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ON INDEX THEOREMS FOR LINEAR
ORDINARY DIFFERENTIAL OPERATORS

by M. LODAY-RICHAUD and G. POURCIN

d71 d71"1 d
Let D = dn —,— +0^-1 ———T + • • • +ai — +ao be a linear differentialdx71 d.r72-1 dx

operator with analytic coefficients in the neighborhood of the origin in C
(in short, D a differential operator).

In [M74] (see also [K71]), B. Malgrange proved that D has an index
as a linear operator both in the vector space C[[x}} of formal power series
at the origin, and in the subspace C{x} of the convergent ones. The values
of the corresponding indices are also given. Recall that an endomorphism
D: E —^ E of a vector space E has an index if it has finite dimensional
kernel and cokernel, the index being then defined by

^(D, £") = dim ker-D — dim cokerD.

Later, J.-P. Ramis [R84] proved similar results in the spaces C[[a*]]s of
power series of Gevrey order s and the subspaces C[[a;]]s^+ and C[[a;]]s^-
of those series of type greater or smaller than (7, for all positive s and C.
Recall

w}s = U w^c,
00

w}^ = n wkc+.,
£>0

W}^C- = U W^C-e
£>0

Key words: Linear ordinary differential operator — Index — Gevrey series — Multisum-
mability.
Math. classification: 34A20 - 34A30 - 34E05 - 55N30.
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where

W}s,c = { ̂  anxn € C[[x]] I 3K > 0, Vn > 0, |aJ < ̂ (n!)^5}.
n^O

Their method relies on functional analysis, mainly limits of Banach spaces
and compact perturbations of operators.

Next, P. Deligne suggested in a letter to J.-P. Ramis (see [D86])
to describe singular points -here the origin 0- of differential operators by
means of a suitable space equipped with a sheaf which take into account the
exponential rate of growth and decay of solutions in each direction around 0.
A somewhat close viewpoint has already been used by B. Malgrange and
J.-P. Ramis [MR92] to build a theory of multisummability fitting to formal
solutions of linear ordinary differential equations and by J.-P. Ramis in his
wild TTi theory towards the Riemann problem.

In this paper, we investigate the sheaf of Deligne with an application
to index theorems for D acting on spaces of sections of this sheaf over
various sets. Our method relies on homological algebra. We first show that
index theorems over small sets, small discs and narrow sectors, follow easily
from normal form considerations. Over large sets, we prove index theorems
using suitable Mayer-Vietoris sequences. This latter technique depends on
an isomorphism theorem for D acting on cohomology groups H1 and H2.
The proof of such an isomorphism theorem (Theorems 2.1 and 4.2) is a
central part of this paper.

We obtain, in particular, the index theorems by B. Malgrange
and J.-P. Ramis mentioned above and index theorems in the spaces of
multisummable series. Moreover, we relate these indices to the singular big
points (Definition 2.11) ofD {cf. Tables 3.1 and 4.1).

Aknowledgments. We wish to thank J.-P. Ramis for many conversa-
tions on the subject.
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7. Appendix
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1. Preliminaries.

In this section we recall some definitions and basic results of the local
theory of linear differential equations. A reader familiar to this theory should
begin at Section 2. Mostly we adopt the notations of [Mal] and [MR92].

We fix

d71 d71-1 d
D-an^^an-l-dxr^+''^al~dx^ao

a linear differential operator with analytic coefficients in the neighborhood
of the origin in C.

It is quite often more convenient to consider differential systems
instead of differential equations. Recall that the correspondence between
systems and equations is meromorphic: to an equation corresponds its
companion system; conversely, any system dY/ dx = AY can be put in a
companion form by means of a meromorphic transformation Y \—> MY,
M C GL(n,C{x}[^}) {cf. [R78], Th. 1.6.16 for instance). We shall use both
viewpoints and denote by A a system meromorphically equivalent to the
companion system of D.

Formal invariants.

To the differential system AY = 0 there is a normal form, a
fundamental solution matrix of which reads

^Q(l/.)

where L is a constant n x ?7-matrix and Q = diag(^i,... ,9^) is diagonal
with diagonal entries q\,..., qn which are polynomials in a fractional power
\/t = rr"1^ of x without constant term. Moreover, one can choose L and Q
simultaneously decomposed into a direct sum of diagonal blocks

L=(^L^ and Q=@Q^

such that the q^s occuring in a same block are either all zero or all of the
same degree (see [BJL79], Thm I). Though the normal form is not unique,
the qj 's and the blocks of a Jordan form of L are uniquely determined up to
a permutation. They thus provide a complete set of formal (meromorphic)
invariants.

The smallest possible p is the degree of ramification of A and D. The
case when p = 1 is said the unramified case', the case when p > 1, the
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ramified case. The qj's are called the determining polynomials of A or of D.
The degrees of the non zero ones with respect to 1/x are levels of A and D.
The levels are positive integers in the unramified case and positive rational
numbers in the ramified case. They are precisely the positive slopes of the
Newton polygon N(D) of D (see [R78], I.I). We denote them by

k\ < k^ < • • • < ky.

By convention, if a qj is the null polynomial, we say that it has degree
fco = 0. Notice that we consider here the degrees of the qj's themselves and
not the degrees of the (qj — q^'s for any pair qj ^ q^ like it has to be done
sometimes.

To the edge of slope kj of N(D) there is a ^-characteristic polynomial
and there is a one-to-one correspondence between ^-characteristic roots
and determining polynomials of level kj. More precisely, to each kj-
characteristic root a with multiplicity m there are m determining
polynomials q of the form (see [R78])

'©'-^f1^^'))-j X ^ J

\a\
The numbers c = — for the different ^-characteristic roots a are called

n/i

kj-characteristic constants.

Gevrey series spaces.

The spaces of series of Gevrey type are defined as C-linear subspaces
of C[[:r]], the space of formal power series in one variable x at the origin, as
follows: for s > 0 and C > 0,

W}s,c = { ̂ ^n € C[[x}} | 3K > 0, Vn > 0, |aJ < K^.YC^
n>0

W}s = |j C[[^,c; C[[x]}^ = n C[[^,c;
c>o c>o

W}^ - n C[[x}}^ C[[x}},- = \J C[[x}}^
£>0 £>0

C=<C[[x}}^-= \JC[[x}}^
s'>0

C[ML,c+ = r) C[[x}}s,c+e and C[{x}]^c- = U W}s,c-e.
£>0 £>0
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With these definitions, the equality C[[.r]]^_^ = C[[x}} holds.

For all s and C, D preserves the spaces C[[a;]]s, C[[a-]]s+, C^]],,-,
^[ML,c+ ? HNUc- and C. It does not preserve a space C[[.r]]s,c in general;
however, x^D does for a suitable m e N.

Asymptotics.

It is well known that formal solutions of the equation Dy = 0 are
related to actual analytic solutions through ordinary asymptotics (c/. [Was],
Main Asymptotic Existence Theorem) and that, to better understand this
relation, one must consider special kinds of asymptotics such as asymptotic
expansions of Gevrey type. The sheaves A, A(s), . . . , the definition of which
we recall below, are adequate to this purpose.

Making a real blow up of 0 in C, z.e., using polar coordinates (0, p) one
identifies C* to ]R/27rZ x ]0, +oo[ and one replaces 0 by S1 = R/27rZ x {0}.

With this identification, an open sector (with vertex at 0) in C is a set

S = [(0,p} | (9i < 0 < 6>2, 0 < p < e}.

An open interval I = ]0i, 0'z[ of S1 defines a germ of open sector in C. Let
|J| = 1̂  - Q^\ denote the length of I .

One defines on S1 the following sheaves (see [M95], [MR92], [Mal],
[R78]):

• A is the sheaf of germs of holomorphic functions having an
asymptotic expansion at 0: for all 0 e 51, a germ of A at 0 is defined
by a function / analytic on an open sector S = I x ]0,r[ with 6 C I and
satisfying the asymptotic condition

weN' î o ^(•^-E^h0-
a;GE n=0

• For all s > 0, A^. is the subsheaf of A made of germs having local
Gevrey asymptotics of order k = 1/s:

N-l

3K, C > 0, \/N G N, f(x) - ̂  anxn < K^Y^C1^8.
n=0

Necessarily, / = ^ dn^ belongs to C[[rr]]s.
n>o
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• A^ is the subsheaf of A made of flat germs, z.e., germs the
asymptotic expansion of which is 0.

• For all k > 0, A~ is the sheaf of germs of holomorphic functions
having local exponential growth of order at most k at 0:

3K>0, A > 0 , \f(x)\ <^exp-4

I

• For all k > 0, A~ is the sheaf of germs of holomorphic functions
having local exponential decay of order at least A; at 0:

3^>0, A > 0 , |/^)|<^exp--4

I

• We shall also use the sheaves A~ and A~ defined as follows.
For all k > 0, A~ is the subsheaf lim.4" £ of A~ : a germ / belongs to

£>0

AQ if 3 E containing OQ, 3 e > 0, 3 K and C > 0 such that

V^C S, |/(^| <^exp———.
j«z'

<-fc+
The definition of A~ is obtained by changing k in —A; and e in —£.

Given a sheaf morphism D: (j —^ (j we denote by So£(D, (j) and
Coker(D, jj) the corresponding kernel and cokernel sheaves. When H = A1'
denotes one of the sheaves above, we denote V^ instead of So£{D, A^). The
following equality holds:

( V^1 i!k<k^

^-fe = V^3^ i i k j < k < k j ^ ,

0 if ky < k.

For the convenience of the reader, we state below some of the by now
classical theorems which are central in our purpose. And we give references
for more details. We first consider the case of Gevrey conditions relative to
a given order k. Sections 2 and 3 are only concerned with this case.

From now, we use systematically the correspondence of notations

1 1
s=^ SJ=^'"
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Basic theorems: case of a given order k.

THEOREM OF BOREL-RITT (see [M95], Thm 1.1.4.1). — The sequence
of sheaves on S1

0 -^ A"0 — A -^ C[[x}} -^ 0

where T denotes the Taylor map at 0 and, by abuse, C[[x}} denotes the
constant sheaf with stalk C[[x}} is exact.

THEOREM OF CAUCHY-HEINE (see [M95], Thm 1.3.2.1.i and ii). — The
natural map

H^S^A^)—H^S^A)

is the null map.

Consequently,

H^S^A/A^) = C[[x}} and H^S^A^) = C[[x]]/C{x}.

THEOREM OF BOREL-RITT WITH GEVREY CONDITIONS (see [M95],
Thm 2.1.2.3, 2.1.3.U and 2.4.1.4). — The sequence of sheaves on S1

o-^-'-^^q^-o
is exact.

THEOREM OF RAMIS-SIBUYA (see [M95], Thm 2.1.4.2, Cor. 2.1.4.3 and
2.1.4.4). — For all k > 0, the natural map

j^1^"')^^1^1,^)

is the null map.

Consequently,

H^S^A^/A^") = H^S^A/A^") = C[[x}},,

H\Sl,A<~k)=C[[x}^/C{x}.
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MAIN ASYMPTOTIC EXISTENCE THEOREM (see [Mal], Append. 1,
Th. 1). — The sequences of sheaves on S1

0 ̂  V^ — A"0 -^ A"0 -^ 0

and, for all k ̂  0,

O^V^^A^^A^^O

are exact.

Note however that the map A -D-^ A is not onto in general.

The Theorem of Borel-Ritt and the previous statement imply the
Main Asymptotic Existence Theorem in its classical and its Gevrey forms
(see [Was], [MR92] section 4 ii):

Given f e C[[x}} {resp. C[[x]]s) such that Df = 0 and 6 e S1 there
exist an open sector V = I x ]0,r[ with 0 e I and a function f e A(V)
(resp. f e A^{V)) such that

Tf = / and Df = 0 on V.

Moreover, it is always possible to choose I bisected by 6 and of length

i^r-i"y

MALGRANGE LEMMA (see [Mal], Lemme 5.3).

Forallk>0, ^(S1^^) =0.

We shall use the weaker following form of this lemma:

Forallk>0, ^^l(51,^<fc~) = 0.

We further consider the case of Gevrey conditions relative to an
order k and a type c. Sections 4 and 5 are concerned with this case.
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Basic theorems: case of a given type c.

One can define the sheaves A~ ° and A~ ° as follows:

• a germ of A~ ' c at 0o is an / € A^ satisfying the condition

3 S = I x ]0, r[ an open sector with OQ € J, 3 ̂  > 0 and ̂  > 0 such
that,

Va;eE, |/(a.)|^exp——^;
I

<^_^ ^-(~ <^_^

• a germ of A~ ' at OQ is an / e A^ satisfying the condition

3S = J x ]0,r[ an open sector with 0o e J, 3s: > 0 and JC > 0 such
that,

va;eS, |/(a:)| ^^exp-0^—.

The basic theorems above can be extended in the following form:

PROPOSITION 1.1. — For all k > 0 and c > 0, one has :

(i) the sequence of sheaves

O^A^ ̂ A^_ —^C[[<^_ -0

where T is the Taylor map, is exact;

(ii) for all k > 0, the natural map

^l,^-fc•c+)^l(51,^_)
is the null map;

(iii) (Main Asymptotic Existence Theorem with a given type) for all
k > 0, the sequences of sheaves

0 -. v^ -^ A^~ -^ A^' -. 0,

0 -. y^ -^ A^ -^ A^ -. 0,

are exact;

(iv) Hl(Sl,A<sk'':~)=0.
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Proof.

(i) and (ii) are obtained by an easy adaptation of the proofs of
their analogs in the ordinary Gevrey case which can be found for instance
in [M95].

(iii) To prove the surjectivity of D in the first sequence let / be a
germ of A~ '° at OQ. Let e > 0 and the sector E containing the direction 0o
satisfy, for some constant K,

VrreS, |/(^)|<^exp——^
\x\

There exists S' C S, S' containing 0o^ such that

c-^e -^e
Vrr € I/, fix) exp - -.————r < K exp —2-v / {xe-^Y ~ 1^

which proves that f(x) exp — -,——4 belongs to A~ . Let
- - v / (XG~ ° } °

c-\e _ c-\e
D\ = exp — -——4 ., D exp -——^—.,(xe-^^ (xe-'1'90^

c-\e
be the operator conjugated to D by exp — -———r. The Main Asymptotic

(rce'"^0)^

Existence Theorem in A~ applied to D^ and f(x) exp — -———L: at ^o(^e"1170)-
.<-k , , , , . . . . .̂  c-kprovides a germ ^ e A^ such that D\g(x) = f{x} exp — -—_^ ^ . The

germ h = ^exp -—_^ belongs to A^ > c and satisfies Dh = /.

To prove the surjectivity of D in the second sequence, consider
<-k c+.<-k,c+

'QO
f € A~ ' and suppose that £, S and J<T satisfy

C -\- £
Va-€S, \f{x)\^Kexp-——.

\x\

Then, there exist S' C S, S' containing 0, and K ' > 0 such that

c + 3 ^ ^-e
V.z;€S', /(a;) exp————,: <^/exp-^-.:v / (^e-^o)^ ~ ^A ;
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0

which proves that / exp -—_j belongs to A^ ' E . The previous result

applied to this germ and to the adjoint operator

- c+ ^e c+ ^eD^ = exp -————r D exp - -————
(xe''160^ {xe''100)^

o

of D provides a o € A" > £ such that D^q(x) = ffaQexp -——^—r. The-3 QO ^ \ / ^ \ / i- (o-e"^0)^
0

germ h = g exp — -——2—, belongs to A" > c and satisfies Dh = f.
\XQ~ ° ) °

(iv) The nullity of H1^1^' ) is proved in [Mal], Lemme 5.3. An
adaption of this proof gives the nullity of H1 (51, A~ >c ). D

Irregularity after Deligne-Malgrange and Gevrey index theorems.

Recall that an endomorphism D: E —> E of a vector space E has an
index if it has finite dimensional kernel ker(D, E) and cokernel coker(Z), -E),
the index being then the number

\(D, E) = dim ker(D, E) - dim coker(D, E).

The index of D is thus the Euler characteristic of the complex

... — , 0 — > 0 — > E -^E—>0—>0—>"•

where D is placed in degree 0 (or even).

In [M74], B.Malgrange defines the irregularity irro(-D) of D at 0 as
being the index of D in the quotient space C[[a;]]/C{.r}. He proves that D
has an index both in C[[a;]] and in C{o*}, implying thus, that

irro(D) =x(^C[[^]])-x(^CM).

He also gives a value of these indices in terms of the coefficients of D.
The proof in C[[x}} is elementary computational. The proof in C{x} is
based on functional analysis using limits of Banach spaces and compact
perturbations of operators.

Another, more algebraic proof, of these facts is due to B. Malgrange
and P. Deligne (see [M79] and [D77], see also [BV89]). We add this proof in
the Appendix. The analog with asymptotic conditions of exponential type
provides index theorems in Gevrey series spaces. No use of these proofs is
made in the following.
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2. The sheaf of Deligne T.

For the local study of a differential operator D at 0 when 0 is a
singularity of D^ it is not sufficient to endow C with the sheaf of germs of
holomorphic functions. In an unpublished letter to J.-P. Ramis (see [D86]),
P. Deligne suggests to replace {0} by a closed disc X and to endow X with
a suitable sheaf, allowing to take into account the rate of growth or decay
of the solutions of D in each direction around 0. Moreover, the set of global
sections of this sheaf on X is isomorphic to C{x}^ that is, to the stalk at 0
of the sheaf of germs of holomorphic functions in C.

We introduce such a sheaf step by step considering first all possible
exponential orders of growth and decay (sheaf .77), then all possible types
relative to a given order (sheaves J:'k) and, finally, types relative to
finitely many orders (sheaves F^). To each step, will correspond new
index theorems. Considering the types relative to infinitely many orders is
not relevant here.

The closed disc X .
The space X is the topological space obtained by compactifying C

with a circle: it is the union of C and S1 x]0, +00] where C* and S1 x]0, +oo[
are identified via polar coordinates.

NOTATIONS. — For all k > 0, we denote by B(0, k) the open disc of
radius k centered at 0 in X and by B(0, k) its closure. We write (A/, k") to
denote an interval either open or closed at each endpoint.

The sheaf T over X .

The sheaf F is the sheaf corresponding to the presheaf F defined by
the following conditions:

• for all k > 0, ^(B(0, k)) = C[[x]], (recall s = 1/fc);

• for all interval / of S1 and all k ' , k " , 0 < k ' < k " ,

^Ix}kf^ff[)=HO(I^A<kf/A<~kff)^
J ^ ( I x } k f , o o } ) = H O ( I , A ' k f ) .

The Theorem of Borel-Ritt makes the definition consistent.

The sheaf T is a sheaf of C-algebras. Its stalk FQ at 0 is C. In
restriction to a circle S1 x {fe}, it is the quotient

;_ A^" / A^"''"1"

^\Slx{k}=A I A
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Moreover, the Theorems of Cauchy-Heine and of Ramis-Sibuya imply the
following equalities:

H°(X^)=C{x}^

\/k=s~1 >0, H°(B(0,k),:F) =C[[x]],+,

VA;=s-1 >0, H°(B(0,k),:F) =C[[x}},-.

With F we shall prove, in particular, index theorems of D in the
spaces C, C[[a;]]s+, C[[.r]]g- and C{x}.

A typical section of the sheaf T : exp q ( — } .
\x/

The definition set of the exponential function exp q ( — ) as a section

of F when deg q = k is an integer is likely the open shadowed subset in
Figure 2.1.

The disc B(0, k) is partitioned into sectors: on one over two sectors
exp q equals 0, on the others expg is undefined. The support of exp q is
precisely the intersection of its definition set with X \ £?(0, k). The closure
of the arcs of S1 x {k} limiting the sectors where exp q vanishes are the
singular big points of q (cf. Definitions 2.11 and 2.12). The singular big
points of the determining polynomials of D will play a central role with
respect to the indices of D.

Figure 2.1. (Here k = 4)

ASSUMPTION 2.1. — From now and without further mention, we make
the following assumptions:

1) Sectors (resp. annuli) are subsets ofX of the form I x [A;', A/') (resp.
S1 x [A/, A/')), z.e., they are closed on the lower edge.
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2) Multisectors are finite connected unions of a disc centered at 0
(either open or closed and possibly empty) and of sectors Tij = Ij x [k- A*"),
satisfying the conditions Jj+i C Ij and k^ < k'j^ < k'^ < k'^^ for all j.

3) Sectors are not multivalued. This implies for instance that,
when considering ( A ; i , . . . , A^)-multisectors (see Definition 2.11), we assume
k\ > ^ . Note that, most of the time, an argument of ramified covering
allows to fulfil this condition and even to assume that levels are integers.

The action of D on the cohomology of T.

The differential operator D induces a sheaf morphism on T and then
also on its cohomology groups. The remainder of this section is devoted to
the proof of the following result:

THEOREM 2.1. — The linear maps

D : H\U, :F) —> H\U, :F) for i > 1

are isomorphisms when U is a disc, a sector, a multisector or an annulus
{recall that sectors and annuli are supposed to satisfy Assumption 2.1).

The proof is organized as follows: using elementary homological
algebra and basic properties of the sheaf Coker^D^F) we reduce the
problem to the two conditions in Corollary 2.7. Next, we prove that these
two conditions are satisfied using coverings which are acyclic for So£(D, T\
Before we turn to the proof of Theorem 2.1, we show the existence of acyclic
coverings (Proposition 2.5) which are used in the proof.

• AcyclicityforSoe{D,:F).

We are now going to prove that the small discs and the narrow sectors
introduced in Definition 2.2 below are acyclic for So£(D^). The proof
is based on the existence over such sets of a sheaf isomorphism between
So£{D, :F) and Soi{D', :F) when D' is a normal form of D.

It is enlightening to notice the following facts about the sheaf
So£(D,:F).

In restriction to the circle S'1 x {+00} at infinity in X, the sheaf
So£(D, :F) is the sheaf V.

Because D: A~ —> A~ is onto for all k 7^ 0 the equality of sheaves
over S1

<^L.^ <_1.11 < ' k / <'—k^

So£(D,A^ IA^ )=V< /V^
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holds for all k ' , k " , 0 < k' < k" and also

So^A<k~/A^k+)=V<-k~/V<-k+.

Then, the restriction of<?o^(D, J") to a circle S'1 x {A}, when k -^ 0, satisfies

wrn ^ rv^'/v'-^1 if k,<k< k^
^'^^{v^/V-- if.^,,

where, by convention, ko = 0, A^+i = +00 and y^"^4-1 = Q. Moreover, it is
straightforward to prove that, for all interval I and all k ' ' , k " ,

HO(Ix}k\kff[^o£(D^))=HO(I^kf/V<~kff),

H°(I x ]A/,+oo],<S<D,.F)) == ^(J.V^).

DEFINITION 2.2.

• By small disc we mean a disc B centered at 0, either open or closed
and included in B(0, fci).

• By narrow sector we mean a sector I x [k^ k") contained in a sector
J x [0, +oo] where J is an open interval of length |J|= —.

r!iy

LEMMA 2.3. — Let U be a small disc or a narrow sector and D'
be a normal form of D. Then, the sheaves So£{D,!F) and <Sc^(D',.F) are
isomorphic on U \ {0}.

Notice that the isomorphism cannot hold at 0 in general since a
normal form is defined up to a meromorphic transformation.

Proof. — Up to a meromorphic transformation it is equivalent to
consider the case of a differential system A with a fundamental matrix of
formal solutions FY' where F € GL(n, C[[x]}) and where Y ' = ̂ L e^/^ is
a fundamental solution of a normal form A' satisfying the blocks condition
mentionned in Section 1 (Formal invariants).

In the case of a narrow sector U choose a determination of the
argument of x in Y ' and an asymptotic lift F of F to U. The map
Y ' \—^ FY' provides the followed isomorphism.

In the case of a small disc £/, locally, that is, on a narrow sector V
the previous isomorphism Y ' \-^ FY' holds. But now, the support of the ^th
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column as well in Y ' as in FY' is empty as soon as q^ ^ 0. Moreover, when
qn = 0, the ^th column F^ of F belongs to C^.r]]^ or, equivalently, defines

^ sl

a global section of ^rn over U. The map Y ' i—> FY' provides the followed
isomorphism.

For a proof of the fact that F^ belongs to C^.r]]^ when qe = 0<sl
we refer to [MR92], 4.iv: consider a covering U = {U\} of U by narrow
sectors where the intersection of any three sectors is {0}; and consider
asymptotic lifts F^ of F^. The abelian cocycle (-^x) + F^) being
made of isotropies of A' in flat exp(gj — q^) terms has entries in A" 1.
Each -F^ + F^ induces then a null section of ^n over U\ D £/A+I and/ p\ ^^
the F^ 's define a continuation of F to U.

Nota Bene. — Applying the isomorphism over ?7\{0} one sees that the
set H°(U \ {O},^^!),.?")) is made of the formal meromorphic solutions
of D. Consequently, the subset ^(U^Soi^D^)) is made of the formal
meromorphic solutions of D which can be continued at 0, that is, the
solutions belonging to C[[^]].

Actually, it is well known that the F^^s belong even to C[[a']]^ and
that ker(D,C[[a;]]) = ker(D,C[[a;]]sJ holds (see [MR92] 4.iv for instance).
The proof above in the sheaf T^ (Section 4) would give this result. D

COROLLARY 2.4.

(i) When I x [A;', k") is a narrow sector, the restriction map

H°(I x [A/,+oo],5o^D,.F)) —> H°(l x [^A//),5^(D,.F))

is onto.

(ii) When U is a small disc, H°(U, So£{D, ̂ )) = ker(D, C[[x]\).

Proof.

(i) Applying the previous isomorphism over I x [A/, +00] one can suppose
that D is a normal form in which case the assertion is clearly true.

(ii) For 5 > «i the equality ker(D, C[[a;]]5+) = ker(D, C[[x}}) holds. Then
assertion (ii) follows from the relation H°{B{0, ^),^) = C[[.r]]5+. D

Notations. — Given a sector £7, we denote by C771 the constant sheaf
with stalk C771 over £7; for A an open subset of U, we denote by J A '- A <-^ U
and ZU\A '.U\A^U the canonical inclusions.


