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HANKEL DETERMINANTS OF THE
THUE-MORSE SEQUENCE

by J.-P. ALLOUCHE, J. PEYRIERE,
Z.-X. WEN (*), Z.-Y. WEN (**)

0. Introduction.

Let S = {0,6} be a two-letter alphabet and 5* the free monoid
generated by S. Consider the endomorphism 0 defined on 5'* by

0: a i—^ a6, b ^—> ba.

Since the word 0n(a) is the left half of the word ^"^(a), it has a limit as n
goes to infinity: the infinite sequence c = eoci " - € n " ' € {a, b}^ which is
called the Thue-Morse (or sometimes the Prouhet-Thue-Morse) sequence.

In this article, except in Section 4, we take a = 1, 6 = 0 . Then the
sequence e satisfies the following relations: CQ = 1, e^n = ^n, C2n+i = 1 —€n .

The study of the Thue-Morse sequence has been initiated by Thue
(1906, [14]; 1912, [15]), who proved that it does not contain three consecutive
identical blocks. A few years later, Morse (1921, [10]) studied the topological
dynamical system generated by this sequence, and Gottschalk (1963, [9])
studied this sequence in the framework of minimal sets. In the last ten
years, it occurred in many different fields of mathematics — ergodic theory,
finite automata theory, formal language theory, number theory, algebraic

(*) Research supported by the NNSF of China.
(**) Research supported by the NNSF of China.
Key words: Thue-Morse sequence - Period doubling sequence - Automatic sequences -
Hankel determinants - Pade approximants.
Math. classification: 11B85 - 68R15 - 41A21.
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formal power series over GF2(X) — and also in physics in relation to
quasicrystals (see, for instance, [I], [7], [8], [II], [16], [17], [18]).

In this article, we discuss some new properties of the Thue-Morse
sequence.

Let u = (uk)k>o be a sequence of complex numbers; then the (p, re-
order Hankel matrix associated with the sequence u is denned to be

( Up Hp+i • • • Up^n-i
rip _ ^P+l ^P+2 • • • ^p+n

"= - - - -
Up-^-n-1 Up-^n • ' ' ^p+2n-2 ,

where n > 1 and p > 0. The determinant of this matrix, denoted by |̂ |, is
called the (p, n)-order Hankel determinant of the sequence u. The properties
of Hankel determinants associated with a sequence are closely connected
to the study of the moment problem, to Pade approximation, and to
combinatorial properties of the sequence.

Here we consider £^, the (p,n)-order Hankel matrix of the Thue-
Morse sequence. We denote by \£^\ its (p,n)-order Hankel determinant.
Our purpose is to study the properties of the double sequence (|<%[)n^i,p>o-
Figure 1 on next page shows \£^\ modulo 2 (O's are replaced by a dot, Fs
by nothing) for 1 ̂  n < 96 and 0 < p <: 127.

This article is organized as follows. Definitions and preliminaries are
given in Section 1. Section 2 is mainly devoted to establishing recurrence
formulae for the sequence modulo 2 of Hankel determinants associated with
the Thue-Morse sequence. Automaticity properties of the sequence of these
determinants modulo 2 are established in Section 3. Further properties and
applications (non-repetition in the Thue-Morse sequence and existence of
some Pade approximants) are given in Section 4.

1. Preliminaries.

Let e == eoci • • • On • • ' C {0,1}^ be the Thue-Morse sequence, defined
by the following recurrence equations:

(1) €o = 1, 62n = 6n, C2n+l = 1 - Cn, for n ̂  0.

As we shall see below, in order to determine the Hankel determinants
associated with e, we have to calculate simultaneously those associated
with another sequence 6 = (?o^i ' " 6 n " ' which is defined by 6n = Cn+i - Cn.
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Figure 1. The set \£^\ modulo 2 for 1 ̂  n <, 96 and 0 ^ p ^ 127.

By (1) and the definition of ^, we have, for n >_ 1,

f ^2n + <^2n+l = ̂
(2) {

[ 62n = 1 - 2e^.

Remark 1.1. — The Thue-Morse sequence can be generated by the
endomorphism of {0,1}* defined b y l i — > - 1 0 , 0 i — ^ 0 1 . The above sequence
6 reduced modulo 2 is called the period-doubling sequence (some authors
also call it the Toeplitz sequence). Like the Thue-Morse sequence, it can be
generated by an endomorphism of {0,1}*: 1 i-> 10, 0 i—> 11. Furthermore, it
can be "induced" from the Thue-Morse sequence in the following way. Define
the map $: {0,1}2 -^ {0,1} by $(00) = $(11) = 0, $(01) = $(10) = 1.
Let (^fc)fc>o be the sequence defined by ̂  = $(€^+1), where 6^+1 runs
through the blocks of two consecutive letters occurring in the Thue-Morse
sequence. Then the sequence (^k)k^o is nothing but the period-doubling
sequence.
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Notations.

Throughout this paper, we adopt the following definitions and
notations:

• The Thue-Morse sequence, the period-doubling sequence, and their
corresponding (p,n)-order Hankel matrices (where p > 0, n > 1) are
denoted respectively by e, 8, % and A^.

• For a square matrix A, let |A| and At stand respectively for its
determinant and the transposed matrix.

• lm,n (resp. Om,n) is the m x n matrix with all its entries equal to 1
(resp. 0).

• If A is a square matrix of order n, A stands for the matrix

( A ^1}
Mi.n 0 Y 5Vli,n 0 r

and A^ for the n x (n — 1) matrix obtained by deleting the j'-th column
of A.

• The symbol =, unless otherwise stated, means equality modulo 2
throughout this article.

• Pi(n) = (ei,e3,...,e^i^_i,e2,e4,...,e2[^]), where ej is the j-th
unit column vector of order n, i.e., the column vector with 1 as its j-th
entry and zeros elsewhere. If no confusion can occur, we simply write Pi.

• P2(2n) = ( n n ), where In denotes the n x n unit matrix.
v ̂ n.n ^n /

( In 0,,i In \

. P2(2n+l)= Oi,n 1 Oi,n .
\0n,n 0,,i In )

. P(n)=P2(n)Pi(n).

We clearly have

(3) |Pi|=|p2|=|p[=±l.

Some lemmas on matrices.

LEMMA 1.1. — Let A and B be two square matrices of respective
orders m and n, X a 1 x m matrix, and Y a 1 x n matrix. Then, we have

A
X<S>1,71,1

y^i.
B

m,l = |A| • |B| -
A 1
X 0

m,l o y
ln.1 B
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Proof. — Set D = „ A y (g)lm'1 . As a function of A and X,
A 0 ly^l D

/A \this is a multilinear alternating form of the columns of the matrix ( ).
I A ^r I v^ /A V
X aTherefore it is of the form , where V is a m x 1 matrix. But,

since permuting two rows of A only changes the sign of D, it follows that
V = /31m,i- Therefore we have

D=a|A|+/3 A lm,l

X 0
0 Y

ln,l
By taking X = 0, we get a = |B[. To show the equality /? = — - o ,

ln,i B
it suffices to take A = f om-1'1 Jm-1 ) and X = (1 0 0.. .). D

^ U Ol,m-l/

As a corollary we have the following lemma.

LEMMA 1.2. — Let A and B be two square matrices of order m and n
respectively, and a, 6, x and y four numbers. One has

aA ylm.n : O^IAI • \B\ - xya^b^^ . \B\
Xln,m bB

LEMMA 1.3. — Let A, B, and C be three square matrices of order m,
n, and p respectively, and three numbers a, 6, and c. One has

A Ci.rn,n °S.m,p

cl^,n B al»,p =\A\•\B\•\C\-ai\A\•\B\•\C\-b2\A\•\B\•\C\
Cblm,p aln,p

- c^AI • \B\ • \C\ - 2abc \A\ • \B\ • \C\.

Proof. — We have, provided that b -^ 0,

A Clrn,n "Irn^p

cl. B al
blm,p Oln,p

n,p

C
= b^c-^ cl

A cl'•7n,n

B
^*lm,jp

acb-1!n,p

Clm,p CiCb lln,p C^b 2C'

= ̂ C-^IA]
B

acb-1!n,p

acb-1!^
c^C

B acb-1!^ l^,i
-^^-^IA]. acb-1!^? c^C lp,i

li,n li,p 0



6 J.-P. ALLOUCHE J. PEYRIERE, Z.-X. WEN, Z.-Y. WEN

(the second equality results from Lemma 1.2), from which we deduce the
formula

A r\ /)1

=|A|. B aln,p
aln,p C

-\A\.
B aln,p cl^i

aln,p C bip^
Cln,l bip^ 0

-11 ^-^m.n ^^-m^p

(4) clm,n B al^p =|A|.
blm,p a^n,p C

which is valid without any restriction on b.

The last determinant of Formula (4) above can be itself computed by
using (4) two more times. D

Lemma 1.3 can be extended in the following way. Although we shall
not use this extension, we mention it because it could be of interest in similar
situations. Let {o'ij}i<zj<n be a collection of numbers such that a^ = 0,
and {Ai}^i^n a sequence of square matrices of respective dimensions m^.

Define a matrix M by blocks: put the A's on the diagonal, and the
block aijirm^mj at position (z,j) for i ̂  j. Then

1^1= EM n 1^1] n WK^)).
(T i=a'(i) i^cr^i)

LEMMA 1.4. — Let x € R, and let A be anm x m matrix, then

(i) \xl^+A\=\A\-x\A\^

(ii) \xlm,m^-A\ = |A|,

(iii) |^A| ^(-l)^1!^!.

Proof. — To prove (i), write

Xl^m + A 0^,1

ll.m 1
| l̂m,m ~1~ A.I ==

A -Xlm,l

ll.m 1

and conclude by using Lemma 1.2.

Assertions (ii) and (iii) are obvious. D

Remark 1.2. — Because they express identities between polynomials
with integer coefficients, the preceding lemmas are valid for matrices with
entries in any commutative ring.
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2. Fundamental recurrence equations.

The aim of this section is to determine recurrence formulae for the
sequence \£^\ (n >_ 1, p >. 0), which will play an essential role in this paper.
We find that, in order to establish such formulae, we need to distinguish
different cases according to the parities of n and p. These formulae involve
the quantities \£^\, |A^| and |A%|. Hence, we shall simultaneously establish
recurrence formulae for all these sixteen quantities, thus obtaining the
fundamental results of this section.

THEOREM 2.1. — Forp ^ 0 and n ̂  1, one has

1) 1^1 = 1^1 • IA^I - 1^1 • |A^| - 2|^|. |Al|
= |̂ | • |A^| + |̂ | • |A%|,

2) |̂ | = 4^| . |Al| + 1^1 • |A^| + 2|^|. |AS|

= 1^1 • |A^|,

3) fell = l̂ +i I • 1^1 - 1^1 • |A^| - 2|̂ | • |A^|
=|^|.|A^+|^|.|A^|,

4) fell = 4ĵ +il • |A^| + 1^1 • |A^| + 2\£^[\. |A^|
=l^il-|A^|,

5) fe^ = (-l)^!^1! • |A^| - 2|^+1!. |Ai|
+|^|.|A^|-|^|.|A%|}

= |^+1!. |A^| + 1^1 • |A^| + 1^1 • |A%|,

6) l̂ l = (-l)̂ !̂ ! • |A%| - \£^i\ • |A^| + 2|^+T| • |A£|}

=1^1-^1,

7) fell = (-ir^i^+ii • IA^I - 21^1 • IA^I
+|^|•|A^1|-|^|•|A^T|}

= |̂ |. lA^1! + 1^1. IA^I + 1^1. IA^I,

8) 1^:11 = (-1)"+1{4|^^JA%+1| - If^l • lA^1]

^2|̂ i| -IA^I}
= 1^1 • IA^I,
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9) |A^| = (-1)"|A^|2

= |A^|,

10) |A^| = 0,

11) JAJ^il = (-1)"{|%|2 + 2|Cnl • 1̂ 1}

=\ n̂+ll'

12) |AJ^|=|^|,

13) lA2^! EE |A^|. |A^1! + |A^| • IA^I + |A%|. IA^I

14) lAJ^1! = |A^| • JA^1! + |A^| • |A^1!,

1 c\ | A 2 p + l | _ | A p i lAP^I-l-IA33 I lA^ 4 ' 1 ! - ! - ! ^^ I IAP+1!10J l̂ n+ll = l̂ n+l I l̂ n I +1^+11 • 1^ I + 1 ^ + 1 1 * 1 ^ I

16) lA îl = IA^J • IA^I + |A^|. |A^1!.

Proof. — First we are going to establish a few general properties of
Hankel matrices associated with a sequence {uj}j^o. For n >_ 1 and p >_ 0
we consider the Hankel matrix H^ = (up+^_2)i<^ <^» together with the
matrix K^ = (^+2(^-2)) ̂ j<n

When u = e is the Thue-Morse sequence, one has

(5) K^=£^ and K^ = 1,,, - ̂ .

When z&n = ̂ n (= ^n+i — ^n)? one has

(6) K^ = 1,,, - 2^ and ^+1 = A^ + 2^ - 1,.,.

Let M = (^,j)i<^ <^ be any n x n-matrix. Let v = [^ (n + 1)] and
/^ = [ ̂  n]. One can easily check the following formula

((m2z-l,2j-l) \<z<v (^2i-l,2j) Kz^i/
(7) P^MPi = ^^^ ^^^

(^2i,2j-l) KI^/A (^2i,2j) l<t<At
l^J^^ 1<J<^

from which one can get

/ Ky K^1 \
(8) ^"^L^^)
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and

/ VP /I^+l\(n-^l)'
(r\\ T>trjp p — ( -^n+l V^n+U
(9) P^n^-^^n^t ^2

K^ (K^\

(K^)^ K^ ) '^p \(1)*
Ln+lJ

In other words, P{H^^P\ is obtained by removing the last row and
the last column from the matrix P^.H^n+i) -Pi-

Proof of 1). — By using (8) and (5), we have

D*c2pD — ( -7? n'71 ~ ̂ n}
^l^n^l - I i _ cp cp+1 ; •

\ ^7i,n ^n ^n /

Then by the definition of ?2 and A^, we have

( cp 1 \
/m^ Dtptc^Pp p _ °n ^^ ^
(lu) ^ l̂̂ n l̂̂  - . ^ , A p I -

^n.n ^-•-71,71 î  ̂ n /

Hence by (3) and Lemmas 1.2 and 1.4, we obtain

|c2p| _ CP! ^n.n
1^2711 — i 91 i Ap

-••n,n •"-^n^ ' —n

= |̂ |. 121,,, + A^| - 1^1.121,.,+A^I
=|^|(|A^|-2|Al|)j^|.|A^| ̂
= |̂ |. |A^| -1^1. |Ai|-2|^| .|A^|.

The proofs of the other assertions follow the same lines: to compute
the determinant of a matrix A, we find a matrix Q such that the determinant
of QAQ1' is computable, for instance by using Lemmas 1.2, 1.3, and 1.4.

In the sequel, we only write the transformation matrices and omit the
details of the calculations.

Proof of 2). — One has

/ P* 02n,l \ / ̂  l2n.l \ / P 02n,l \ ̂  ( P^P P^l \

V0i,2n 1 Ari,2n 0 A0i,2n 1 ) Ml.2nP 0 ) '



10 J.-P. ALLOUCHE J. PEYRIERE, Z.-X. WEN, Z.-Y. WEN

Therefore, taking into account (10),

°n In,n ln,l

\D\ = l^n 21,,, + A^ 21^i
ll.n 21i,, 0

Proof of 3). — Computing as in 1), we have successively

/ cp i (cp \(n+i)'
p<c2p p _ ( ^+1 ^n+l.n - (Ai+ir
^l^n+l^l-l^ _ / ^ Vn+1)^ Cp+1

\ ^n+l,n ^n+ir / ^n

and
/ cp i \

/m ptptc^P p p _ / ^n+l ^n+l.n \
l11^ ^^l^n+l-1!^— I - ^ i AP r

' \ ln,n+l l̂n,n + A^ /

Proof of 4). — One has, due to (11),

/ Pt 02n+l,l \ / ^+1 l2n+l,lW P ®2n+l,l \

V0i,2n+l 1 Ali,2n+l 0 A®i,2n+l 1 )

^n+l In+l̂  ln+1,1

ln,n+l 21n,n + A^ 21yi,i

< ll,n+l 21i^ 0

Proof of 5). — One has

/ -j _ Cp Cp-\-\ \
(\^\ D p*c2p+lp p( _ p I ^n ^n °n ^ p(
(12) ^2^1 ^2n ^1^2 - ^2 I ..p+i . .,p+i ] ?2

\ ^n ^n^n ~ ̂ n /

^/21,,,+A^ l^n \

{ l^n \n^-£^)

Proof of 6). — Due to (12), one has

P2Pt O2.,l\ (£^1 l2n,l\ (PiP^ 02n,l\

®l,2n 1 ) \ll,2n 0 ) \0^2n 1 )

21^ + A^ 1 ,̂̂  21^i
^-n^n -«-n,n — ^TT, ln,l'-n,n

21i,,rn -i r\
•-l,n
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Proof of 7). —Let

/ 1 <0>2n,l \

Ql = ^ In ,
\®l,2n „ . /
v ^n^n ^n '

then
/I q\ nt pt^2p+l p ^ t̂ ^ ̂ +1,^+1 ~ ^n+1 (^n+l) ^ ^
(13) Ol-Pl^n+l^lVl := Vl I / /CP+l^( l )^ t 1 CP+1 J vl

\ W^n+l/ J -ln,n — ^n /

( 1 ^*P 1 \
^ -ln+l,n+l — ^n+1 -'-n+^n \
— l i i 9 1 - 1 - AP"1"1 / '-•-n^+l ^-•-n^ i ^n /

and Formula 2.1.7 follows as above.

Proof of 8). — Due to (13), one has

( Q\P{ ®2n+l,lW^tl1 l2n+l,lV PiQl 02n+l,l ^

Y®l,2n+l 1 / Vl^n+l 0 / V°l,2n+l 1 )

(ln+l,n+l — ^n+1 ln+l,n ln+1,1

l^+i 21,,,+A^1 21^i
li,n+i 21i^ 0

Proof of 9). —Write

( -1 _ 9^P AP _ 1 -I- 9/^P \
(-\A\ D t D t \ ' 2 p T j D pt ^^ 'n ^n -"-n^ ' ^^n ^ p
(14) P^^P^ =P^ Ap _ ^ , ^cp i _ 2^+1 I ̂ 2

^n -ln,7^ i ^^n -•-n,n ^^n /

^/!„,„-2^ A^ \
Y A^ 0»,«^'

hence

|A^| = (-iriA^i2.
Proo/ o/ 10). — Due to (14)

/ P,< 0 ,̂1 WAJ^ l̂ ,i \ / Pi 0 ,̂1 \ , /1^ An ^•1

l^ i H i n H o 1 / ~ I n n'n n'1 '

f \ AP 1-•-n.n -̂̂ yi, -•-r

V0l,2n 1 All,2n 0 A®!^ 1 ) \^^ Q )

hence |A^| =0.
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Proof of 11). — We write

T)tr)t\2p p p p< /ln+l,n+l - ̂ r^l B0'̂  \
p2plA2n+lplp2 = p2 V (B^1)/ 1,,, - 2^1 ) 2

_/l^i,,+i-2^ D \
-^ ^ 0,,J5

where B = A^i - ln+i,n+i + 2^ and D = (A^^^^^, hence

| ln+l,n+l - 2^4-1 D|A2p |
1^2n+ll P* ^n.n

ln+l,n+l ~
D*

Ol,n+l

2^+i D
On,n
Ol,n

——V

On,i

1

where f == (ep+^, €p+n+i, • • • 5 ^+271)*. Now, we add the (2n + 2)-th column
of the above matrix to the (2n + l)-th column, we then add the resulting
(2n + l)-th column to the (2n)-th column, and we continue this procedure
until the (n + 2)-th column. Then, from the definition of A^ and noticing
that v is precisely the last column of f^+i, we have

| ln+l,n+l - ̂ ^l -^+1
Dt\\2P

\LA2n^n-l-ll ~ ^71,71+1

ll,n+l\n+l

l,+i,,+i-2^+i -£^ 0,+i,i
D* On,n+l On,!
-^ Oi,n+i 1

Ol.n+l ll,n+l 0

ln^n+1 - 2^+1 -f^i 0,+i,i

^n-H ^n+l.n+l ln+1,1

,n+l ll,n+l 0

_PP
^714-1

ln+l,n+l
cP

-°n+l

—ll,n+l

cP
-°n+l

^n+l,n+l

ll,n+l

~ln+l,l

ln+1,1
0

== (-1)71

= (-ir

'"̂ 'n+l ln+l,n+l "IH+I,!

^n+l,n+l "̂ n+l ln+1,1•"n+1
-ll,n+l 0ll,n+l

cP
^n+l

-ln+l,n+l

~ll,n+l

"In+l^+l

ln+l,n+l + ^n+1
—ll^-(-l

—ln+1,1

ln+1,1
0
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Proof of 12). — We write

/ Pt ®2n+l,l \ ( A^+i l2n+l.l \( P ®2n+l,l ^

\®l,2n+l 1 / \ll,2n+l 0 ) V®l,2n+l 1 /

( ln+l,n+l D ln+1,1 \

= Dt Q^n ®^i ] ,
ll,n+l Oi,n 0

where D is defined as in 11). Therefore computing as in 11), we have

Dt
| A 2 p I _ |i-) -j | u _ |r*p |2 _ |^P |
1^271+11 ::= ̂  -ln+l,l | • - ==1^71+11 = l°n+ll-

-••1,71+1

Proof of 13). — We have

pt^l (^- ln,n + 2^ l^n - 2f^1 \
1 2n ' V ln,n-2^+l A^-l^+2^+1;

_ ^ —TI -"•n,n -^Ti.n ^
= \ 1 AP+1 1 /\ ln,n ^n ~ -•-n,n /

Proof of 14). — As in 13), we have

( P{ (C^WA^ l2n,lW Pi 02n,l\

\®l,2n 1 y V ^^n 0 ) \®i,2n 1 Y

/A^-l^ 1̂  l^i \
= 1,,, A^1 -1,,, l,,i |.

V ll,n ll,n 0

Proof of 15). — As in 13), we have

^ t A 2 p + l ^ _ ( ^n^l ~ ln+l,n+l ln+l,n \
Vl^2n+lVl = 1 i Ap+1 _ -. j -

\ ,̂71+1 ^n ^n^n /

Proof of 16). — As in 15), we have

Q\ 02n+l,l \ / A^ l2n+l,l \ ( Ql ®2n+l,l ^

3)l,2n+l 1 7\ll ,2n+l 0 /Y®l,2n+l 1 )

^n+1 — ln+l,n+l ln+l,n ln+1,1 \
In^l A^1 - l^,^ l^i | . D

ll,n+l II,TI 0
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Remark 2.1. — The Hankel determinants (^)n^i,p>o of a sequence
of complex numbers satisfy the following recurrence equation (see for
example [3], p. 96),

W. \H^\ - \H^\2 = \H^\' |̂ |.

Now let £, j and k be given; if \H^\ = 0 for j < n ^ j + k, then by the
above formula, \H^\ = 0 on the rhombus whose vertices are (^,j), (i-\- fc, j) ,
(^ - A;,j + k) and (^j + k). Similarly, if \H^\ = 0 f o r ^ - l < p < ^ + f c ,
then, either \Hj_^\ = 0 for i + 1 ̂  p ^ £ + A; + 1, or |̂ J = 0 for
£—1 < p <, i-\-k—l. Therefore the set of zeros of the sequence (|^Sl)n^i,p^o
is the union of rhombi which are separated by nonzero elements. This
explains the patterns shown on Figure 1.

PROPOSITION 2.1. — Define

ro ifp=o, _
l°ol - \ -, .. ... \co\ - l~ Po 1 ^LI if J? ̂  1,

|Ag|=l , |Ag|=0 f o r p > 0 .

Then formulae of Theorem 2.1 hold for p > 0 and n > 0.

Proof. — Formulae have to be checked one by one. The conclusion
results from (1), (2), and the following facts: |ff| = |A^| = -1, |ff| = £p,
and |A?| = 6p. D

From Proposition 2.1, we see that if we can determine the quantities
involved in Theorem 2.1 for p = 0,1, then we can determine these quantities
for all? > 2 by the recurrence equations of Proposition 2.1. Propositions 2.2
and 2.3 below are devoted to this purpose.

PROPOSITION 2.2. — With the above notations, we have

|̂ | =n, |A^ |EEl , |^|=1, |A^|=n.

Proof. — For n = 1, the above equalities can be checked directly.
Assume that the proposition is true for n <_ k. Then, if n = k + 1 = 2^ is
even, we have by 2.1.1 and the induction hypothesis,

|^|=|£I)|•|A,o|4-|£p|•|A;o|=2^.
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If n = k -t-1 = 2£ + 1 is odd, then, by 2.1.3, we have

|̂ | = |^i|. |A,°| + 1̂ 1 . |A ; ° |=^+1+^=2^+1 .

Thus we obtain the first assertion. The other ones can be obtained by the
same method. D

PROPOSITION 2.3. — Forp = 1, we have the following relations :

^ |pi|=J° if n= 1,2 (mod 6),
) ' " ' [ I otherwise;

2} lA^EE^f 0 i{ n = 1 (mod 3)5
) 1 nl [ 1 otherwise;

^ |̂ i| =J° if ri=EO(mod3),
) '^ '^l otherwise;

A\ | A T | = J ° ^=0,5 (mod 6),
'-) \i-^n\ — } i .i11 otherwise.

Proof. — Assertions 13), 15), 14) and 16) of Theorem 2.1 yield

(15) |A^| = |Ai^| = (n + 1)|A^| + |A^|,

(16) |AL+il=|AD=n|A^|+|Ai | ,

from which one gets

(17) |AL| = |A^|,

(18) |AL+i|=|A^|,

(19) IAL+21 = IAU

(20) IA^I ̂  |A^|.

It is easily checked that |A^| = 0, |A^| = -1, and |A^| = 1. We will prove
Assertion 2 by induction. Suppose that it is true for 1 ̂  n < 4A;, and
consider four cases.

(i) By (17), and since 4fc = k (mod 3), we have

l.i i - . A i i - f O i f4fc=l(mod3),
l^fcl = l^fcl == ^11 otherwise.
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(ii) By (18), and since 4 f c + l = 1 ^ 2 A ; + l = l (mod 3), we have

I . I . . . I | - T O i f 4 A ; + l = l ( m o d 3 ) ,
1^4^+11 = 1^2^+11 = \

11 otherwise.

(iii) By (19), and since 4 f c + 2 = l < ^ 2 f c = l (mod 3), we have

..I |-i.i | - J O i f 4 f c + 2 E = l ( m o d 3 ) ,
1^4^+21 = \^2k I = }

11 otherwise.

(iv) The case 4:k + 3 is the same as (i).

This proves Assertion 2.

By using Assertion 2 and Formulae (15) and (16), one can prove
Assertion 4 by induction.

By Equalities 6) and 8) in Theorem 2.1 and Proposition 2.2 we
have \£^n\ = \£\\ and |&^+i| = |A^[, then by the fourth congruence in
Proposition 2.2 and induction, we prove 3).

Finally, by 3), 4) and Proposition 2.2, \£^\ = \£^\ + (n + 1)|̂ |
and l^yi-nl = ^|A^| -h |A^|, then, by Propositions 2, 3, 4 and the same
discussion as above, 1) is proved by induction. D

Generating series
Let (un)n>o be a sequence with Un € Fs, then the formal power series

^ = ]L unxn

n>0

is called the generating series of the sequence (un)n>o-

A sequence {un}n>o is periodic of period s if and only if its generating
P(x)series adds up to a rational fraction of the form ,—-—^, where P is a

polynomial of degree less than s.

Let A(x} = ^ dnX71, B(x) = ^ fcn^71 be two formal power series
n^O n^O

with dm bn G Fa, then their Hadamard product is defined to be

A^B^^^aA^.
n>0
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The Hadamard product of generating series of periodic sequences is the
generating series of a periodic sequence having as a period the lowest
common multiple of the periods.

For p = 0,1,.. . , define

f f^W = ̂  |̂ y, g^\x) = ̂  |A^71,
(21)

n>0 n>0

f^(x) = ̂  1^1^, g^(x) = ̂  |Ai|̂ ,
n>_0 n>0

where coefficients are taken modulo 2, with the convention of Proposition 2.1
when p = 0.

By Propositions 2.2 and 2.3, we have

(22)

( f(0)j

gW=

f(l)J

M)i y

x
l ^ x 2 '

1
1+rc '
1 + x3 + x4 + re5

1+a;6

1+a;2

1+rr3 '

/(o) =
1+a;

nW =

7(D=

7(1) =

1+a:2

a;+a;2

l+a;3

.g + x2 + a;3 + a;4

1+x6

Recurrence formulae of Proposition 2.1 and Propositions 2.2 and 2.3
make it possible to compute the above quantities recursively. As an
illustration, we compute g^ and f^:

^ 2 ).,(2) _ V^ | A 2 | n _ V^ | A 2 | 2n . Y~^ | A 2 | ,2n+l
9 — Z^^n^ —^l^nl^ + / . l^n+ll

n>0 n^O n>0

=Y,\^n\(x2r^x^\£^\(x2)n
n>0 n>0

(by Theorem 2.1, Assertions 9 and 11)

1 + x4 x(l + x2) _ 1 + x(23)

(by (22));
1+x6 1+x6 1+x3

f(2) _ V^ |^21 n _ V^ |^2 | 2n . V^ |^2 |/y.2n+l
J ~ Z^ l^nl^ —Z^'^nF ' / . l^n+ll^

n^O n^O n>0

=S(|^|•|A^|+|^|.|A^)^2"+.r^(|^|.|A^+|^|.|A^|^2»
7l>0 n>0
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(by Theorem 2.1, Assertions 5 and 7)

= (^(D ̂ (i) + y(T) ^ ^(T))2 + ̂ (/a)^^1) + J^p(1))

where, by (22),

(24) /^ = E l̂ -i 1^" = ̂ i3 "̂5 •
n>0

and

(25) ^El^"-^-
n>0

By using Equalities (22), (24), and (25), we obtain

»(-\\ (^\ 1 + x ~\~ x T(~\~\ ~n~\ x-\-x ~\~ x
f v / ^ O V / = — — — — — — - — — 5 f^-A-oW =——————^——5•/ ' 1+a;6 J y ^_^^6

77'T^ CT» ^ "̂  ̂  ~1~ ̂  -7TT ~7T\ X -\- X ~{~ X
/ ( )^ = 1+^ ' ^-^ = 1+^6 '

and

—, ,^ 1 / a j+^+^+a; 5 ^ 2 l+^+^+^+a ; 5(26) / '(IT^^^—rr^—) =——rr^——•
In the same way one can compute /(2) and g^:

CT l^'-^' am=I-^'

THEOREM 2.2. — For anyp >, 0, the sequences {modulo 2)

OT}^0' {l^l}n>0' W}n^ {I^IL^O

are all periodic. Furthermore, 3 • 2^ is a period if2k+l<p< 2A;+1.

Proof. — If p = 0,1,2, by equalities (22), (23), (26), and (27),
these four sequences are periodic. Now, suppose p > 3. We shall prove
by induction that 3 • 2^ is a period if 2k + 1 <: p < 2fc+l. By (27), the
conclusion is true for k = 1. Suppose that the conclusion is true for p <,2k.
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Consider now 2k -}-1 < p < 2A;+1. If p = 2q, then 2A;-1 + 1 < q < 2^, thus
by Theorems 2.1.1 and 2.1.3, we have

\?P | = |/"9| . |A9 | _L \F(1\ . | A 9 |
l̂ nl — l^nl \LAn\ 1 1^1 l^^l

(28)
l^n+ll=l^+ll-|A^+|^i|-|A^|.

On the other hand, by the induction hypothesis, all sequences occurring on
the right hand sides of the equalities (28) have period 3 • 2fc-l, and so do
the product and the sum of these sequences. It follows that the sequences
IffJ and |f|^+i | are both 3 - 2A;-periodic and that this holds also for the
sequence |f^|. The case p odd can be elucidated in the same way. Similar
methods apply to the other three sequences. D

3. Automaticity properties.

In this section, we discuss further properties of the sequences
introduced in Section 2. As the main result of this section, we prove that
these sequences modulo 2 are all 2-automatic in the sense of Salon [12], [13].
As said in the introduction, automatic sequences have been widely and
deeply studied in the recent years, as a general reference, one can read the
survey by Dekking, Mendes France and van der Poorten [8] or the survey
by Allouche [1]. For the two-dimensional automatic sequences, see [12], [13].

First of all, we recall one of the definitions of automatic sequences.

Let A be a finite alphabet and let A* be the set of finite words. A
substitution over A is a map a: A —> A*. If for any a € A, the length
of cr(a) (z.e., the number of letters of the word cr(a)) is equal to fc, where
k > 1 is an integer, then a is called a ^-substitution. Furthermore, if a € A
is such that cr(a) = aw, w € A*, then

a^(a): = lim ^(a)

defines an infinite word

X = X\X^ ' ' ' Xn ' ' ' C

(see [6], [4]), which is said to be generated by this ^-substitution. Let B be
another finite alphabet and let r be a map r: A —> B, then the sequence

^^M^)}^!
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is also called a A;-substitutive sequence (Cobham [6] proved that a k-
substitutive sequence can be produced by a ^-automaton and vice versa).
We saw in Section 1 that the Thue-Morse sequence is generated by the
2-substitution a: 1 i—> 10, 0 i—^ 01 and the period-doubling sequence by the
substitution 0:1 \—> 10, 0 i—^ 11.

The definition of a fc-substitutive two-dimensional sequence [12], [13]
is analogous, but a ̂ -substitution in two dimensions associates with a single
letter a "square" of letters of size k. For example define a two-dimensional
2-substitution as follows

n ° 1 1 1 °
°^ 1 0- 1^ 0 1-

As previously, this operation can be iterated:

0 1 1 0
^ 0 1 , ^ 1 0 0 1
' 1 0 ' ' 1 0 0 1 ' " "

0 1 1 0

Let {^}^>o >o ^e a (louDle sequence. Its 2-kernel is the set of
subsequences

J ( p ^ P ^ J } (} < k 0 < 7 '? < 9^ 11
\\•^2kn-^i)n>0,p>0^ [ J - ^ K ^ U ^ ^ ^ - ^ Z ~ }

It is known (see [12] , [13]) that a sequence is 2-automatic if and only if its
2-kernel is finite.

THEOREM 3.1.

(i) The sequences (modulo 2)

OTL^o' {l^lL>i,^o> {l^lL^o' {l^lL^o
are all 2-automatic.

(ii) For any n > 1, the sequences (modulo 2)

{Wp^ {Wp^ {W,^ {IAl|},>o
are all 2-automatic.
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Proof. — For a and /3 in {0,1}, define two operations

0/3,, _ f^P+fl \ n/5 _ J-,2p+/3 1
J^tt - t"n+aJn>o,p^o' """ — f^n+a; n^0,p^0

on sequences {<}^o,pS:o- OIle has

'£> '̂, ifa+a' ^land/3+/3 / ^ 1,

^cn n^'- ^+0' ifa+Q'^land^+y?^
^zy; ^a'-'a' ~ \ n o,f l '

^D^ i f a + Q ! / = 2 a n d / 3 + / 3 / ^ l .
. S^D^ if a + a' = 2 and /3 + / 3 ' = 2.

Let ̂  ̂ , A, andA stand for the sequences W^^ {^}«>o,p>o'

{^}u^o,p>o' and WH^W mo(iu10 2.

Theorem 2.1 together with Proposition 2.1 can be reformulated in the
following way:

f D^£ = £ • A + E • A, D(̂  = ̂ f • A + S^£ • A + S^£ • A,
D^£ = £ • A, £>^ = ̂ f • A,

-DSA=A, D ^ A s A - ^ A + A . ^ A + A . ^ A ,
^S5 = 0, £>^A = A • ̂ A + A • ̂ A,
£»?^ = S^£ • A + 5i°£ • A, D\£ = S^£ • S^A + S^£ • ̂ A

(30)
+5?^•5olA,

£»?£=5?£.A, £»^ = S^£ • ^o'A,

£>?A=5?f, ^As^^A.^A+^^A.^A

+ 5?A • ̂ A,
£»?A=5'i°^ ^A^^^A.^^A+^A.^A.

( i )Se t / f={f ,£ ,A ,A}andy={6 '^F |FeA ' , a = 0,1, /?=0,l}.
It results from (29) and (30) that, for any F 6 V and a and f3 in {0,1},
D^.F can be expressed as a polynomial with coefficients in GFa of the
elements of y. As the elements of the 2-kernel of a sequence are obtained
by successive applications of operators D^, it follows that the 2-kernels of
the sequences £, £, A, and A are included in the set of sequences that are
polynomials in sequences from y.

But, there is only a finite number of polynomial functions on GFa
with sixteen variables. Therefore, these 2-kernels are finite. Then, it results
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from_[12], [13] that the sequences |^ln>i,p^o, |A^|n>i,p>o, |<?S|n^i,p>o,
and |A^|^>i^>o (modulo 2) are 2-automatic.

(ii) An immediate consequence of a result of Salon [12], [13] is that, if
the double sequence {F^)n,p is 2-automatic, then, for any fixed n > 1, the
sequence (-F^)p is 2-automatic, which proves our claim.

Alternatively we give a direct proof. Let e = eoci " - O n - " € {0,1}^
be the Thue-Morse sequence. For n >, 1, let ^271+1 be the set of all subwords
of e of length 2n 4- 1. Now the 2-substitution a above induces a new 2-
substitution On on f^n+i m the following way: let uj = UJQUJ\ ' ' ' uj^n be an
element of f^n+i; if

a{(jJ) = 0-(a;o<^l • • • ̂ 2n) = 0"(^o) • • • ̂ (^2n) == ^0^1 • • • ^4n+l,

then we set

^n(^) = (^0^1 • • • ̂ 2n)(^2 • • • 772n+l) € ^+1-

It is easy to check that

a^(uo) = ^m^a^uo) = UQU^ ' " e ̂ +1,

where ̂  is the block CjCj+i ... Cj+2n- This means that the sequence u is
generated by the 2-substitution On- Now define the map Tn : ^2n+i —^ {O? 1}
by Tn{up): = |f^[ (mod 2). Then, the image of the sequence {up)p>_o
under Tn is equal to the sequence {|^|}p>o modulo 2. Hence the sequence
{l^l}p>o modulo 2 is 2-automatic. It can be proved in the same way that
the other three sequences are 2-automatic. D

Remark 3.1. — If u = UQU\ ' ' ' U n ' ' ' is an automatic sequence that
can be generated by a primitive substitution, then the sequence is minimal:
any factor of the sequence u occurs in u with a non-zero frequency [6].
Hence by Theorem 3.1, we have the following corollary.

COROLLARY 3.1. — For any p >, 0 (resp. n >, 1), there are infinitely
many numbers n (resp. p), such that \£^\ 7^ 0. The same property holds
also for the sequence |A^[.

Proof. — For a fixed n ^ 1 consider the map A: {0,1}2"-1 -^ {0,1}
defined by

A(ai , . . . , a2n-i) = det{a^-i}i<^^.
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One has A(cp, . . . ,Cp+2n-2) = |̂ |, for all p >: 0. As the Thue-Morse
sequence is minimal, each block ai- ' -asn-i that occurs in the Thue-
Morse sequence occurs an infinite number of times and with bounded gaps.
Hence we have the same property for the "block" (actually the letter)
A(ai, . . . ,a2n-i) in the sequence (|^|)p>o- Hence the frequency of any
letter in the sequence (|£^|)p>o is strictly positive and this sequence is not 0
identically.

For a fixed p >, 0 the sequence n ̂  (|^|)n is periodic and it is not
identical to zero, (one has |ff| = Cp). Hence any letter occurs an infinite
number of times in the sequence (|^|)n>i. D

4. Applications.

Now we consider another form of the Thue-Morse sequence which will
be used in the applications below. In the definition of the introduction,
if we take a = 1, b = —1, then we obtain an infinite sequence
^ = ^0^1 ' " f i n " ' ^ {l?—!}1^ which satisfies the recurrence equations
rjo = 1, ^2n = rjn, ^n+i = -^n. We define TTn = -r]n^\r]n (note that
{ ^ ( 1 4 - T T y i ) } is nothing but the period doubling sequence). The Hankel
determinants corresponding to T] and TT are denoted by |A^| and \B^\.

We clearly have

(31) ^=2en- l , 7^=2|^|-1.

The following proposition relates |A^| and \B^\ to |f^| and |A^|.

PROPOSITION 4.1. — We have

21-nK|=|£S|+2|^| =1^1,

21-n|^|=|A%|+2|A^|=|A£|,

where A^ is the (n,p)-Hankel matrix of the sequence \6j\.

Proof. — This proposition results from Lemma 1.4 and Formula (31).
D

A direct consequence of Theorems 2.1, 2.2, 3.1 and Proposition 4.1 is
the following.
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THEOREM 4.1. — The sequences modulo 2

{^-"KiL^o' {^-"l^lL^o'
{21-"|^|}„^o, {^-"IBSI}^^

are 2-automatic.

For any n > 1, the sequences modulo 2

{^-"Kl}^,, {^-IA^I}^
{21-»|^|}^, {21-"|BI|}^

are 2-automatic.

For anyp >: 0, the sequences modulo 2

{^-"KIL^ {^-l^i}^,
{21-n|^|}^, {21-"|^|}^

are periodic. D

From the theorem above and Propositions 2.2,4.1, we get the following
corollary.

COROLLARY 4.1. — For n > 1, one has 21-n|A^| = 1 (mod 2). In
particular, \A°,\ ̂  0 for n ̂  1. D

By a remark similar to Remark 3.1, we have the following result.

COROLLARY 4.2. — For any n >. 1 (resp. p > 0) there are infinitely
many integers p (resp. n) such that |A^| -^ 0. The conclusion is also valid
for the seq uence (| B^ \). D

Now we discuss the strongly nonrepetitive structure of the Thue-
Morse sequence.

Let A = {a, 6}. If w € A* is a finite word, we denote by w the word
obtained by flipping a and & in it.

Let u = UQU\ ... Un ' ' • ^ A^ and let Wp,n = Up ' • • Up+n be a factor
(american terminology: subword) of u. We say that a word Wp^n is
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nonrepetitive (resp. strongly nonrepetitive) if, for all k and £ such that
p < f c < ^ < p + n , w e have Wk,n ^ w^n (resp. Wk,n 1=- ^,n and
^fc,n 7^ ^,n)- It is known that any factor Wp^n of the Thue-Morse sequence
is nonrepetitive [14], [15]. Notice now that if w^n = ^fc^fc+i • • '^fc+n? then
Wfc,n is just the word (-rjk){-r]k-{-i) ' . • (-^+n). Hence, if the (p,n)-order
Hankel determinant |A^| is nonzero, then the word Wp^n is strongly
nonrepetitive. Thus, by Corollaries 4.1 and 4.2, we obtain the following
theorem.

THEOREM 4.2. — Let u = uou-t... Un... € A^ be the Thue-Morse
sequence, then, for any n > 1, the words wo,2n ^rc strongly nonrepetitive.
Furthermore, for any p > 1, there are infinitely many n such that the
words Wp^n 0're strongly nonrepetitive. D

Remark 4.1. — Notice that W2,2 = bob, W2,i = ba, w^^ = ab, so
W2,i = ^3,1? that is, the word W2,2 is not strongly nonrepetitive. Thus, in
this sense, the theorem cannot be improved.

Remark 4.2.

(i) Let v = vov-i" - V n " ' e A^ be the period-doubling sequence.
For p = 0, we do not have the same result as for the Thue-Morse
sequence. In fact, consider wo,2 = oha, then wo,i = wi,2 = ah. Nevertheless,
by Corollary 4.2, we still have that, for any p, there are infinitely many n,
such that the words Wp^n are strongly nonrepetitive.

(ii) From Proposition 2.2, |A^| 7^ 0, hence for any n > 1, the subword
^o,2n of w is nonrepetitive. Furthermore, this result cannot be improved,
for example, ^4,4 = ababa, but W4,2 = W6,2 == aha.

On the other hand, from Remark 1.1, we see that, nonrepetitivity for
the period-doubling sequence is equivalent to strong nonrepetitivity for the
Thue-Morse sequence, hence, the first conclusion of the above theorem can
be derived from Remark 4.2 (ii).

Now consider again the Thue-Morse sequence r] = rforj^ " • rjn • "
in {1,-!}^ Set

fW^^TfnX^

n>0

then f{x) is a transcendental function, and Cobham [5] proved that f(x) is
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the unique solution of the following functional equation:

^^-(i+^i-^)' M<1 '
such that F(0) = 1, see also [7], [8].

Thus, we are naturally led to consider approximating f(x) by rational
functions. Nice candidates are the Pade approximants (if they exist).

A (p, ̂ )-order Pade approximant of /, noted - , is a rational

function P(x)/Q(x) whose denominator has degree q and whose numerator
has degree p such that

f{x}~^l)=o{xv+q+^x"0'
[ k — llIn particular, the approximants —— for k > 1 play an important role

K J f
in the study of Pade approximant theory (for a general reference, see [2]).
By a classical result, if |An[ ^ 0, then the Pade approximant ———

L it J j

exists (furthermore, it can be expressed explicitly, see [3], pp. 34-36). Hence
by Corollary 4.1, we have the following theorem.

THEOREM 4.3. — Let f(x) = Y, ^n^; then for any n > 1, the
n>,0

(n — 1, n)-order Pade approximant off exists. D
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