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ON THE NORMS OF THE RANDOM WALKS
ON PLANAR GRAPHS

by Andrzej ZUK

1. Introduction.

Let us consider a connected planar graph X such that the degree of
each vertex, i.e. the number of edges adjacent to the vertex, is finite and
such that there are a finite number of vertices in any compact subset of the
plane. Let us also suppose that there are no loops or multiple edges. On
this graph we consider a random walk that goes from a vertex to one of
its neighbors picked uniformly at random. We associate with this random
walk a random walk operator M

M) = 5 ) for [ € BN

p~q

where N(q) is the degree of vertex ¢ and where p ~ ¢ means that {q, p} is
an edge, i.e. p and ¢ are neighbors. The operator M is self-adjoint on the
space ¢2(X, N).

In this article we will establish some upper bounds for ||M||, the norm
of this operator, acting on ¢2(X, N). If P*(q,p) is the probability of going
from ¢ to p in n steps, then we know (see [12]) that

M| = Tim (P*(q,q))"/".

The fact that the norm of M is strictly less than 1 is equivalent to
a strong isoperimetric inequality (see [7]) and implies that the random

Key words: Random walk — Norm of the operator — Planar graphs.
Math. classification: 52C20 — 60J15 — 05B45.
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walk is transient. In this paper we place local conditions on the planar
graph which ensure that a global strong isoperimetric inequality holds.
This is analogous to the following result in Riemannian geometry. If all the
sectional curvatures of the simply connected complete Riemannian manifold
are bounded above by a negative constant, then a strong isoperimetric
inequality holds (see [11]). In general, local conditions on a graph are not
sufficient to imply a strong isoperimetric inequality. This is one reason why
this paper has been restricted to planar graphs.

Our main tool will be Euler’s identity: for a given finite, connected,
planar graph Z, let Vz be the number of vertices, Ez the number of edges
and Pz the number of polygons into which Z divides the plane. Then the
following holds:

Pz —Ez+Vz =2.
1.1. Statement of results.

The results are as follows:

THEOREM 1. — Let X be a planar graph, such that the degree of each
vertex is at least k > 7. Then

jhay < 12 2ES

Theorem 1 improves a result of Dodziuk [6], which states that | M|| < 1
for triangulations of the plane such that the degree of each vertex is at
least 7 and is uniformly bounded. Theorem 1 can be improved if we impose
further conditions on the graph as follows:

THEOREM 2. — Let X be a planar bipartite graph such that the
degree of each vertex is at least k > 5. Then

M| < 2_12___ Vk_?’.
- k

The bound given in the above theorem can be improved if we suppose
that the girth of the graph is at least 6.
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THEOREM 3. — Let X be a planar bipartite graph with girth at least 6
and such that the degree of each vertex is at least k > 4. Then

k(4k% + k — 4) 2

M| <R TR 2

where

. Vk+2+ VA2 $12k 28
2v2

For k = 4 we obtain |M|| < 0.92.

Theorem 3 can be applied to the Cayley graph of surface groups in
the standard presentation. The bound thus obtained improves the bounds
established for this problem in [2], [4]. The upper bound for surface groups
given in Theorem 3 was established in [14] using a different method.

The upper bounds in Theorems 1, 2 and 3 differ substantially from
the other bounds obtained in the same context (see [6] and [10]). This is
because those bounds were obtained by first proving a strong isoperimetric
inequality and then using the Cheeger inequality [3], whilst we establish
directly the upper bounds on the norm of the random walk operator (and
a strong isoperimetric inequality follows from this).

Remarks.

1) In Theorem 1, when k = 6 the norm of the operator M can be equal
to one. This is the case of the random walk on an equilateral triangulation
of the plane.

2) In Theorem 2, when k = 4 the norm of the operator M can be
equal to one. This is the case of the random walk on the square lattice
in Z2.

3) In Theorem 3, when k = 3 the norm of the operator M can be
equal to one. This is the case of the random walk on the honeycomb lattice.

4) Using the method presented here it is possible to slightly improve
the bounds given in Theorems 1 and 2, but the expressions obtained,
although elementary, are quite complicated. As these improvements are not
substantial we shall not give the details in this paper.

We would like to compare our upper bounds with some lower bounds.
In [15] the following lower bound is proved:
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THEOREM 4. — Let X be a graph, not necessarily planar, such that
the degree of each vertex is at most k. Then

2vk-1

>
Il > 2

Remarks.
2vk -1

for the random walk on the homogeneous tree of degree k. In [8], Kesten
proved this lower bound in the case of Cayley graphs.

1) The norm of the random walk operator | M|| is equal to

2) The upper bounds given in Theorem 1 (and so in Theorems 2 and 3)
are asymptotically the same as the lower bounds given in Theorem 4, i.e.
their ratio tends to 1 as k tends to infinity. Already for k& = 4 the lower

bound \/75 ~ 0.87, is quite close to the upper bound 0.92 from Theorem 3.

We now present a very general condition under which the norm of the
random walk operator on X is less than 1.

We suppose that at each vertex of the graph X there are at least 3
edges. As the graph X is planar this divides the plane into polygons (some
of which may have an infinite number of edges).

Now we define a hyperbolic polygon of X. First of all, we say that
infinite polygons are X-hyperbolic and let P be a finite polygon which has
kp edges. We say that the polygon P is X —hyperbolic if

kp —
zN(v -

The above condition comes from hyperbolic geometry. It is well known that
for given angles aq, ..., there exists a polygon in the hyperbolic plane
with these angles, if and only if

k
Zai < m(k —2).
=1

Examples.

1) All the graphs from Theorems 1, 2 and 3 divide the plane into
hyperbolic polygons.

2) Each planar graph with a degree of each vertex at least 3 and a
girth of at least 7 divides the plane into hyperbolic polygons.
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THEOREM 5. — If the planar graph X divides the plane into hyperbolic
polygons, then

IM] < 1.

Theorem 5 improves a result of Soardi [10], which states that the
above theorem holds provided there are further restrictions on the graph,
such as: all the polygons have the same number of edges and the degree of
each vertex is uniformly bounded. After completion of this work we learned
that a similar result was obtained independently by Woess [13].

This article is organized as follows. In Section 2 we present the
method we use. In Section 3 we prove the upper bounds given in Theorems
1, 2 and 3. Section 4 is devoted to the proof of the strong isoperimetric
inequality for graphs dividing the plane into hyperbolic polygons.

Acknowledgments. — I gratefully acknowledge the help and guid-
ance of Professor Laurent Saloff-Coste during the preparation of this work.
I would like to thank the referee for his useful remarks.

2. Statement of the method.

2.1. Gabber’s lemma.

The upper bounds that we establish in this article are obtained using
the following lemma by Gabber [5]:

LEMMA 1. — Let us suppose that on the set of oriented edges of the
graph X there is a positive function F such that :

F(.9) = 5737
If for every vertex g € X one has
1
WZF((I’7‘1)) <k

p~gq
then

M| < k.
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Proof. — Let us denote the scalar product on £2(X, N) by (-,-). Then
for f € 2(X,N)

(M, )= f)fa)

geX prg
=Y > f®VF(a,p) VF((p,9) f(9)
g€ X p~q
<Y N {LFPWF(ap) + 2 (@F (2, 9)}
geX pg
=1 Y FPOF(ap)+ 3 Y. > fA9F(p.q)
PEX q~p qEX p~q
<52 PONE+3 Y FP(ON@k=k{, 1)
peX qeX
Since M is a self-adjoint operator on ¢2(X, N) the lemma is proved. a
Remark. — Given a graph X there is always a function F' as in

Lemma 1, such that k = ||M||. Indeed, there is always a positive function f,
such that M f = | M||f, and so we can define F((p,q)) = f(p)/f(q).

2.2. The structure of the graphs.

We will prove that the graphs from Theorems 1, 2 and 3 have a very
simple structure. This will enable us to define the function F' needed in
Lemma 1.

Let us be more precise. Let X be any graph considered in Theorems
1, 2 or 3. For a vertex v let |v| denote its distance from a given vertex e, i.e.
the minimal number of edges connecting v to e. Let us subdivide the set
of oriented edges (g,p) into positive, neutral and negative according to the
value of the difference |q| — |p|. For a vertex p € X let N4 (p) and N_(p) be
the number of positive and negative edges starting at p.

Let us denote by V,, the set of vertices of X which are at distance n
from e and by E, 11 the set of edges of X which connect V,, to V,41:

Va={peX; [p|=n},

Eni1={{a,p}; a~p, (q€ Va, P € Vay1) or (q € Vyuyr, p € Vi) }.

The graph X is planar so it divides the plane into polygons (some of which
may have an infinite number of sides). For any two vertices from V,, which
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belong to the same polygon and which are not connected by an edge, we
add an edge connecting them. A priori, the graph X with added edges does
not have to be planar, but it will be shown that it is planar.

For the proof we need the following definition:

DEeriniTION 1. — The sphere S,, of radius n is a graph with vertex
set V,, and whose edges are the edges of X and the added edges S;" which
connect vertices from V,,.

Figures la and 1b show the graphs X and X U S; where thick edges
represent edges from X in S; and dotted edges represent added edges
from Sy .

Figure 1a. Graph X Figure 1b. Graph X U S;

Then we prove

LemMA 2. — For all n, we have the following property :

The sphere S, is a cyclic graph and X US; U ...U S, is
a planar graph. More precisely we can draw X and the
added edges Sy ,...,S;} in such a way that there is no
vertex p with |p| > n inside the cycle S,. Furthermore
each vertex v € V,, has at most two neighbors that are
closer to e, i.e. N_(v) < 2.

(Pn)

Proof of Lemma 2. — We prove property (P,,) by induction.
1) (Po) is clearly satisfied.

2) Suppose that for some integer n, (P,) holds. Edges in E,; are
cyclicly ordered since by induction the edges E, +; are outside S,, and the
vertices V,, are cyclicly ordered. With regard to this set we say that two
edges are neighbors if there are no edges from E,, 1 between them.
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Figures 2a and 2b represent examples of pairs of neighboring edges.
These pairs are represented by thick lines. Edges from S,, are represented
by dotted lines.

Figure 2a. Neighboring edges Figure 2b. Neighboring edges

PRrROPERTY 1. — Suppose that (P,) holds for some n. Consider edges
{p,w} and {q,w} such that w € V,4; and p,q € V,,. Then these edges
are neighbors and {p,q} is in S,. There are no vertices of X inside the
triangle {p, q, w}.

Proof of Property 1. — Let us consider vertices p and ¢ which are
in V,, and which have a common neighbor w that is in V,,11. Let us consider
the subgraph C of the graph X bounded by edges {p, w}, {g,w} and the
edges from S, which connect p with ¢q. Suppose that Property 1 is not true,
i.e. that there are either interior vertices of C or vertices of C that belong
to S, which are different from p and q. Let  be the number of vertices of
the first type and let y be the number of vertices of the second type. So for
graph C we have:

Ve=3+z+y.

In order to finish the proof of Property 1 we need only to prove:

CrAm 1. — For graph C, we have z =y = 0.
This is proved separately for the graphs from Theorems 1, 2 and 3 in
Section 3. O

Property 1 implies that for a vertex v € V41 we have N_(v) < 2.
So the second assertion of (P,41) is proved for the vertices v € V,,41.

The neighboring edges have a common vertex or there is an edge or an
added edge connecting their extremities which are in V;,1. By Property 1
and (P,) the graph with edges

{{P, q}; p € Vot and q € V41 are extremities
of neighboring edges in Ep41}
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is a cyclic graph. Moreover, we can draw the added edges or the edges
connecting two neighboring edges in such a way that there are no vertices
inside this circle which are at a distance greater than n + 1 from e.

In order to finish the proof of (P,+1) we must show that there are no
other edges in Sy, +1. This is the content of Property 2 below:

PrOPERTY 2. — Suppose that (P,) holds for some n. Consider an
edge {p’,q'} in S, 1. Then there exist vertices p and q in V,, such that the
edges {p,p'} and {q, q'} are neighbors.

Proof of Property 2. — Suppose the contrary, i.e. that there are
vertices p and ¢ in V,, which are not connected by an edge or added edge
from S,, and which have neighbors p’ and ¢’ which are in V,, 1 and which are
connected by an edge or an added edge {p’,q’}. Consider the subgraph D
of the graph X bounded by edges {p,p'}, {p’,¢'}, {d’,q} and the edges
from S,, which connect p with g. Let  be the number of interior vertices
of D and let y be the number of vertices of D that belong to V,, which are
different from p and g. So for graph D we have:

Vb=4+2+y.

In order to finish the proof of Property 2 we need only prove:

CrAmM 2. — For graph D, we have x = y = 0.

We prove this separately for the graphs from Theorems 1, 2 and 3 in
Section 3. O

This completes the proof of Lemma 2. O

Lemma 2 enables us to divide the set of non-oriented edges of the
graph X into three categories a, b and c.

Let us consider the edge {p, q}. If [p| # |q|, say |p| > |q|, the edge {p, ¢}
is of

o typea if N_(p) = 1.

o type bif N_(p) =2.

We say that the edge {p, ¢} is of
o type cif |p| = |q.
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The function F needed in Lemma 1 is defined as follows:

(1) F((g,p)) = €({a,p1) "7,
where £ is a function on the set of non-oriented edges depending only on
the type of the edge, i.e. £ takes three values.

In Section 3 we will prove that the configurations of edges around
each vertex, with respect to the type and the orientation are very special.
This will enable us to find £ so that

g L F (@)

p~q

is small for all ¢ € X.

3. Upper bounds.

In this section we prove the upper bounds given in Theorems 1, 2
and 3. To this end we will describe all possible configurations of edges
around any vertex with respect to type and orientation. This will be done
separately for graphs from Theorems 1, 2 and 3. The proofs use similar
arguments in each case but the details are different.

For a vertex v € X let N¢(v) be the number of edges of type t (where
t =a,bor c) at v and let Ny+(v) and N_;(v) be the number of positive and
negative edges of type t starting at v.

3.1. Graphs of degree of at least 7.

For the proof of Theorem 1 we need the following proposition.

ProprosITION 1. — Let X be a planar graph such that N(v) > k > 7
for each vertex v € X. Then

1) N(e) = Naale).

2) For v # e, N1p(v) <2, N.(v) < 2 and either
(a) N_(v) = N_gz(v) =1or
(b) N_(v) = N_p(v) = 2.
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Proof of Proposition 1. — First of all we prove Lemma 2. It was shown
in Section 2 that it is enough to prove Claims 1 and 2.

Proof of Claim 1. — In graph C, at each of z vertices there are at
least k edges. At each of y vertices in V,,, we have supposed that there are
at least (k — 2) edges in C. Also there are at least two edges at each of the
vertices p, ¢ and w. Hence

Eo > 2~3+kx;—(k—2)y.

Each of the interior polygons of C has at least three edges and the exterior
polygon has y + 3 edges. So finally

3(PC - 1) + (y + 3) < 2E¢.

Together with Euler’s identity this implies that:

1 1
2=Pc—FEc+Ve<—-Ec—-y+ V¢

3 3
1 2:3+kx+(k—-2)y 1
< _Z. — =
S-3 2 3y+3+w+y
—o 02k, 0K
- 6 6 U
As k > 7, it follows that z =y = 0. a

Proof of Claim 2. — In graph D, at each of x vertices there are at
least k edges. At each of y vertices in V,,, we have supposed that there are
at least (k — 2) edges in D. There are at least two edges at each of the
vertices p and ¢ and at the vertex p’ there are two edges from the border
of D. There may also be some interior edges at the vertex p’. So let us say
that there are at least ¢ interior edges at p’, where € = 0 or 1. The same
holds for ¢’ and we say that at vertex ¢’ there are at least ¢’ interior edges,
where ¢’ = 0 or 1. Hence

S 2-44+e+e+kx+(k—-2)y

Ep > 5

The exterior polygon has 4 + y edges.

Let us investigate how many edges the interior polygon which includes
{p’,q'} as one of its edges has. We have supposed that there is no edge
connecting p and g and this means that if there are no interior edges at
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either p’ or ¢’ the polygon has at least five edges. We have supposed that
neither edge {p’, ¢} nor {¢’, p} exist. This means that if there is at least one
interior edge at p’ or ¢’ but not at both, then the polygon has at least four
edges. Finally, if there are interior edges at both p’ and ¢’ the polygon has
at least three edges. So the interior polygon which includes {p’, ¢’} as one
of its edges has at least 5 — € — €’ edges.

All other polygons have at least three edges. So finally
3(Pp—2)+(y+4)+(5—e—¢)<2Ep.
With Euler’s identity, this implies that:

e+é

1
2=PD—ED+VDS—§ED—1+ + Ve
1 . / _ /
2-4+e+e +2kx+(k 2)y_1+5-|?—)5 tdtoty
€+s’—2+6~k$+6—k
6 6 6 U

IA

+ I

2

As k> Tand e+ ¢ <2, it follows that z =y = 0. [}

Thus Lemma 2 is proved. In order to finish the proof of Proposition 1
we need only show the following:

PROPERTY 3. — For any vertex p € X, we have N, (p) < 2.

Proof of Property 3. — Suppose the contrary, i.e. that there is an
n and vertex p in V,, which has neighbors v, v" and v” in V4 such that
the edges {p,v}, {p,v'} and {p,v"} are of type b. We can suppose that for
instance the edge {p,v’} is between the edges {p,v} and {p,v"}. So v has
a neighbor p’ # p in V,,. By Lemma 2 this means that the edge {v/,p'} has
to cross one of the edges {p,v} or {p,v"}. As X is planar, this gives the
desired contradiction. a

This ends the proof of Proposition 1. O

Proof of Theorem 1. — We now show how Lemma, 1 and Proposition 1
yield Theorem 1. The function F needed in Lemma 1 is defined by (1) and
the value of € is given by

o £({p,q}) = Vk — 5 if the edge {p, q} is of type a,
o £({p,q}) = 1 if the edge {p, q} is of type b or c.
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For all the situations mentioned in Proposition 1 we have:

1 1 44+2vVk—-5
1) —J_VTCS ZF((I),@)) = \/E——g < k ’

pr~ve

D6 3 (o)
Nib(g) -1+ Ne(g) -1+ vk =5+ Nyalg)/VE =5
Nib(q) + Ne(g) + 14 Nya(q)
< 24+2+vVk—5+(k—5)/vk—5 4+2Vk—5
= 2+2+1+(k-5) - k ’
1
2) (b) ) %F((p, q))
Nib(g) -1+ Ne(g) -1+2+4 Nya(g)/VE =5
Nib(g) + Ne(g) + 2 + Nia(q)

24242+ (k—6)/VE—5 _4+2/F—5
= 24242+ (k—6) k

This ends the proof of Theorem 1. O

3.2. Bipartite graphs.

Now we prove Theorem 2. In order to do this we need the following:

ProposITION 2. — Let X be a bipartite planar graph such that
N(v) > k > 5 for each vertex v € X. Then

1) N(e) = Nya(e)-

2) For v # e Nyp(v) < 2 and either
(a) No(v) = N_,(v) =1or
(b) N_(v) = N_p(v) = 2.

Proof of Proposition 2. — First of all we will prove Lemma 2. As was
shown in Section 1 it is enough to prove Claims 1 and 2.

Proof of Claim 1. — In graph C, at each of the x vertices there are at
least k edges. At each of the y vertices in V,, we have supposed that there
are at least (k —2) edges, plus 2 edges from S,,. There are at least two edges
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at each of the vertices p, ¢ and w. Hence

2-3+kx+ky.

Eo >
¢ = 2

As the graph X is bipartite, each polygon of C that does not have an edge
in common with S, has at least 4 edges. There are at most y + 1 polygons

in the interior of C' that have edges in common with S;, and each of these
has at least three edges. The exterior polygon has y + 3 edges. So finally,

4(Pc—(y+2)+3(y+1)+ (y +3) < 2E¢.

With Euler’s identity, we have the following:

1 1
2=Pc—Ec+Vc§—§Ec+§+VC

1 2.3+kzx+ky 1 4—-k 4—k

D B B S —op 2Ty 1T

S-3 5 +2+3+a:+y + 1 T+ 7Y
As k > 5, this implies that x =y = 0. O

Proof of Claim 2. — In graph D, at each of the x vertices there are
at least k edges. At each of the y vertices in V,, we have supposed that
there are at least (k — 2) edges, plus two edges from S,,. There are at least
two edges at each of the vertices p and q. At the vertex p’ there are two
edges from the border of D. There may also be some interior edges at the
vertex p’. So let us say that there are at least ¢ interior edges at p’, where
€ = 0 or 1. The same holds for ¢’ and we say that at vertex ¢’ there are at
least ¢’ interior edges, where ¢/ = 0 or 1. Hence

Ep > 2-4+e+e +kx+ky
2
As the graph X is bipartite, each of its polygons has at least four edges. So
each of the polygons of D, that has no edge in common with S, US,,11, has
at least four edges. The exterior polygon has 4 + y edges and there are at
most y + 1 interior polygons with edges in common with S,, and these have
at least three edges. Finally, there is one interior polygon whose border
contains the edge {p’,¢'}. We need to investigate how many edges that
polygon has. We have supposed that there is no edge connecting p and q.
This means that if there is no interior edge at p’ or at ¢’ this polygon has
at least five edges. We have supposed that neither edge {p’, ¢} nor {¢’,p}
exist. This means that if there is at least one interior edge at p’ or at ¢’
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but not at both, this polygon has at least four edges. If there are interior
edges at both p’ and ¢’ this polygon has at least three edges. So the interior

polygon which includes {p’,q’} as one of its edges has at least 5 — ¢ — &’
edges. So finally,

4Pp—(y+3)+3y+1)+(B5-e—€)+(y+4) <2Ep.
With Euler’s identity, this implies that:

e+e

1
2=PD—ED+VD§—-2—ED+ 1 +Vp
1 2-4 "+ kx+k !
<1 +e+e +kr+ y+s+s tdtazty
2 2 4
_o 4—kx+4—k
= — Y
As k > 5, this implies that x =y = 0. O

Thus Lemma, 2 is proved. In order to finish the proof of Proposition 2
we need only prove Property 3. However the proof of this property is the
same as for the previous case. This ends the proof of Proposition 2. [}

Proof of Theorem 2. — We are now in a position to show how Lemma 1
and Proposition 2 yield Theorem 2. For the function £ defining F' by (1) we
impose the following values:

e £({p,q}) = Vk — 3 if the edge {p, q} is of type a,
o £({p,q}) = 1 if the edge {p, ¢} is of type b.

For every situation given in Proposition 2 we obtain

1 1 24+ 2vVk -3
1) WZF((‘”’@)):mS —

pre

D6 L @)
Nis(g) -1+ vk -3+ Nia(g)/VE—3
Nys(q) + 1+ Nia(q)

2+ VE—3+k-3/vE-3 2+2vk-3
= 241+ (k-3) - k ’
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1
2) (b) Mg > F((p,q))
9 <
_ Nup(@)-14+2+ Nya(9)/VE—3
Nib(q) +2+ Nia(q)
< 24+2+k—-4/vVk-3 < 2+2vk -3
- 242+ (k-4 k
This ends the proof of Theorem 2. O

3.3. Bipartite graphs with a large girth.

We now want to prove Theorem 3. To do this, we need the following:

ProprosiTiON 3. — Let X be a bipartite planar graph whose girth is
at least 6 and such that N(v) > k > 4 for each vertex v € X. Then

1) N(e) = Niale).
For x # e either
2) N_(v) = N_,(v) =1 and Nyp(v) <1

or
3) N_(v) = N_p(v) =2 and N4 (v) = Niq(v).
Proof of Proposition 3. — First of all we prove Lemma 2. As was

shown in Section 1 it is enough to prove Claims 1 and 2.

Proof of Claim 1. — In graph C, at each of the z vertices there are at
least k edges. At each of the y vertices in V,, we have supposed that there
are at least (k — 2) edges, plus two edges from S,,. Let €,, €4 and €,, be the
number of interior edges of C' at the vertices p, ¢ and w respectively. So the
number of edges at these three vertices is equal to 6 + €, + €4 + €, Hence

S 6+eptegtewtketky

- 2

As the graph X is bipartite and its girth is at least 6, each polygon of C
that does not have an edge in common with S;, has at least six edges. There
are at most y + 1 polygons in the interior of C that have edges in common
with the S,, and they each have at least three edges. The exterior polygon
has y + 3 edges. Thus

Ec

6(Pc—(y+2)+3(y+1)+(y+3) <2Ec.
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With Euler’s identity this implies that

2 1
2:PC—EC+VCS—§EC+1+§Z/+VC

< 2 b6+eptegtewthkrtky + 1y+3+w+y
3 2 3
_o4 3 3kx+ 4 3ky_ €p+e;+ew'
As k > 4, it follows that x = 0 and ¢, = ¢4 = &, = 0. This implies that
the interior edges of C' are only between the vertices in V,,. But if y # 0, as
X is bipartite, condition (P,,) implies that at each of y vertices there are

edges from E,,,, inside C, which gives a contradiction. Thus y = 0. O

Proof of Claim 2. — In graph D, at each of the z vertices there are at
least k edges. At each of the y vertices in V,, we have supposed that there
are at least (k — 2) edges, plus two edges from S,,. There are at least two
edges from the border of D at each of the vertices p, ¢, p’ and ¢’. There
may also be some interior edges at these vertices. So let us say that there
are at least ¢, interior edges at p, where e, = 0 or 1 and let us define ¢4, €
and e similarly. Hence

2-4+epteqtey+eg thrtky
2

As the graph X is bipartite and its girth is at least 6, each of the polygons
of D with no edges in common with S,, U S,+1 has at least six edges. The
exterior polygon has 4 + y edges. If €, = 0, the polygon that includes as
one of its edges the edge from S, attached to the vertex p, has at least four
edges. So let us say that this polygon has at least (4 — ¢,,) edges. The same
holds for the polygon which includes as one of its edges, the edge from S,
which contains ¢q. The other at most (y — 1) interior polygons, which have
edges in common with S, have at least three edges. Finally there is one
interior polygon which includes the edge {p’,¢'}. Let us investigate how
many edges this polygon has: we have supposed that no edge connects p
and ¢. This means that if there is no interior edge at either p’ or ¢’ this
polygon has at least five edges. We have supposed that neither edge {p’, ¢}
nor {¢',p} exist. This means that if there is at least one interior edge at p’
or ¢’ but at only one of them, this polygon has at least four edges and if
there are interior edges at both p’ and ¢’ this polygon has at least three
edges. So the interior polygon which includes {p’, ¢’} as one of its edges has
at least 5 — e,y — g4 edges. So finally

Ep >

6(Pp—(y+3))+3(y—1)+(y+4)+(4—¢ep)+(4—¢€q)+(5—ep —eg) < 2Ep.
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With Euler’s identity, this implies that

6,,+5q+6p:+sq/+2 1

2
2=Pp—F Vp<—-—=—F -+ =
D p+Vp < 3 D+ 6 3+3y+VD
<_g.2~4+sp+eq+e,,/+eq/+ka:+ky
- 3 2
’ , 2 1
I R ek e A Y S
6 3 3
Ept+EqteEy +Eg 3—-k 4—k
—9_SpTETEyTE )
6 tg 3

As k > 4it follows that x = 0 and €, = €, = £y = €4 = 0. This means that
interior edges of D lie only between vertices which are in V,,. But if y # 0,
as X is bipartite, condition (P,) implies that at each of y vertices there are
edges from E,; inside D, which gives the contradiction. Thusy =0. O

Thus Lemma 2 is proved. In order to finish the proof of Proposition 3
we need only prove

ProOPERTY 4. — For any vertex p € X the following holds :
1) If N_(p) = 1 then Ny(p) < 1.
2) If N_(p) = 2 then Ny(p) = 2.

Proof of Property 4. — Suppose that 1) is not true, i.e. that there is
a vertex p in V;, which has neighbors v, v’ in V,, ;1 and for whom the edges
{p,v}, {p,v'} are of type b (see Fig. 3a). This means that vertices v, v’ have
neighbors w, w’ # p in V41 and vertex p has a neighbor ¢ in V;,_1. By
Lemma 2, vertex q has at least two neighbors in V,,. By Lemma 2 and the
planarity of X, either w or w’ must be a neighbor of ¢. This contradicts the
fact that the girth of X is at least 6.

Figure 3a Figure 3b
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Suppose that 2) is not true, i.e. that there is a vertex p in V,, which
has neighbors ¢, ¢’ in V,,_;1 and a neighbor v in V,, 41 such that the edge
{v,p} is of type b (see Fig. 3b). This means that vertex v has a neighbor
w # pin V,. By Lemma 2 and the planarity of X, w must be a neighbor of
either q or ¢’. This contradicts the fact that the girth of X is at least 6. O

This ends the proof of Proposition 3. O
Proof of Theorem 3. — We are now in a position to show how Lemma, 1

and Proposition 3 yield Theorem 3. The function F' needed in Lemma 1 is
given by (1) and for £ we impose the following values:

o £({p,q}) = 26 — k™1 if the edge {p, q} is of type a,
o £({(p,q}) = & if the edge {p, g} is of type b.

For every situation given in Proposition 3 we have:

1 1 4% +k—4)
D ¥ e g H(k’(;/@ -7

) g 2 F(a)

p~q
_(2k— 2)+ Nio(a) -+ + Nia(q) 5r
14 Nyo(q) + N+ya(g)
- 26— )+ + (k-2 "= k(x> +k—4)
- 1+1+(k-2) T k(262 -1)
1 2k + N+a(‘1)2+——1
- F — K—K
R (P Il e T
it k-5 K(ARP+E—4)
- 2+ (k—2) k(2k2 - 1)
This ends the proof of Theorem 3. ]

4. Hyperbolic polygons.

We now use the so-called strong isoperimetric inequality to prove
Theorem 5.
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4.1. The strong isoperimetric inequality.

For a finite subset A of vertices of X, let us define the boundary dA
as the set of the edges of X with only one vertex in A, i.e.

0A={{q,p}; q~p, (g A, pg A)or (¢ A,pc A)}.

We define the measure N(A) of A and the measure |0A| of its boundary 9 A
as follows:

N(A) =Y N®), 104]=#{{p,a}; {p.a} € 94}.

pEA

We say that the graph X satisfies a strong isoperimetric inequality
if there exists 6 > 0 such that for every finite subset A of vertices of X:

N(A) < §|04|.
As was shown in [7], a strong isoperimetric inequality is equivalent to

|1M] < 1.

So in order to prove Theorem 5 we need only prove the following:

ProprosiTiON 4. — Let X be a planar graph which divides the plane
into hyperbolic polygons. Then for any finite subset A of the vertices of X
we have :

N(A) <6006 |0A].
Proof of Proposition 4. — First of all, note that because at each vertex

there are at least three edges, it is possible to prove a slightly stronger
hyperbolicity condition for polygons, i.e.

LemMA 3. — If the polygon P is hyperbolic then

3 1 _ (- mp)kr =2
<% N 2

Proof. — This is clear if kp > 7. For kp = 3,...,6 there are only a
finite number of cases to consider. O

Secondly, let us note that:
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LeEmMA 4. — If all polygons of the graph X are hyperbolic, then X is
proper, i.e. each edge belongs to two polygons and each vertex belongs to
as many edges as there are polygons containing it.

Proof. — Suppose the contrary, i.e. that there is a polygon, with a
graph inside and that this graph is attached to the polygon by only one edge
or one vertex. The graph inside must be finite. This means that amongst
all such graphs there is a minimal one Y and this is a proper graph. Let o
be the vertex of Y by which Y is attached to the polygon. Let us attach
two edges to o and glue together seven copies of Y using these edges, so
that the added edges will form a 7-gon. Thus we construct a finite graph Y’
which is proper and for whom all its polygons are hyperbolic (see Fig. 4).

Figure 4. The construction of Y’

If we sum the hyperbolicity condition

1 kp
Y === +1<0
G N 2

over all the polygons P of Y’, we obtain:
Vy+ — Ey' + Py <0,
which contradicts Euler’s identity. O
Let us now consider a finite subset A of vertices of X. The presentation

of the proof will be easier if we consider a graph A which consists of the
vertices in A and the edges of X which have both extremities in A.
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If ;1; has a cycle of edges, let us add all the edges which are inside this
cycle to A and let B be the graph so obtained. Thus

|0B| < |04], N(B) > N(A).
It is enough then to prove
N(B) < 6006 |8B|.

The graph B can have many connected components. As it is enough to
prove a strong isoperimetric inequality for each connected component, we
can suppose that B is connected.

Let B; be a union of those edges of B which belong to some cycle of
edges of B and let B; be a union of the other edges of B. Let B(l) . B§k)
be connected components of B;. We will prove

LEMMA 5. — Let B{i) be a finite, connected subgraph of X such that
each of its edges belongs to a cycle of edges from B%’). Then

2) N(B{) <2001 [6BY|, |8B{| > 3.

Proof. — Let z be the number of vertices of By) which belong only to
polygons in Bgi). Let s be the number of vertices of Bgi) such that for each
of them, all polygons which contain it, apart from one, belong to B%i), i.e
each of the s vertices belongs only to edges from Bgi). And finally let r be
the number of vertices of B%i) which belong to at least two polygons which
are not in Bgi), i.e. each of the r vertices belongs to at least one edge which
is not in Bgi). So

Vo =r+s+z, [0B]|>r.

For any polygon P in Bgi) we have:

1
> == P 1< ——kp.
pep N(p 2 2000

Let us sum this inequality over all polygons in Bgi):

(3) > (Z Np) 2 +1) 4 ﬁk”

PeB® PEP peB{®
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For the right hand side of (3) we have

1 k

aB® 1
E 2000 1000( B T 5 ) = 72000 (kBP + ko ),
peB{®

where k) is the number of edges which belong to two polygons in Bgi)
1

and k is the number of edges which belong to only one polygon in Bfi).

8B"
Now let us analyze the left hand side of (3). First of all

o1

PeB

is of course the number of polygons in B%i).

On the other hand
kp K kaB(” K K r+s
Z:” 5 B® + T = Rp T Kopo — 5
PeB;’

because kaBii) =r+s.

If p is any of z vertices then

because for each of the b vertices, all but one of the polygons containing it
are in B{Y).

So together

Y Y g zacte

pGB(z) P;peP
Pc B(l)
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For the left hand side of (3), because of Euler’s identity we have

2 (ZN(;D 5 +1)

PEB(E) pEP

2 r+s
>z+ §$~(kB§i) +kaB§i))+ 5 + Z 1

peB{Y
r
Z(Z+T+.S‘)—(kBii)+k‘aB(1) (Zl)—§
PeB{®
ST
2

So from (3) we now have

10007 > kBﬁi) + kaB§i).

So finally
N(B{) = 2(kgw +kypo) +[0B{] < 20007 + [9B{"| < 2001 9B,
which ends the proof of (2).

We now show that

|0B?] > 3.

If this were not true then |BB§i)| = 0,1 or 2. Let us add one or two edges to
the graph B{i) so that |63§i)| = 2. Let us glue together seven copies of Bgi).
We will do this using two edges from 8B§i) in such a way that these edges
will form a 7-gon. We obtain then a finite planar graph W which divides
the plane into hyperbolic polygons (see Fig. 4). As a finite graph has no
boundary, one has |0W| = 0. Thus the inequality (2) applied to this graph
gives the required contradiction.

This ends the proof of Lemma 5. O

Now we show that Lemma 5 is enough for us to conclude the same
for B in general. Let us contract each component Bgl), . ,ng) of By to
a single vertex b;. By construction we obtain a tree T from B in a graph
which has at least three edges at each vertex. The tree T' considered with
the edges of its boundary does not have to be a tree, but the measure of
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its boundary is the same as if it were a tree. Thus one can apply the well
known strong isoperimetric inequality, that holds for any subset of a tree
which has at least three edges at each vertex, to the subset T":

3|0T| > N(T).

By the construction one has

k k
S_10BY| < N(@), N(B)< Y N(BY)+NT), [9B|=0T|

=1 =1

So
k . k 3
N(B) < S N(BY)+ N(T) <2001 |9BY| + 30T
=1 =1
< 2001 N(T) + 3|8T| < 6006 |0T| = 6006 ||
This ends the proof of Proposition 4. O

5. Final remarks.

Lemma 2, which we established for the graphs from Theorems 1, 2
and 3, has some other corollaries, which we would like to state now.

CoROLLARY 1. — Let X be a graph from Theorems 1, 2 or 3 such
that the number of edges of the finite polygons into which X divides the
plane is uniformly bounded. Then X is hyperbolic in the sense of Gromov.

By a theorem of Ancona [1] this implies that the random walk on
these graphs converges almost surely to the hyperbolic boundary of X (see
also [12]).

Proof of Corollary 1. — As was proved in [9], it is enough to show
that all bigons are thin. Let us consider two segments of geodesics which
have a common beginning (suppose this is €) and a common end. Let d(n)
be the number of vertices in V,, which are strictly between two segments of
geodesics. As the number of edges of all finite polygons in X is uniformly
bounded, in order to prove that all bigons are thin, we need only show that
d(n) is uniformly bounded.
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For the graphs from Theorems 1 and 2, Lemma 2 ensures that each
vertex in V,, has at least three neighbors which are in V,,4;. This implies
that if d(n) is at least 2 for some n, then it cannot decrease and so the two
segments cannot have a common end. So we have proved that for graphs
from Theorems 1 and 2, d(n) is bounded by 1.

For the graphs from Theorem 3, the fact that each vertex in V,, has
at least two neighbors in V,, (Lemma 2) and the fact that the girth is at
least 6, enables us to conclude that if d(n) > 3, then d(n + 2) is at least 3.
Thus for two segments of geodesics which have a common beginning either
d(n) is bounded by 2 or they cannot have a common end. O

Another almost immediate corollary is:

CoRroOLLARY 2. — Using three colors, it is possible to paint the
polygons into which the graphs from Theorems 1, 2 and 3 divide the plane,
so that polygons which have a common edge have different colors.

As we remarked after Theorem 4, upper bounds from Theorems 1,
2 and 3 are asymptotically the same as the lower bound from Theorem 4
which is the norm of the random walk on a homogeneous tree. This has a
geometric explanation. Namely one can prove:

CoROLLARY 3. — Let X be planar graph, such that degree of each
vertex is at least k > 7. Then X contains a subgraph which is a homogeneous
tree of degree (k — 4).

Proof. — The construction of the tree is based on Proposition 1.
The tree can be obtained in the following way. First of all we remove all
the edges of type c¢. Then if at any vertex there are two edges of type b
which are negatively oriented, we arbitrarily remove one of them. After this
procedure, at any vertex different from e there will be one edge which is
negatively oriented and the rest of the edges are positively oriented. Thus
we obtain a tree. At each vertex we have removed at most two edges of
type ¢, at most one edge of type b which is negatively oriented and at most
two edges of type b which are positively oriented. Thus the degree of each
vertex of the tree is at least (k — 4). |

For graphs from Theorem 2 one can prove:
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CoROLLARY 4. — Let X be planar bipartite graph, such that degree
of each vertex is at least k > 5. Then X contains a subgraph which is a
homogeneous tree of degree (k — 2).

Proof. — This is a consequence of Proposition 2 and the proof is
similar to the proof of Corollary 3. O

And for graphs from Theorem 3 one can prove:

COROLLARY 5. — Let X be planar bi-partite graph with girth at least
6 and such that degree of each vertex is at least k > 4. Then X contains a
subgraph which is a homogeneous tree of degree (k — 1).

Proof. — This is a consequence of Proposition 3 and the proof is
similar to the proof of Corollary 3. 0O
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