Annales de l'institut Fourier

Sophie Chemla
 Extremal projectors in the semi-classical case

Annales de l'institut Fourier, tome 47, nº 5 (1997), p. 1335-1343

http://www.numdam.org/item?id=AIF_1997__47_5_1335_0
© Annales de l'institut Fourier, 1997, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

EXTREMAL PROJECTORS IN THE SEMI-CLASSICAL CASE by Sophie CHEMLA

1. Introduction.

Let \mathfrak{g} be a complex semi-simple finite dimensional Lie algebra, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} and Δ the root system associated to \mathfrak{h}. We will write Δ^{+}(respectively Δ^{-}) for the set of positive (respectively negative) roots of Δ and put $\rho=\frac{1}{2} \sum_{\gamma \in \Delta^{+}} \gamma$. We will denote by $B=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ the set of simple roots. Let \mathfrak{g}_{γ} be the root space associated to the root γ. We put

$$
\mathfrak{n}=\underset{\gamma \in \Delta^{+}}{\oplus} \mathfrak{g}_{\gamma}, \quad \mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}, \mathfrak{n}_{-}=\underset{\gamma \in \Delta^{+}}{\oplus} \mathfrak{g}_{-\gamma}
$$

Let $R(\mathfrak{h})$ be the field of rational functions on \mathfrak{h}^{*}. One introduces the algebra $U^{\prime}(\mathfrak{g})=U(\mathfrak{g}) \underset{S(\mathfrak{h})}{\otimes} R(\mathfrak{h})$. Let us consider the generic Verma module $V=\frac{U^{\prime}(\mathfrak{g})}{U^{\prime}(\mathfrak{g}) \mathfrak{n}}$. Zhelobenko $([\mathrm{Z} 1])$ showed that $V^{\mathfrak{n}}=R(\mathfrak{h}) 1_{+}$(where $1_{+}=$ $\left.1+U^{\prime}(\mathfrak{g}) \mathfrak{n}\right)$. The decomposition $V=\mathfrak{n}^{-} V \oplus R(\mathfrak{h}) 1_{+}$defines a projector p onto $R(\mathfrak{h}) 1_{+}$called the extremal projector. Inspired by a work of Asherova, Smirnov and Tolstoy ([AST]), Zhelobenko ([Z1]) showed that p factorizes into elementary projectors. Let $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ be a normal ordering on the positive roots. Introduce the following notations:

$$
\begin{aligned}
& p_{\alpha}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!f_{\alpha, k}} e_{-\alpha}^{k} e_{\alpha}^{k} \\
& f_{\alpha, 0}=1, \\
& \text { if } k>0, f_{\alpha, k}=\left(h_{\alpha}+\rho\left(h_{\alpha}\right)+1\right) \ldots\left(h_{\alpha}+\rho\left(h_{\alpha}\right)+k\right)
\end{aligned}
$$

[^0](e_{δ} being the root vector associated to the root δ and h_{δ} the coroot). We have $p=p_{\gamma_{1}} \ldots p_{\gamma_{m}}([\mathrm{Z} 1])$. Let $w=s_{1} \ldots s_{j}$ be a reduced decomposition of $w \in W$ (with $s_{k}=s_{\beta_{k}}, \beta_{k}$ a simple root). Put $w_{i}=s_{1} \ldots s_{i}$. The roots $\gamma_{i}=w_{i-1}\left(\beta_{i}\right)\left(w_{0}=1\right)$ are pairwise distinct and
$$
\Delta_{w}=\left\{\alpha \in \Delta_{+} \mid w^{-1}(\alpha)<0\right\}=\left\{\gamma_{1}, \ldots, \gamma_{j}\right\}
$$

Put $\mathfrak{n}_{w}=\underset{\alpha \in \Delta_{w}}{\oplus} \mathfrak{g}_{\alpha}$. In [Z2], Zhelobenko gives an explicit description of $V^{\mathfrak{n}_{w}}$. We will establish similar results for the symmetric algebra (the so-called semi-classical case).

Let us consider the analytic manifold $(\mathfrak{g} / \mathfrak{n})^{*}$. We will endow it with the following coordinate system $\left(\left(e_{-\alpha}\right)_{\alpha \in \Delta_{+}},\left(h_{\alpha_{i}}\right)_{i \in[1, l]}\right)$. We will call U_{δ} the open subset of $(\mathfrak{g} / \mathfrak{n})^{*}$ defined by the equation $h_{\delta} \neq 0$. We define Φ_{δ} to be the following rational map of U_{δ} :

$$
\forall \lambda \in U_{\delta}, \Phi_{\delta}(\lambda)=\exp \left(\frac{e_{-\delta}(\lambda)}{h_{\delta}(\lambda)} e_{\delta}\right) \cdot \lambda
$$

where the dot denotes natural action of \mathfrak{n} on $(\mathfrak{g} / \mathfrak{n})^{*}$. By composition, Φ_{δ} defines an algebra morphism of $\mathcal{A}\left(U_{\delta}\right)$ which we call π_{δ}. We put

$$
U_{w}=U_{\gamma_{1}} \cap \ldots \cap U_{\gamma_{j}}
$$

We will denote by $\mathcal{P}\left(U_{w}\right)$ (respectively $\mathcal{A}\left(U_{w}\right)$) the set of regular functions (respectively analytic functions) on U_{w} and we will write $\mathcal{P}\left(U_{w}\right)^{\mathrm{n}_{w}}$ (respectively $\mathcal{A}\left(U_{w}\right)^{\mathrm{n}_{w}}$) the set of invariant functions of $\mathcal{P}\left(U_{w}\right)$ (respectively $\left.\mathcal{A}\left(U_{w}\right)\right)$ under the action of \mathfrak{n}_{w}. We prove the following result:

Theorem. - The algebra morphism $\pi_{w}=\pi_{\gamma_{1}} \circ \ldots \circ \pi_{\gamma_{j}}$ does not depend on the reduced expression of w. It establishes an isomorphism between

$$
\mathcal{C}_{w}=\left\{f \in \mathcal{A}\left(U_{w}\right) \left\lvert\, \frac{\partial f}{\partial e_{-\gamma_{1}}}=\ldots=\frac{\partial f}{\partial e_{-\gamma_{j}}}=0\right.\right\}
$$

and $\mathcal{A}\left(U_{w}\right)^{\mathrm{n}_{w}}$. Moreover π_{w} sends $\mathcal{C}_{w} \cap \mathcal{P}\left(U_{w}\right)$ onto $\mathcal{P}\left(U_{w}\right)^{\mathrm{n}_{w}}$.
Let N_{w} be the connected simply connected group whose Lie algebra is \mathfrak{n}_{w}. The main ingredient of the proof will be the choice of a point in each N_{w}-orbit lying in U_{w} in accordance with the following proposition:

Proposition. - Let λ be in U_{w}. The point $\Phi_{\gamma_{j}} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_{1}}(\lambda)$ is the unique point of the orbit $N_{w} \cdot \lambda$ whose coordinates $e_{-\gamma_{1}}, \ldots, e_{-\gamma_{j}}$ vanish.

In the appendix, we shall give a factorization for the extremal projector of the Virasoro algebra in the semi-classical case. Note that the non commutative case is still open. It is very different from the semi-simple case because the Virasoro algebra does not admit any normal ordering.

Notations. - Along all this article \mathfrak{g} will denote a complex semi-simple finite dimensional Lie algebra and $\mathfrak{h}, \Delta_{,} \Delta_{+}, \Delta_{-}, \mathfrak{n}, \mathfrak{n}_{-}$, $B=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ will be as above. Denote by W the Weyl group associated to these choices and \bar{w} its longest element. Let γ be an element of Δ^{+}and let h_{γ} be the unique element of $\left[\mathfrak{g}_{\gamma}, \mathfrak{g}_{-\gamma}\right.$] such that $\gamma\left(h_{\gamma}\right)=2$. If e_{γ} is in \mathfrak{g}_{γ}, then there exists a unique $e_{-\gamma}$ such that $\left(h_{\gamma}, e_{\gamma}, e_{-\gamma}\right)$ is a $\operatorname{sl}(2)$-triple. If α and β are two roots, we set $\left[e_{\alpha}, e_{\beta}\right]=C_{\alpha, \beta} e_{\alpha+\beta}$ with the convention that $C_{\alpha, \beta}$ is zero if $\alpha+\beta$ is not a root.

The ordering $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ on the positive roots is normal if any composite root is located between its components. Thus for all positive roots $\gamma_{i}, \gamma_{j}, \gamma_{k}$, the equality $\gamma_{k}=\gamma_{i}+\gamma_{j}$ implies $i \leqslant k \leqslant j$ or $j \leqslant k \leqslant i$. There is a one to one correspondence between normal orderings and reduced expression of \bar{w} ([Z2]). Let us recall it. Denote by s_{i} the reflexion with respect to a simple root β_{i}. If $\bar{w}=s_{1} \ldots s_{m}$, then $\left(\beta_{1}, s_{1}\left(\beta_{2}\right), \ldots, s_{1} \ldots s_{i-1}\left(\beta_{i}\right), \ldots, s_{1} \ldots s_{m-1}\left(\beta_{m}\right)\right)$ are in normal ordering.

If V is a vector space, $S(V)$ will be the symmetric algebra of V. Lastly, if P is in $S(V), S(V)_{P}$ will be the localization of $S(V)$ with respect to $\left\{P^{n} \mid n \in \mathbb{N}\right\}$.

Acknowledgments. - I would like to thank M. Duflo for suggesting to me to study the semi-classical case and for helpful discussions. I am grateful to the referee for indicating to me that the main theorem could be proved in a geometric way.

2. Extremal equations in $(\mathfrak{g} / \mathfrak{n})^{*}$.

We consider $(\mathfrak{g} / \mathfrak{n})^{*}$ as an analytic manifold. We endow it with the following coordinate system $\left(\left(e_{-\alpha}\right)_{\alpha \in \Delta_{+}},\left(h_{\alpha_{i}}\right)_{i \in[1, l]}\right)$. If δ is a positive root, we will denote by U_{δ} the open subset of $(\mathfrak{g} / \mathfrak{n})^{*}$ defined by the equation $h_{\delta} \neq 0$. If U is an open subset for the Zariski topology, we will write $\mathcal{A}(U)$ for the algebra of analytic functions on U and $\mathcal{P}(U)$ for the algebra of regular functions on U. We will define Φ_{δ} to be the following rational map
of U_{δ}

$$
\forall \lambda \in U_{\delta}, \quad \Phi_{\delta}(\lambda)=\exp \left(\frac{e_{-\delta}(\lambda)}{h_{\delta}(\lambda)} e_{\delta}\right) \cdot \lambda
$$

By composition, Φ_{δ} defines an algebra morphism of $\mathcal{A}\left(U_{\delta}\right)$ which we call π_{δ}. We will denote by X_{δ} the natural action of e_{δ} on $\mathcal{A}\left(U_{\delta}\right)$. Remark that X_{δ} is a derivation. If f is in $\mathcal{P}\left(U_{\delta}\right)$, we have

$$
(*) \quad \pi_{\delta}(f)=\sum_{k=0}^{\infty}(-1)^{k} \frac{e_{-\delta}^{k}}{k!h_{\delta}^{k}} X_{\delta}^{k} \cdot f
$$

where $e_{-\delta}$ denotes the multiplication by $e_{-\delta}$. The operator π_{δ} is the commutative analog of the Zhelobenko's elementary projector.

Let $w=s_{1} \ldots s_{j}$ be a reduced decomposition of $w \in W$ (with $\left.s_{k}=s_{\beta_{k}}, \beta_{k} \in B\right)$. Put $w_{i}=s_{1} \ldots s_{i}$. The roots $\gamma_{i}=w_{i-1}\left(\beta_{i}\right)\left(w_{0}=1\right)$ are pairwise distinct and

$$
\Delta_{w}=\left\{\alpha \in \Delta_{+} \mid w^{-1}(\alpha)<0\right\}=\left\{\gamma_{1}, \ldots, \gamma_{j}\right\}
$$

An ordering in Δ_{w} is called normal if it coincides with the initial segment of some normal ordering in Δ^{+}(that is compatible with one of the reduced expression of $\bar{w})$. Note that $\left(\gamma_{1}, \ldots, \gamma_{j}\right)$ is a normal ordering of Δ_{w}. Put

$$
U_{w}=\bigcap_{\delta \in \Delta_{w}} U_{\delta}
$$

We have

$$
\mathcal{P}\left(U_{w}\right)=\left(\frac{S(\mathfrak{g})}{S(\mathfrak{g}) \mathfrak{n}}\right)_{h_{\gamma_{1}} \ldots h_{\gamma_{j}}}=S\left(\frac{\mathfrak{g}}{\mathfrak{n}}\right)_{h_{\gamma_{1} \ldots h_{\gamma_{j}}}}
$$

We will denote by N_{w} the connected and simply connected group whose Lie algebra is $\mathfrak{n}_{w}=\underset{\alpha \in \Delta_{w}}{\oplus} \mathfrak{g}_{\alpha}$. We will start by proving the following proposition.

Proposition 2.1. - Let λ be in U_{w}. The point $\Phi_{\gamma_{j}} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_{1}}(\lambda)$ is the unique point of the orbit $N_{w} \cdot \lambda$ whose coordinates $e_{-\gamma_{1}}, \ldots, e_{-\gamma_{j}}$ vanish. In particular $\Phi_{\gamma_{j}} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_{1}}$ does not depend on the normal ordering on Δ_{w}.

Proof of Proposition 2.1. - Complete $\left(\gamma_{1}, \ldots, \gamma_{j}\right)$ into a normal ordering on the positive roots $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \cdot \mathfrak{g} / \mathfrak{n}$ is endowed with the ba-$\operatorname{sis}\left(e_{-\gamma_{1}}, \ldots, e_{-\gamma_{m}}, h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\right)$. Let $\left(e_{-\gamma_{1}}^{*}, \ldots, e_{-\gamma_{m}}^{*}, h_{\alpha_{1}}^{*}, \ldots, h_{\alpha_{l}}^{*}\right)$ be the dual basis. We will often identify the point $a_{\gamma_{1}} e_{-\gamma_{1}}^{*}+\ldots+a_{\gamma_{m}} e_{-\gamma_{m}}^{*}+b_{1} h_{\alpha_{1}}^{*}+$
$\ldots+b_{l} h_{\alpha_{l}}^{*}$ with its coordinates $\left(a_{\gamma_{1}}, \ldots, a_{\gamma_{m}}, b_{1}, \ldots, b_{l}\right)$. Let us see that there is a unique point in $N_{w} \cdot \lambda$ whose coordinates $e_{-\gamma_{1}}, \ldots, e_{-\gamma_{j}}$ vanish. Assume that there are two such points $f=\left(0, \ldots, 0, a_{\gamma_{j+1}}, \ldots, a_{\gamma_{m}}, b_{1}, \ldots, b_{l}\right)$ and $f^{\prime}=\left(0, \ldots, 0, a_{\gamma_{j+1}}^{\prime}, \ldots, a_{\gamma_{m}}^{\prime}, b_{1}^{\prime}, \ldots, b_{l}^{\prime}\right)$. Then there exist complex numbers $\left(t_{1}, \ldots, t_{j}\right)$ such that $\exp \left(t_{1} e_{\gamma_{1}}+\ldots+t_{j} e_{\gamma_{j}}\right) \cdot f=f^{\prime}$. One can show easily the following equalities:

$$
\begin{aligned}
& e_{\gamma_{l}} \cdot e_{-\gamma_{k}}^{*}=-C_{\gamma_{l},-\gamma_{k}} e_{-\gamma_{l}-\gamma_{k}}^{*} \\
& e_{\gamma_{l}} \cdot h_{-\alpha_{i}}^{*}=-h_{-\alpha_{i}}^{*}\left(h_{\gamma_{l}}\right) e_{-\gamma_{l}}^{*} .
\end{aligned}
$$

From these equalities, one deduces easily that the term in $e_{-\gamma_{1}}^{*}$ of $\exp \left(t_{1} e_{\gamma_{1}}+\ldots+t_{j} e_{\gamma_{j}}\right) \cdot\left(0, \ldots, 0, a_{\gamma_{j+1}}, \ldots, a_{\gamma_{m}}, b_{1}, \ldots, b_{l}\right)$ is $-t_{1} f\left(h_{\gamma_{1}}\right)$. As f is in U_{w}, we get $t_{1}=0$. We reproduce the same reasoning to show that $t_{2}, t_{3}, \ldots, t_{j}$ are zero. So that we have proved that the two points f and f^{\prime} coincide. It is not difficult to deduce from the normal ordering property that $\Phi_{\gamma_{i}}$ sends the point $\left(x_{\gamma_{1}}, \ldots, x_{\gamma_{m}}, y_{1}, \ldots, y_{l}\right)$ to a point $\left(x_{\gamma_{1}}^{\prime}, \ldots, x_{\gamma_{i-1}}^{\prime}, 0, x_{\gamma_{i+1}}^{\prime}, \ldots, x_{\gamma_{m}}^{\prime}, y_{1}, \ldots, y_{l}\right)$ and that it sends the point $\left(0, \ldots, 0, x_{\gamma_{i}}, \ldots, x_{\gamma_{m}}, y_{1}, \ldots, y_{l}\right)$ to a point $\left(0, \ldots, 0, x_{\gamma_{i+1}}^{\prime}, \ldots, x_{\gamma_{m}}^{\prime}\right.$, $\left.y_{1}, \ldots, y_{l}\right)$. So that $\Phi_{\gamma_{j}} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_{1}}(\lambda)$ is the unique point of $N_{w} \cdot \lambda$ whose coordinates $e_{-\gamma_{1}}, \ldots, e_{-\gamma_{j}}$ vanish. This finishes the proof of Proposition 2.1.

As a consequence of the previous proposition, we may write Φ_{w} for the operator $\Phi_{\gamma_{j}} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_{1}}$. The algebra homomorphism defined by Φ_{w} on $\mathcal{A}\left(U_{w}\right)$ will be denoted by π_{w}. Using Proposition 2.1, we will give a geometric proof of the following result.

Theorem 2.2. - 1) If $\overline{\mathfrak{n}}_{w}$ denotes the linear hull of $\left(e_{-\alpha}\right)_{\alpha \in \Delta_{w}}$, one has $\operatorname{Ker} \pi_{w}=\overline{\mathfrak{n}}_{w} \mathcal{A}\left(U_{w}\right)$.
2) The operator π_{w} is the projector onto $\mathcal{A}\left(U_{w}\right)^{\mathbf{n}_{w}}$ with kernel $\overline{\mathfrak{n}}_{w} \mathcal{A}\left(U_{w}\right)$ and its restriction to $\mathcal{P}\left(U_{w}\right)$ is the projector onto $\mathcal{P}\left(U_{w}\right)^{\mathfrak{n}_{w}}$ with kernel $\overline{\mathfrak{n}}_{w} \mathcal{P}\left(U_{w}\right)$.
3) The operator π_{w} establishes an isomorphism Π_{w} between

$$
\mathcal{C}_{w}=\left\{f \in \mathcal{A}\left(U_{w}\right) \left\lvert\, \frac{\partial f}{\partial e_{-\gamma_{1}}}=\ldots \frac{\partial f}{\partial e_{-\gamma_{j}}}=0\right.\right\}
$$

and $\mathcal{A}\left(U_{w}\right)^{\mathfrak{n}_{w}}$. Moreover Π_{w} sends $\mathcal{C}_{w} \cap \mathcal{P}\left(U_{w}\right)$ onto $\mathcal{P}\left(U_{w}\right)^{\mathfrak{n}_{w}}$. If f is in $\mathcal{A}\left(U_{w}\right)^{\mathfrak{n}_{w}}, \Pi_{w}^{-1}(f)$ is the restriction of f to the subvariety of equations $e_{-\gamma_{1}}=\ldots=e_{-\gamma_{j}}=0$.

Proof of Theorem 2.2. - From the previous proposition, the inclusion $\overline{\mathfrak{n}}_{w} \mathcal{A}\left(U_{w}\right) \subset \operatorname{Ker} \pi_{w}$ is clear. Moreover, a standard reasoning shows that

$$
\mathcal{A}\left(U_{w}\right)=\mathcal{C}_{w} \oplus \overline{\mathfrak{n}}_{w} \mathcal{A}\left(U_{w}\right)
$$

Then one sees easily that $\operatorname{Ker} \pi_{w} \cap \mathcal{C}_{w}=\{0\}$. So that we have $\overline{\mathfrak{n}}_{w} \mathcal{A}\left(U_{w}\right)=$ $\operatorname{Ker} \pi_{w}$.

Let us now show that $\operatorname{Im} \pi_{w}=\mathcal{A}\left(U_{w}\right)^{\mathfrak{n}_{w}}$ and that π_{w} is a projector. Let α be in Δ_{w}. For any f in $\mathcal{A}\left(U_{w}\right)$ and any λ in U_{w}, we have

$$
\left(X_{\alpha} \circ \pi_{w}\right)(f)(\lambda)=\frac{d}{d t} f\left(\Phi_{\gamma_{j}} \ldots \Phi_{\gamma_{1}} \exp \left(-t e_{\alpha}\right) \lambda\right)_{\mid t=0}
$$

But for any $t, \Phi_{\gamma_{j}} \ldots \Phi_{\gamma_{1}} \exp \left(-t e_{\alpha}\right) \lambda$ is the unique point of $N_{w} \cdot \lambda$ whose coordinates $e_{-\gamma_{1}}, \ldots, e_{-\gamma_{j}}$ vanish. So that $X_{\alpha} \circ \pi_{w}=0$. We have thus proved the inclusion $\operatorname{Im} \pi_{w} \subset \mathcal{A}\left(U_{w}\right)^{n_{w}}$. Now it is clear that π_{w} is a projector : check that $\pi_{w} \circ \pi_{w}=\pi_{w}$ on coordinates using the formula (*). The reverse inclusion $\mathcal{A}\left(U_{w}\right)^{\mathbf{n}_{w}} \subset \operatorname{Im} \pi_{w}$ will be a consequence of the following lemma.

Lemma 2.3. - Let k be in $[1, j]$ and let f be in $\mathcal{A}\left(U_{w}\right)$. If $X_{\gamma_{k}} f=0$, then $\pi_{\gamma_{k}} f=f$.

Proof of Lemma 2.3. - We first remark that $\left(\pi_{\gamma_{k}}\left(e_{-\gamma_{1}}\right), \ldots\right.$, $\left.\pi_{\gamma_{k}}\left(e_{-\gamma_{k-1}}\right), e_{-\gamma_{k}}, \pi_{\gamma_{k}}\left(e_{-\gamma_{k+1}}\right), \ldots, \pi_{\gamma_{k}}\left(e_{-\gamma_{m}}\right), h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\right)$ is a coordinate system in U_{w}. Indeed, one may see by induction that for any $i \leqslant k-1$ (respectively $i \geqslant k+1$), $e_{-\gamma_{i}}$ may be expressed as a regular function of $\left(\pi_{\gamma_{k}}\left(e_{-\gamma_{1}}\right), \ldots, \pi_{\gamma_{k}}\left(e_{-\gamma_{i}}\right), h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\right)$ (respectively $\left.\left(\pi_{\gamma_{k}}\left(e_{-\gamma_{i}}\right), \ldots, \pi_{\gamma_{k}}\left(e_{-\gamma_{m}}\right), h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\right)\right)$. We put $\left(\epsilon_{1}, \ldots, \epsilon_{m+l}\right)=$ $\left(\pi_{\gamma_{k}}\left(e_{-\gamma_{1}}\right), \ldots, \pi_{\gamma_{k}}\left(e_{-\gamma_{k-1}}\right), e_{-\gamma_{k}}, \pi_{\gamma_{k}}\left(e_{-\gamma_{k+1}}\right), \ldots, \pi_{\gamma_{k}}\left(e_{-\gamma_{m}}\right), h_{\alpha_{1}}, \ldots, h_{\alpha_{l}}\right)$. In these coordinates, we have $X_{\gamma_{k}}=h_{\gamma_{k}} \frac{\partial}{\partial \epsilon_{k}}$. So that if $X_{\gamma_{k}} f=0$, then f does not depend on ϵ_{k} and it becomes clear that there exists g such that $f=\pi_{\gamma_{k}} g$. As $\pi_{\gamma_{k}}$ is a projector, we have $\pi_{\gamma_{k}} f=\pi_{\gamma_{k}} \pi_{\gamma_{k}} g=\pi_{\gamma_{k}} g$, which finishes the proof of the lemma.

It is clear from the proof that π_{w} sends $\mathcal{C}_{w} \cap \mathcal{P}\left(U_{w}\right)$ onto $\mathcal{P}\left(U_{w}\right)^{\mathrm{n}_{w}}$.
In particular $\pi_{\bar{w} \mid \mathcal{P}\left(U_{\bar{w}}\right)}$ is the projector onto $S(\mathfrak{h})_{h_{\gamma_{1}} \ldots h_{\gamma_{m}}}$ with kernel $\mathfrak{n}_{-} \mathcal{P}\left(U_{\bar{w}}\right)$. By analogy to Asherova, Tolstoy, Smirnov and Zhelobenko's work, we will call it the extremal projector.

Proposition 2.1 gives a geometric interpretation of the projector π_{w}.

3. Appendix: Extremal projector for the Virasoro algebra in the semi-classical case.

In this section, we shall give a factorization of the Virasoro algebra extremal projector in the semi-classical case. Note that the non commutative case is still open. It is very different from the semi-simple case because the Virasoro algebra does not admit any normal ordering. Recall that the Virasoro algebra Vir is the infinite dimensional Lie algebra generated by $\left\{e_{i} \mid i \in \mathbb{Z}\right\} \cup\{c\}$ with commutation rules

$$
\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}+\frac{\left(j^{3}-j\right)}{12} \delta_{i+j, 0} c, \quad\left[e_{i}, c\right]=0
$$

Vir admits the following triangular decomposition:

$$
\operatorname{Vir}=\operatorname{Vir}_{+} \oplus \operatorname{Vir}_{0} \oplus \operatorname{Vir}_{-}
$$

where

$$
\operatorname{Vir}_{+}=\underset{i \geqslant 1}{\oplus} \mathbb{C} e_{i}, \text { Vir }_{0}=\mathbb{C} e_{0} \oplus \mathbb{C} c, \text { Vir }_{-}=\underset{i \leqslant-1}{\oplus} \mathbb{C} e_{i}
$$

We will also use the notation

$$
\operatorname{Vir}_{r,+}=\underset{i \geqslant r}{\oplus} \mathbb{C} e_{i} \text { and } \operatorname{Vir}_{r,-}=\underset{i \leqslant-r}{\oplus} \mathbb{C} e_{i} .
$$

$\operatorname{Vir}_{r,+}$ and $\operatorname{Vir}_{r,-}$ are Lie subalgebras of Vir.
Let $R\left(\mathrm{Vir}_{0}\right)$ be the field of fractions of $S\left(\mathrm{Vir}_{0}\right)$. We introduce the algebra

$$
S^{\prime}(\text { Vir })=S(\text { Vir }) \underset{S\left(\text { Vir }_{0}\right)}{\otimes} R\left(\text { Vir }_{0}\right)=S^{\prime}\left(\text { Vir } / \text { Vir }_{-}\right)
$$

There is a natural action of Vir_ on S^{\prime} (Vir/Vir_). Through this action, for any negative i, e_{i} defines a derivation X_{i} of $S^{\prime}\left(\frac{\text { Vir }}{\text { Vir }_{-}}\right)$. Set

$$
T_{r}=\left(\frac{S^{\prime}\left(\text { Vir }^{\prime}\right)}{S^{\prime}\left(\text { Vir }^{2 i r} \text { Vir }_{-}\right.}\right)^{\operatorname{Vir}_{r,-}}
$$

The result and the proof of the following lemma is left to the reader.

Lemma 3.1.

$$
T_{r}=\underset{k_{1}, \ldots, k_{r-1} \in \mathbb{N}}{\oplus} R\left(\operatorname{Vir}_{0}\right) e_{1}^{k_{1}} \ldots e_{r-1}^{k_{r-1}}
$$

As a consequence of Lemma 3.1, we have the following decomposition:

$$
S^{\prime}\left(\text { Vir } / \operatorname{Vir}_{-}\right)=T_{r} \oplus \operatorname{Vir}_{r,+} S^{\prime}\left(\text { Vir } / \operatorname{Vir}_{-}\right)
$$

The proof of the next lemma is an easy computation.

Lemma 3.2. - For any $i>1$, the operator

$$
\pi_{i}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\left(2 i e_{0}+\frac{\left(i^{3}-i\right) c}{12}\right)^{k}} e_{i}^{k} X_{-i}^{k}
$$

is an algebra morphism and satisfies the relations

$$
X_{-i} \circ \pi_{i}=0 \text { and } \pi_{i} \circ e_{i}=0
$$

(where e_{i} denotes multiplication by e_{i}).
It is not hard to see that the operator $\Pi_{r}=\prod_{i=r}^{\infty} \pi_{i}$ is well defined.
Actually $\prod_{i=r}^{\infty} \pi_{i}\left(e_{1}^{a_{1}} \ldots e_{k}^{a_{k}}\right)=\prod_{r \leqslant i \leqslant k} \pi_{i}\left(e_{1}^{a_{1}} \ldots e_{k}^{a_{k}}\right)=0$ (by Lemma 3.2).

Theorem 3.3. - The operator Π_{r} satisfies the relations

$$
\forall i \geqslant r, X_{-i} \circ \Pi_{k}=0, \Pi_{k} \circ e_{i}=0 .
$$

It is the projector onto T_{r} with kernel $\operatorname{Vir}_{r,+} S^{\prime}\left(\frac{\text { Vir }}{\text { Vir }_{-}}\right)$.
In particular, Π_{1} is the extremal projector.
Proof of Theorem 3.3. - The relations of the theorem are easy to check and they prove that Π_{r} is a projector. To prove that the kernel of Π_{r} is $\operatorname{Vir}_{r,+}$, we proceed as in the semi-simple case. The inclusion $\operatorname{Im} \Pi_{r} \subset T_{r}$ is a consequence of the theorem. To prove the reverse inclusion, remark that if x is in T_{r}, then $\Pi_{r} x=x$, so that x is in $\operatorname{Im} \Pi_{r}$.

BIBLIOGRAPHY

[AST] R.M. Asherova, Y.F. Smirnov, V.N. Tolstoi, Description of a class of projection operators for semi-simple complex Lie algebras, Matem. Zametki, 26, No. 1 (1979), 15-25.
[Z1] D.P. Zhelobenko, An introduction to the theory of S-algebras over reductive Lie algebras, Representations of infinite Lie groups and algebras, Gordon and Breach, New York, 1986.
[Z2] D.P. Zhelobenko, Extremal cocycles of Weyl groups, Functional analysis and its applications, 21, No 3 (1987), 11-21.

Manuscrit reçu le 14 octobre 1996, révisé le 15 juin 1997, accepté le 8 septembre 1997.

Sophie CHEMLA,
Institut de Mathématiques
Université Paris VI
Case 82
4, place Jussieu
75252 Paris Cedex 05 (France).
schemla@math.jussieu.fr

[^0]: Key words: Extremal projectors - Semi-simple Lie algebras.
 Math. Classification: 17B20.

