
Note that the C-convexity of K implies the C-convexity of (f)(K).

D

In particular, K admits an extremal array if and only if a-\-K admits
one. This means that one may assume that the origin belongs to K.

LEMMA 2. — Theorem 2 implies Theorem 1.

Proof. — Let K be a totally real convex compact set in C771 that
admits an extremal array. Assuming the conclusions of Theorem 2 we are
going to prove that (i) K must be an ellipse, (ii) if A is an extremal array
in K then /^ ^ OK, and conversely (iii) if /^ -^ (TK then A is extremal.

We suppose without loss of generality that the origin belongs to K.
Let V be the totally real subspace of minimal (real) dimension, say m,
among those containing K.

(i) For some M e GLn(C), V C M(M71). (A totally real subspace is
contained in a maximal totally real subspace W of C^ which is only a copy
of IT in C71 that is V C W = M(R71), M e GLn(C).) We take a linear map
N from C" to C^ such that N\M-^V is one to one and N(M~1V) = R771

and define (j) = NoM~1. According to Lemma 1, (f)(K) admits an extremal
array, since (f)(K) is a compact convex set of non void interior in R771, it
follows from Theorem 2, that m = 1 or m = 2 and K is a (possibly
degenerate) ellipse.

(ii) Let A be an extremal array in K and let ^ = (f)\y then ^ is a
real isomorphism from V to W. By Theorem 2, /^(A) ^ CT^(J<), but
/^(A) = ̂ /^ ̂ S ̂  ^ ̂ -1 ̂ ^(K) = ̂ K-

(iii) Conversely, if /^ ^ a^ then ^(A) -^ CT^(^) so that ^(A) is an
extremal array for ^(K). Let ̂  = (^(C^, -0 extends to a C-linear
isomorphism from V^ onto C771. If / is holomorphic on a neighborhood of
AT as a subset of C71 then it is holomorphic on a neighborhood of AT as a
subset of l^, consequently, for / e H{K), we have

II/ - Wf)\\K = H/ivc - Wf\yc)\\K

== 11/ivc o ̂ -1 - A:^,(Ad)(/|vc o ̂ ~1)||^) -^0 as d -^ oo.
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The first equality follows from the restriction formula (1.5), the second
uses the invariance property and the limit holds true because V?(A) is an
extremal array in ^(K) and f\yc o -0~1 e H(^(K)). This shows that A is
an extremal array for K. D

Proof of Theorem 2. — Let K be a compact convex set of non void
interior in R71 and let A be an extremal array in K. We shall work in several
steps, each of which provides information on A or K^ ultimately leading
to the conclusion of the theorem. The case (1) is well known, we shall not
discuss it.

Step 1. K must be symmetric (possibly after translation). Let p, be a
probability measure supported on K^ satisfying (2.7). We define a e W1 by
di = f^ Xid^(x)^ i = 1,..., n. Since K is convex, a € K. We may suppose
that a = 0 (otherwise we work with K — a). Therefore, applying (2.7) with
k = 1, we have

n

0=^^(^)=^(X)(w), ^€(C 7 1 ) * .
.7=1

Let us restrict our attention to those I with real coefficients. Then l(K) is
an interval, say, [a(Q, b(l)]. But

r (a(Q+^) b(l) -a(l) \ 0(0+6(0p^imW = i i ——_—— + ——_——x \ rf/^_i,+i] = ——,——.
j[-i,+i] \ z L / ^

(Recall that ^[-1,1] ls ^ne arcsin distribution, so f ^^[-1,1] = 0.) Conse-
quently a(l) = —b(l) and l(K) is centered at 0 for every real I . In view of
the formula

j^Ur1^)),
w

this implies that K is symmetric about 0 as well.

Step 2. K must be an ellipsoid. By step 1, we may assume that K
is symmetric about 0. By ellipsoid, we mean a set of the form {x G
M^IIA^)!! ^ 1} with A e GLn(R). Let us again take a probability
measure p, on K satisfying (2.7). For every I with real coefficients, we have
l(K)= [-6(0, b(l)} and

r 2 . / ^ 1 [w X2dx ^(0 r 2/^^ ^2/n/ w^^w) = - / . , = —1 / cos2^ = .b\l).
J l ( K ) ^ J-b{l) ^/b2^) - X2 7T JQ 2

In view of (2.7) and identifying R71 with its dual we deduce that the function
I —>• b2^) is a quadratic form on R71. But, we have also

b(l)=m^{l,x}
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which means that K°, the polar set of K, is given by b2^) < 1 or, b
being quadratic, for some matrix A, K° = {||A;r||2 < 1} and consequently
K = {K°)° = {II^A^)!!2 < 1}. Since K is bounded and of non empty
interior, A must be invertible which proves that K is an ellipsoid.

Step 3. The case n = 2. It suffices to study the case of the closed unit
disc D for every ellipse is the image of D under some affine automorphism
of C2. Next, we observe that, if there exists a measure p, satisfying (2.7),
it is unique since the polynomials p(z]_,z^) are dense in the continuous
functions on D. Thus M.A = P' and /^ converges to p,. In view of Theorem
3, it remains to prove that for every I G (C2)*,

(3.1) b(l^a) =/^(D).

(Recall that da = —d0.)
27T

It suffices to show that

(.3-2) Pua(w) =P^(O)(W) for |w[ large,

since both sides of (3.2) are harmonic on the connected open set C \ l(D)
we must have equality in (3.2) for all w € C \ l(D) and so by Proposition
2(ii), (3.1) holds.

Let l{z) = Zi^i + hz2 € C. Let r = l——^h- and s = ^L-t^. Now
^ Zi

l(cos 0, sin 0) = <i cos 0 + h sin 0 = re^ -(- se~^. Thus if r or s is zero, l(D)
is a disc center the origin and I being linear, (3.1) holds.

Now assume rs ̂  0. Then l(D) is an ellipse. Let ^i(w) and z^(w) be
the two branches ofrz2 —zw-\-s = 0 satisfying |^i(w)| —> oo as |w| —> oo
and |^2(w)[ —> 0 as [w| —> oo i.e., (for an appropriate branch of ^r)

/« ox . x w + Vw2 - 4rs w - \/w2 - 4rs(3.3) 2;i(w) = ———^———— and ^(w) = ———————.

We will first compute pua(w)
(3.4)

1 /•27r

PZ*(T = 7— / log [<i cos 0 + ̂  sin 0 - w\d0
27TJO

= 1 / n log |re2^ - we10 + 5|d0
27T JO

= ^r / log le" ~ ^l(w)l^ + ̂  / ̂  I6" - ̂ 2(w)|d0 + log H

= log |w + \/w2 - 4r5| - log 2 for |w| large
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since 1 f^ log |e16 - u\de = Max{log |u|, 0}.
ZTT

o _ _
Assume - < 1 and consider the 2:1 map of C onto C given byr

(3.5) w = F{z) = r ^+ 5 .

Now, F(9D) = l(9D), in fact F(cos (9, sin 0) = l(cos0,sm0). The in-
verse image of w € C consists of the two points {z\ (w), z^ (w)}. Since
|^i(w)||^(w)| = s ^ 1 then for w € C \ 1{D), |^i(w)| > 1 andr
1^2(^)1 < 1. Thus the map w —^ zi{w) is analytic, 1-1 from C \ l(D)
to C \ D and it extends continuously to the boundary. Thus log |^i(w)| is
the Green's function of C \ 1{D) and, adding a constant so that (1.8) holds
we have

(3-6) P^iwW = log|^i(w)|+log|r| = log |w + y/w2 - 4r5| - log 2
and combining this with (3.4) we see that (3.2) holds.

T TIf - <, 1 we replace F by the map w = G(z) = - + sz.
Then G(QD) = l(D), in fact G(cos 0, - sin 0) = l{cos0,sm0). Proceeding
similarly as above, and using the two branches of r — zw + sz2 = 0 we
obtain (3.6) for P^no)^)' This completes the proof.
Step 4. The case n > 2. By step 2 and the invariance property, we may
assume that K is the euclidean unit ball. We are going to prove that the
existence of an extremal array A leads to a contradiction. Let us take
JLA € M.AI x a point in the support of ^ and M a linear map from y to R2

such that M(x) = 0 and M{K) is the unit disc in R2. Such a map exists
since n > 2. Note that M extends to a C-linear map from C71 to C2. By
Lemma 1, M(A) is an extremal array in M(K) = D consequently, since
M-kfjL € .MM(A) = {<7}? we have M-kfi = a. But since x is in the support of
/x, 0 = M(x) is in the support of M-kp, and this is impossible. This finishes
the proof of the theorem. D

4. Rate of convergence.

Let us first recall some basic facts from complex pluripotential theory.
Let K be a polynomially convex, non-pluripolar, compact set in C71. The
Siciak extremal function is defined by

^(^sup^)]1/^}
p€P
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where P is the set of all the polynomials p of degree at least 1 such that
[ \p \ | K = 1- When this function is continuous on C71, K is said to be regular
and then the family {Kr}r>i where Kr := {^(z) < r} forms a basis of
open neighborhoods of K. It is known that when K is convex then Kr is
convex as well, see [10, p. 160]. When K is regular, Kr is regular [12, cor.
5.12] (Kr denotes the closure of the open set Kr) and

(4.1) (Kr,)r^Kr^ (r^^l).

In the case where K is a non degenerate ellipse in C2 (which is of most
interest here) an explicit formula is available for ^>K' For example, when
K = D we have, see [8, Th. 5.4.6],

(4.2) ^(z) = ̂ (IHP+KZ.Z}-!!)
n

where {z, w) = ^ ZjWj, (\\z\\2 = (z, z}) and h is the inverse of Zhukovski's
j'=i

function, that is, ___
^(O^+V^T

THEOREM 6. — Let K be a non degenerate ellipse in C2 and A an
extremal array for K. For every f € H(K), we have

^-^f^-W)
where R(f) > 1 is the supremum of the all the r > 1 such that f has an
holomorphic continuation to Kr.

Proof. — This result is an immediate consequence of the more
general Theorem 7 below. (That the hypotheses are satisfied follows from
the usual formulas for Kergin interpolants.) D

Let K be regular as above. We endow H(K) with its usual topology as
the inductive limit of the family ofBanach spaces A(Kr) = H(Kr)r\C(Kr).
Hd denotes the space of polynomials of degree at most d.

THEOREM 7. — Let K be a regular polynomially convex compact
set in C71 and T^ d = 0,1,2,.. . be a sequence of continuous linear
projectors from H(K) to ltd C C(K). IfTd(f) converges to f (as d-> oo)
uniformly on K for every f € H(K) then the following formula holds true:

Urn ||/ - Tdf\\y =——— (/ € H(K))
d—>oo -^U)

where R(f) > 1 has the same meaning as in the previous theorem.
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Here the word "projector" means that Td(p) = p for every p € lid-

Proof. — Roughly, this is a consequence of the uniform boundedness
theorem together with the following theorem ofSiciak: for every / G H(K)^
we have lim A^/)^ = l/R{f) where A^(/) is the distance, in the

d—^oo
uniform norm on K, between / and H^, see [12, Th. 8.5].

To be precise, fix r > 1 (eventually, we will let r approach 1), the
operators Td : f € A(Kr) -^ W) € C(K) and I : f e A(Kr) -^ f\K e
C{K) are continuous and, for every / € A(Kr), the sequence (X—Td)(f) is
bounded in C(K) for it converges to 0. Hence, by the uniform boundedness
theorem, there exists a positive constant M = M(r) such that
(4.3) \\(I-Td){f)\\K < M(r)||/||^ (/ e A(Kr)).

Let / € H(K) and r sufficiently small so that / G H(Kr). If td is a best
approximation of / in H^ on Kr, it follows from Siciak's Theorem (applied
to Kr and taking into account (4.1)) that

(4.4) lim ||/- td\\y=———.
d—^OO ^r •^U)

Now, since Td(td) = id and using (4.3), we obtain
II / - W)\\K =||(/- td) - W - td)\\K <. M{r).\\f - td\\^

whence, by (4.4), it follows

^jf-^y^wY
Since r can be taken as close as we like to 1, we have as well

J^II/-W)||^^.
That the inequality cannot be strict follows from Siciak's Theorem since
Td(f) is a "competitor" for the best approximant from H^ to / on K. The
theorem is proved. D

We can derive another interesting consequence of this result.

COROLLARY. — Let A be an extremal array for K a regular compact
convex set in C71, then it is also an extremal array for Kr, r > 1.

Proof. — Fix r > 1 and let / € H(Kr}i we must prove that
^Q := ^A^/) converges uniformly to / on Kr as d —> oo. Since A is
extremal for K^ in view of Theorem 7, there exists 7*1 > r such that for d
large,

II/-M17^^.
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Now consider the series
CO

^0 + ̂ (^Q+l ~~ ^d)
d=0

whose partial sum of order d — 1 is exactly /Q. This series is uniformly
convergent on Kr for we have, using the Bernstein-Walsh inequality, (here,
this essentially follows from the definition of the Siciak extremal function),

ll̂ d+l - MX, < ̂ .ll̂ +l - K,d\\K

<rd+l(||/-/Q+l||x+||/-/Q||^
..d+l

<2-T— v-d

Its sum, say ^, is therefore a continuous function on Kr and holomorphic
on Kr. Since the series converges to / on K, which is not pluripolar, g must
be equal to / on Kr and the corollary is proved. D

Example. — Let p > 1. Any extremal array for D provides an
extremal array of the non circular compact convex set E of non-void interior
in C2 defined by

(4.5) z € E ^^ \\z\\2 - \(z,z} - 1| < p.

Indeed, since /i"1^) = x + 1/x, it follows from (4.1) that for such p, there
exists r > 1 such that E = Dr and the claim follows then from the previous
corollary.

This corollary does not enable us to construct similar examples in C71

for n > 2, for a totally real ellipse in C71 is pluripolar.

Final Remark. — A typical extremal array in the unit disc in R2

is formed by the d — th roots of unity (d = 1,2,...). This array (and its
images on ellipses) has been recently proved to be "better than extremal".
Specifically, the convergence holds true for functions that are only twice
continuously differentiable on a neighborhood of J9, see [6]. A consequence
of our Theorem 1 is that a generalization of this latter result cannot be
expected for sets of real dimension greater than two.

However, in this connection we raise the following problem: Given a
compact convex set K C M71, does there exist a unique minimal compact
C-convex set K C C71 with the property that there exists a triangular array
A C K and for every function / holomorphic on a neighborhood of K then
K^d (/) converges to / uniformly on K.
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